Properties

Label 2.2.44.1-19.2-b
Base field \(\Q(\sqrt{11}) \)
Weight $[2, 2]$
Level norm $19$
Level $[19,19,-2 w - 5]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{11}) \)

Generator \(w\), with minimal polynomial \(x^2 - 11\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[19,19,-2 w - 5]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^4 + x^3 - 5 x^2 - x + 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 3]$ $\phantom{-}e$
5 $[5, 5, w - 4]$ $-e^3 - 2 e^2 + 2 e + 3$
5 $[5, 5, -w - 4]$ $\phantom{-}e^3 + e^2 - 3 e$
7 $[7, 7, w + 2]$ $-e^3 - 2 e^2 + 3 e + 2$
7 $[7, 7, w - 2]$ $\phantom{-}e^2 + e - 4$
9 $[9, 3, 3]$ $\phantom{-}e^3 + 2 e^2 - 3 e - 5$
11 $[11, 11, -w]$ $-2 e - 3$
19 $[19, 19, 2 w - 5]$ $\phantom{-}e^3 + e^2 - 4 e - 4$
19 $[19, 19, -2 w - 5]$ $\phantom{-}1$
37 $[37, 37, 2 w - 9]$ $-e^3 + 7 e + 2$
37 $[37, 37, -2 w - 9]$ $-4 e^3 - 5 e^2 + 14 e + 2$
43 $[43, 43, 2 w - 1]$ $\phantom{-}e^3 + 3 e^2 - e - 7$
43 $[43, 43, -2 w - 1]$ $\phantom{-}3 e^3 + 3 e^2 - 13 e - 4$
53 $[53, 53, -w - 8]$ $\phantom{-}e^3 - 6 e + 3$
53 $[53, 53, w - 8]$ $-e^3 - 2 e^2 + 5 e$
79 $[79, 79, 5 w - 14]$ $\phantom{-}2 e^3 + 2 e^2 - 10 e - 4$
79 $[79, 79, 8 w - 25]$ $-e^3 + 10 e - 7$
83 $[83, 83, -3 w - 4]$ $-3 e^3 - 2 e^2 + 7 e - 6$
83 $[83, 83, 3 w - 4]$ $-3 e^3 - e^2 + 14 e + 6$
89 $[89, 89, -w - 10]$ $-2 e^2 + 3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19,19,-2 w - 5]$ $-1$