Properties

Label 2.2.201.1-8.2-b
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $8$
Level $[8,4,34 w - 258]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[8,4,34 w - 258]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $-1$
2 $[2, 2, -17 w + 129]$ $\phantom{-}0$
3 $[3, 3, -124 w + 941]$ $-2$
5 $[5, 5, -2 w + 15]$ $-1$
5 $[5, 5, -2 w - 13]$ $-1$
11 $[11, 11, 12 w + 79]$ $\phantom{-}2$
11 $[11, 11, -12 w + 91]$ $-4$
19 $[19, 19, -90 w - 593]$ $\phantom{-}6$
19 $[19, 19, 90 w - 683]$ $\phantom{-}0$
37 $[37, 37, -4 w - 27]$ $\phantom{-}5$
37 $[37, 37, -4 w + 31]$ $\phantom{-}5$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}5$
41 $[41, 41, 158 w - 1199]$ $-7$
49 $[49, 7, -7]$ $-9$
53 $[53, 53, 46 w - 349]$ $-9$
53 $[53, 53, 46 w + 303]$ $\phantom{-}3$
67 $[67, 67, 586 w - 4447]$ $\phantom{-}4$
73 $[73, 73, -32 w - 211]$ $-1$
73 $[73, 73, 32 w - 243]$ $-1$
101 $[101, 101, 2 w - 11]$ $\phantom{-}2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,17 w - 129]$ $-1$
$2$ $[2,2,17 w + 112]$ $1$