Properties

Label 2.2.201.1-6.2-e
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $6$
Level $[6,6,-w + 8]$
Dimension $6$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[6,6,-w + 8]$
Dimension: $6$
CM: no
Base change: no
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^6 - x^5 - 10 x^4 + 9 x^3 + 25 x^2 - 20 x - 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $-1$
2 $[2, 2, -17 w + 129]$ $\phantom{-}e$
3 $[3, 3, -124 w + 941]$ $-1$
5 $[5, 5, -2 w + 15]$ $\phantom{-}\frac{1}{2} e^5 + \frac{1}{2} e^4 - 5 e^3 - \frac{7}{2} e^2 + \frac{21}{2} e + 3$
5 $[5, 5, -2 w - 13]$ $-e^2 + 3$
11 $[11, 11, 12 w + 79]$ $\phantom{-}\frac{1}{2} e^5 + \frac{1}{2} e^4 - 5 e^3 - \frac{7}{2} e^2 + \frac{25}{2} e + 3$
11 $[11, 11, -12 w + 91]$ $\phantom{-}e^3 - 5 e$
19 $[19, 19, -90 w - 593]$ $\phantom{-}e^5 - 8 e^3 - 2 e^2 + 13 e + 6$
19 $[19, 19, 90 w - 683]$ $-\frac{1}{2} e^5 - \frac{1}{2} e^4 + 5 e^3 + \frac{11}{2} e^2 - \frac{21}{2} e - 7$
37 $[37, 37, -4 w - 27]$ $\phantom{-}e^4 - e^3 - 7 e^2 + 5 e + 8$
37 $[37, 37, -4 w + 31]$ $-e^4 + 2 e^3 + 5 e^2 - 10 e$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}\frac{1}{2} e^5 - \frac{1}{2} e^4 - 4 e^3 + \frac{7}{2} e^2 + \frac{11}{2} e - 3$
41 $[41, 41, 158 w - 1199]$ $\phantom{-}e^5 - 10 e^3 + 21 e - 6$
49 $[49, 7, -7]$ $\phantom{-}e^4 - 2 e^3 - 7 e^2 + 10 e + 8$
53 $[53, 53, 46 w - 349]$ $-e^5 + 9 e^3 - 2 e^2 - 18 e + 8$
53 $[53, 53, 46 w + 303]$ $\phantom{-}e^5 - 9 e^3 - e^2 + 16 e + 3$
67 $[67, 67, 586 w - 4447]$ $\phantom{-}e^4 - 2 e^3 - 5 e^2 + 8 e + 2$
73 $[73, 73, -32 w - 211]$ $\phantom{-}e^5 - e^4 - 7 e^3 + 5 e^2 + 10 e - 2$
73 $[73, 73, 32 w - 243]$ $-e^5 + e^4 + 10 e^3 - 7 e^2 - 25 e + 8$
101 $[101, 101, 2 w - 11]$ $-2 e^5 - e^4 + 18 e^3 + 8 e^2 - 36 e - 5$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,17 w + 112]$ $1$
$3$ $[3,3,124 w + 817]$ $1$