Properties

Label 2.2.28.1-504.1-v
Base field Q(7)\Q(\sqrt{7})
Weight [2,2][2, 2]
Level norm 504504
Level [504,84,18w+42][504, 84, -18 w + 42]
Dimension 11
CM no
Base change yes

Related objects

Downloads

Learn more

Base field Q(7)\Q(\sqrt{7})

Generator ww, with minimal polynomial x27x^2 - 7; narrow class number 22 and class number 11.

Form

Weight: [2,2][2, 2]
Level: [504,84,18w+42][504, 84, -18 w + 42]
Dimension: 11
CM: no
Base change: yes
Newspace dimension: 2424

Hecke eigenvalues (qq-expansion)

The Hecke eigenvalue field is Q\Q.
Norm Prime Eigenvalue
2 [2,2,w3][2, 2, w - 3] 0\phantom{-}0
3 [3,3,w2][3, 3, w - 2] 1\phantom{-}1
3 [3,3,w+2][3, 3, w + 2] 1\phantom{-}1
7 [7,7,w][7, 7, w] 1-1
19 [19,19,2w3][19, 19, 2 w - 3] 4-4
19 [19,19,2w+3][19, 19, 2 w + 3] 4-4
25 [25,5,5][25, 5, 5] 6-6
29 [29,29,w6][29, 29, -w - 6] 10-10
29 [29,29,w6][29, 29, w - 6] 10-10
31 [31,31,4w+9][31, 31, 4 w + 9] 8\phantom{-}8
31 [31,31,4w+9][31, 31, -4 w + 9] 8\phantom{-}8
37 [37,37,3w+10][37, 37, -3 w + 10] 6\phantom{-}6
37 [37,37,6w+17][37, 37, -6 w + 17] 6\phantom{-}6
47 [47,47,3w4][47, 47, -3 w - 4] 8-8
47 [47,47,3w4][47, 47, 3 w - 4] 8-8
53 [53,53,2w9][53, 53, 2 w - 9] 10-10
53 [53,53,2w+9][53, 53, 2 w + 9] 10-10
59 [59,59,3w2][59, 59, 3 w - 2] 12-12
59 [59,59,3w2][59, 59, -3 w - 2] 12-12
83 [83,83,6w13][83, 83, -6 w - 13] 12-12
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
22 [2,2,w3][2, 2, w - 3] 1-1
33 [3,3,w2][3, 3, w - 2] 1-1
33 [3,3,w+2][3, 3, w + 2] 1-1
77 [7,7,w][7, 7, w] 11