Base field \(\Q(\sqrt{7}) \)
Generator \(w\), with minimal polynomial \(x^2 - 7\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[81, 9, 9]$ |
Dimension: | $1$ |
CM: | yes |
Base change: | yes |
Newspace dimension: | $11$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w - 3]$ | $\phantom{-}1$ |
3 | $[3, 3, w - 2]$ | $\phantom{-}0$ |
3 | $[3, 3, w + 2]$ | $\phantom{-}0$ |
7 | $[7, 7, w]$ | $\phantom{-}0$ |
19 | $[19, 19, 2 w - 3]$ | $\phantom{-}0$ |
19 | $[19, 19, 2 w + 3]$ | $\phantom{-}0$ |
25 | $[25, 5, 5]$ | $\phantom{-}10$ |
29 | $[29, 29, -w - 6]$ | $\phantom{-}2$ |
29 | $[29, 29, w - 6]$ | $\phantom{-}2$ |
31 | $[31, 31, 4 w + 9]$ | $\phantom{-}0$ |
31 | $[31, 31, -4 w + 9]$ | $\phantom{-}0$ |
37 | $[37, 37, -3 w + 10]$ | $\phantom{-}6$ |
37 | $[37, 37, -6 w + 17]$ | $\phantom{-}6$ |
47 | $[47, 47, -3 w - 4]$ | $\phantom{-}0$ |
47 | $[47, 47, 3 w - 4]$ | $\phantom{-}0$ |
53 | $[53, 53, 2 w - 9]$ | $\phantom{-}10$ |
53 | $[53, 53, 2 w + 9]$ | $\phantom{-}10$ |
59 | $[59, 59, 3 w - 2]$ | $\phantom{-}0$ |
59 | $[59, 59, -3 w - 2]$ | $\phantom{-}0$ |
83 | $[83, 83, -6 w - 13]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$3$ | $[3, 3, w - 2]$ | $-1$ |
$3$ | $[3, 3, w + 2]$ | $-1$ |