Properties

Label 2.2.28.1-361.2-a
Base field \(\Q(\sqrt{7}) \)
Weight $[2, 2]$
Level norm $361$
Level $[361, 361, -12 w + 37]$
Dimension $1$
CM yes
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{7}) \)

Generator \(w\), with minimal polynomial \(x^2 - 7\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[361, 361, -12 w + 37]$
Dimension: $1$
CM: yes
Base change: no
Newspace dimension: $113$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 3]$ $-2$
3 $[3, 3, w - 2]$ $\phantom{-}0$
3 $[3, 3, w + 2]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}0$
19 $[19, 19, 2 w - 3]$ $\phantom{-}0$
19 $[19, 19, 2 w + 3]$ $\phantom{-}0$
25 $[25, 5, 5]$ $-6$
29 $[29, 29, -w - 6]$ $\phantom{-}4$
29 $[29, 29, w - 6]$ $\phantom{-}10$
31 $[31, 31, 4 w + 9]$ $\phantom{-}0$
31 $[31, 31, -4 w + 9]$ $\phantom{-}0$
37 $[37, 37, -3 w + 10]$ $-2$
37 $[37, 37, -6 w + 17]$ $-12$
47 $[47, 47, -3 w - 4]$ $\phantom{-}0$
47 $[47, 47, 3 w - 4]$ $\phantom{-}0$
53 $[53, 53, 2 w - 9]$ $-14$
53 $[53, 53, 2 w + 9]$ $\phantom{-}4$
59 $[59, 59, 3 w - 2]$ $\phantom{-}0$
59 $[59, 59, -3 w - 2]$ $\phantom{-}0$
83 $[83, 83, -6 w - 13]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19, 19, 2 w - 3]$ $1$