Properties

Label 2.2.201.1-6.2-d
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $6$
Level $[6,6,-w + 8]$
Dimension $3$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[6,6,-w + 8]$
Dimension: $3$
CM: no
Base change: no
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^3 - 4 x + 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $-1$
2 $[2, 2, -17 w + 129]$ $\phantom{-}e$
3 $[3, 3, -124 w + 941]$ $\phantom{-}1$
5 $[5, 5, -2 w + 15]$ $-e^2 + 4$
5 $[5, 5, -2 w - 13]$ $-e$
11 $[11, 11, 12 w + 79]$ $\phantom{-}2 e^2 - e - 5$
11 $[11, 11, -12 w + 91]$ $\phantom{-}e - 1$
19 $[19, 19, -90 w - 593]$ $\phantom{-}e^2 + e - 6$
19 $[19, 19, 90 w - 683]$ $-e - 3$
37 $[37, 37, -4 w - 27]$ $-4 e^2 - e + 6$
37 $[37, 37, -4 w + 31]$ $\phantom{-}2 e^2 + 4 e - 11$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}4 e + 1$
41 $[41, 41, 158 w - 1199]$ $-2 e^2 + 1$
49 $[49, 7, -7]$ $\phantom{-}2 e + 1$
53 $[53, 53, 46 w - 349]$ $-3 e + 4$
53 $[53, 53, 46 w + 303]$ $\phantom{-}e^2 - 3 e - 11$
67 $[67, 67, 586 w - 4447]$ $\phantom{-}3 e^2 + e - 6$
73 $[73, 73, -32 w - 211]$ $-7 e^2 - 4 e + 16$
73 $[73, 73, 32 w - 243]$ $-e^2 - 5 e + 5$
101 $[101, 101, 2 w - 11]$ $-2 e^2 + 5 e + 1$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,17 w + 112]$ $1$
$3$ $[3,3,124 w + 817]$ $-1$