Properties

Label 2.2.33.1-132.1-b
Base field \(\Q(\sqrt{33}) \)
Weight $[2, 2]$
Level norm $132$
Level $[132, 66, -4 w + 2]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{33}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 8\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[132, 66, -4 w + 2]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 2]$ $\phantom{-}1$
2 $[2, 2, -w + 3]$ $\phantom{-}1$
3 $[3, 3, 2 w - 7]$ $\phantom{-}1$
11 $[11, 11, 4 w - 13]$ $\phantom{-}1$
17 $[17, 17, -2 w + 5]$ $-2$
17 $[17, 17, 2 w + 3]$ $-2$
25 $[25, 5, 5]$ $\phantom{-}6$
29 $[29, 29, -2 w + 3]$ $\phantom{-}10$
29 $[29, 29, 2 w + 1]$ $\phantom{-}10$
31 $[31, 31, -2 w + 9]$ $-8$
31 $[31, 31, 2 w + 7]$ $-8$
37 $[37, 37, -4 w - 11]$ $-2$
37 $[37, 37, 4 w - 15]$ $-2$
41 $[41, 41, -10 w + 33]$ $\phantom{-}2$
41 $[41, 41, 6 w - 19]$ $\phantom{-}2$
49 $[49, 7, -7]$ $-10$
67 $[67, 67, 2 w - 11]$ $-12$
67 $[67, 67, -2 w - 9]$ $-12$
83 $[83, 83, 4 w + 5]$ $\phantom{-}4$
83 $[83, 83, 4 w - 9]$ $\phantom{-}4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w - 2]$ $-1$
$2$ $[2, 2, -w + 3]$ $-1$
$3$ $[3, 3, 2 w - 7]$ $-1$
$11$ $[11, 11, 4 w - 13]$ $-1$