Properties

Label 2.2.201.1-8.2-c
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $8$
Level $[8,4,34 w - 258]$
Dimension $3$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[8,4,34 w - 258]$
Dimension: $3$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^3 - x^2 - 4 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $\phantom{-}1$
2 $[2, 2, -17 w + 129]$ $\phantom{-}0$
3 $[3, 3, -124 w + 941]$ $\phantom{-}e$
5 $[5, 5, -2 w + 15]$ $\phantom{-}e^2 - e - 1$
5 $[5, 5, -2 w - 13]$ $-2 e^2 + 2 e + 5$
11 $[11, 11, 12 w + 79]$ $-2 e^2 + 5 e + 6$
11 $[11, 11, -12 w + 91]$ $\phantom{-}e^2 - e - 3$
19 $[19, 19, -90 w - 593]$ $-4 e^2 + 5 e + 7$
19 $[19, 19, 90 w - 683]$ $\phantom{-}2 e^2 - 4 e - 5$
37 $[37, 37, -4 w - 27]$ $-e^2 + 5 e + 4$
37 $[37, 37, -4 w + 31]$ $\phantom{-}2 e^2 - 4 e - 5$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}2 e^2 - 5 e - 3$
41 $[41, 41, 158 w - 1199]$ $\phantom{-}2 e^2 - 5 e - 6$
49 $[49, 7, -7]$ $-e^2 + e + 8$
53 $[53, 53, 46 w - 349]$ $\phantom{-}e^2 - 3 e + 6$
53 $[53, 53, 46 w + 303]$ $\phantom{-}4 e^2 - 6 e - 12$
67 $[67, 67, 586 w - 4447]$ $-4 e^2 + 9 e + 12$
73 $[73, 73, -32 w - 211]$ $\phantom{-}2 e^2 - 3 e + 7$
73 $[73, 73, 32 w - 243]$ $-7 e^2 + 9 e + 19$
101 $[101, 101, 2 w - 11]$ $-6 e^2 + 10 e + 17$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,17 w - 129]$ $-1$
$2$ $[2,2,17 w + 112]$ $-1$