Properties

Label 2.2.5.1-1225.1-a
Base field \(\Q(\sqrt{5}) \)
Weight $[2, 2]$
Level norm $1225$
Level $[1225, 35, -35]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{5}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[1225, 35, -35]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $16$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, -2w + 1]$ $\phantom{-}0$
9 $[9, 3, 3]$ $-5$
11 $[11, 11, -3w + 2]$ $-3$
11 $[11, 11, -3w + 1]$ $-3$
19 $[19, 19, -4w + 3]$ $\phantom{-}0$
19 $[19, 19, -4w + 1]$ $\phantom{-}0$
29 $[29, 29, w + 5]$ $-5$
29 $[29, 29, -w + 6]$ $-5$
31 $[31, 31, -5w + 2]$ $\phantom{-}2$
31 $[31, 31, -5w + 3]$ $\phantom{-}2$
41 $[41, 41, -6w + 5]$ $\phantom{-}2$
41 $[41, 41, w - 7]$ $\phantom{-}2$
49 $[49, 7, -7]$ $\phantom{-}1$
59 $[59, 59, 2w - 9]$ $\phantom{-}10$
59 $[59, 59, 7w - 5]$ $\phantom{-}10$
61 $[61, 61, 3w - 10]$ $-8$
61 $[61, 61, -3w - 7]$ $-8$
71 $[71, 71, -8w + 7]$ $-8$
71 $[71, 71, w - 9]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, -2w + 1]$ $1$
$49$ $[49, 7, -7]$ $-1$