Base field \(\Q(\sqrt{7}) \)
Generator \(w\), with minimal polynomial \(x^2 - 7\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[19, 19, 2 w - 3]$ |
| Dimension: | $3$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
| \(x^3 + x^2 - 4 x + 1\) |
Show full eigenvalues Hide large eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w - 3]$ | $\phantom{-}e$ |
| 3 | $[3, 3, w - 2]$ | $\phantom{-}e^2 + 2 e - 4$ |
| 3 | $[3, 3, w + 2]$ | $-e - 1$ |
| 7 | $[7, 7, w]$ | $-2 e^2 - 3 e + 4$ |
| 19 | $[19, 19, 2 w - 3]$ | $\phantom{-}1$ |
| 19 | $[19, 19, 2 w + 3]$ | $\phantom{-}e^2 + 3 e - 3$ |
| 25 | $[25, 5, 5]$ | $-e - 6$ |
| 29 | $[29, 29, -w - 6]$ | $-3 e^2 - 6 e + 5$ |
| 29 | $[29, 29, w - 6]$ | $\phantom{-}3 e^2 + 2 e - 8$ |
| 31 | $[31, 31, 4 w + 9]$ | $\phantom{-}2 e - 3$ |
| 31 | $[31, 31, -4 w + 9]$ | $-e^2 - e - 5$ |
| 37 | $[37, 37, -3 w + 10]$ | $\phantom{-}3 e - 1$ |
| 37 | $[37, 37, -6 w + 17]$ | $\phantom{-}4 e^2 + 5 e - 8$ |
| 47 | $[47, 47, -3 w - 4]$ | $\phantom{-}e^2 + e$ |
| 47 | $[47, 47, 3 w - 4]$ | $-3 e^2 - 6 e + 7$ |
| 53 | $[53, 53, 2 w - 9]$ | $-e^2 - 2 e - 1$ |
| 53 | $[53, 53, 2 w + 9]$ | $\phantom{-}4 e^2 + 8 e - 11$ |
| 59 | $[59, 59, 3 w - 2]$ | $-5$ |
| 59 | $[59, 59, -3 w - 2]$ | $\phantom{-}e^2 + 8 e + 2$ |
| 83 | $[83, 83, -6 w - 13]$ | $\phantom{-}3 e^2 - 2 e - 10$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $19$ | $[19, 19, 2 w - 3]$ | $-1$ |