Properties

Label 2.2.201.1-2.1-b
Base field \(\Q(\sqrt{201}) \)
Weight $[2, 2]$
Level norm $2$
Level $[2, 2, -17 w - 112]$
Dimension $3$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{201}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 50\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[2, 2, -17 w - 112]$
Dimension: $3$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^3 + 4 x^2 + 3 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17 w - 112]$ $\phantom{-}1$
2 $[2, 2, -17 w + 129]$ $\phantom{-}e$
3 $[3, 3, -124 w + 941]$ $\phantom{-}e^2 + 2 e - 1$
5 $[5, 5, -2 w + 15]$ $-2 e^2 - 5 e - 1$
5 $[5, 5, -2 w - 13]$ $\phantom{-}2 e^2 + 6 e + 1$
11 $[11, 11, 12 w + 79]$ $\phantom{-}e^2 - 5$
11 $[11, 11, -12 w + 91]$ $\phantom{-}e + 1$
19 $[19, 19, -90 w - 593]$ $-e^2 - 4 e$
19 $[19, 19, 90 w - 683]$ $-2 e^2 - 2 e + 3$
37 $[37, 37, -4 w - 27]$ $-6 e^2 - 17 e - 4$
37 $[37, 37, -4 w + 31]$ $\phantom{-}2 e^2 + 4 e + 3$
41 $[41, 41, 158 w + 1041]$ $\phantom{-}e^2 - 2 e - 12$
41 $[41, 41, 158 w - 1199]$ $\phantom{-}3 e^2 + 12 e - 1$
49 $[49, 7, -7]$ $\phantom{-}e - 4$
53 $[53, 53, 46 w - 349]$ $-2 e^2 - 7 e - 10$
53 $[53, 53, 46 w + 303]$ $-6 e^2 - 20 e - 6$
67 $[67, 67, 586 w - 4447]$ $-3 e^2 - 8 e - 5$
73 $[73, 73, -32 w - 211]$ $\phantom{-}3 e^2 + 6 e - 6$
73 $[73, 73, 32 w - 243]$ $-4 e^2 - 3 e + 13$
101 $[101, 101, 2 w - 11]$ $-2 e^2 - 10 e - 15$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -17 w - 112]$ $-1$