Properties

Label 2.2.201.1-9.1-d
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $9$
Level $[9, 3, 3]$
Dimension $10$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[9, 3, 3]$
Dimension: $10$
CM: no
Base change: no
Newspace dimension: $44$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{10} - 19 x^8 + 132 x^6 - 414 x^4 + 585 x^2 - 293\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $\phantom{-}e$
2 $[2, 2, -17 w + 129]$ $-e$
3 $[3, 3, -124 w + 941]$ $\phantom{-}0$
5 $[5, 5, -2 w + 15]$ $\phantom{-}\frac{1}{2} e^9 - 8 e^7 + 42 e^5 - 80 e^3 + \frac{87}{2} e$
5 $[5, 5, -2 w - 13]$ $-\frac{1}{2} e^9 + 8 e^7 - 42 e^5 + 80 e^3 - \frac{87}{2} e$
11 $[11, 11, 12 w + 79]$ $\phantom{-}2 e^9 - 33 e^7 + 181 e^5 - 370 e^3 + 228 e$
11 $[11, 11, -12 w + 91]$ $-2 e^9 + 33 e^7 - 181 e^5 + 370 e^3 - 228 e$
19 $[19, 19, -90 w - 593]$ $\phantom{-}2 e^8 - 33 e^6 + 182 e^4 - 378 e^2 + 241$
19 $[19, 19, 90 w - 683]$ $\phantom{-}2 e^8 - 33 e^6 + 182 e^4 - 378 e^2 + 241$
37 $[37, 37, -4 w - 27]$ $-\frac{3}{2} e^8 + 25 e^6 - 140 e^4 + 299 e^2 - \frac{397}{2}$
37 $[37, 37, -4 w + 31]$ $-\frac{3}{2} e^8 + 25 e^6 - 140 e^4 + 299 e^2 - \frac{397}{2}$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}\frac{5}{2} e^9 - 41 e^7 + 224 e^5 - 458 e^3 + \frac{565}{2} e$
41 $[41, 41, 158 w - 1199]$ $-\frac{5}{2} e^9 + 41 e^7 - 224 e^5 + 458 e^3 - \frac{565}{2} e$
49 $[49, 7, -7]$ $\phantom{-}\frac{13}{2} e^8 - 107 e^6 + 586 e^4 - 1198 e^2 + \frac{1493}{2}$
53 $[53, 53, 46 w - 349]$ $\phantom{-}\frac{9}{2} e^9 - 74 e^7 + 406 e^5 - 839 e^3 + \frac{1073}{2} e$
53 $[53, 53, 46 w + 303]$ $-\frac{9}{2} e^9 + 74 e^7 - 406 e^5 + 839 e^3 - \frac{1073}{2} e$
67 $[67, 67, 586 w - 4447]$ $\phantom{-}3 e^8 - 50 e^6 + 280 e^4 - 596 e^2 + 397$
73 $[73, 73, -32 w - 211]$ $-\frac{19}{2} e^8 + 156 e^6 - 852 e^4 + 1739 e^2 - \frac{2155}{2}$
73 $[73, 73, 32 w - 243]$ $-\frac{19}{2} e^8 + 156 e^6 - 852 e^4 + 1739 e^2 - \frac{2155}{2}$
101 $[101, 101, 2 w - 11]$ $-e^9 + 17 e^7 - 98 e^5 + 220 e^3 - 160 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, -124 w + 941]$ $1$