Properties

Label 2.2.44.1-25.3-c
Base field \(\Q(\sqrt{11}) \)
Weight $[2, 2]$
Level norm $25$
Level $[25,25,-w + 6]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{11}) \)

Generator \(w\), with minimal polynomial \(x^2 - 11\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[25,25,-w + 6]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 6\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 3]$ $\phantom{-}e$
5 $[5, 5, w - 4]$ $\phantom{-}0$
5 $[5, 5, -w - 4]$ $\phantom{-}0$
7 $[7, 7, w + 2]$ $\phantom{-}2 e$
7 $[7, 7, w - 2]$ $-e$
9 $[9, 3, 3]$ $\phantom{-}2$
11 $[11, 11, -w]$ $-e$
19 $[19, 19, 2 w - 5]$ $\phantom{-}e$
19 $[19, 19, -2 w - 5]$ $-3 e$
37 $[37, 37, 2 w - 9]$ $\phantom{-}2$
37 $[37, 37, -2 w - 9]$ $-2$
43 $[43, 43, 2 w - 1]$ $-2 e$
43 $[43, 43, -2 w - 1]$ $-3 e$
53 $[53, 53, -w - 8]$ $-6$
53 $[53, 53, w - 8]$ $\phantom{-}12$
79 $[79, 79, 5 w - 14]$ $\phantom{-}3 e$
79 $[79, 79, 8 w - 25]$ $\phantom{-}e$
83 $[83, 83, -3 w - 4]$ $-2 e$
83 $[83, 83, 3 w - 4]$ $\phantom{-}e$
89 $[89, 89, -w - 10]$ $\phantom{-}6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5,5,-w - 4]$ $1$