Base field \(\Q(\sqrt{42}) \)
Generator \(w\), with minimal polynomial \(x^2 - 42\); narrow class number \(4\) and class number \(2\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[24, 12, -2 w + 12]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $60$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w]$ | $\phantom{-}0$ |
| 3 | $[3, 3, w]$ | $\phantom{-}1$ |
| 7 | $[7, 7, w - 7]$ | $\phantom{-}0$ |
| 11 | $[11, 11, w + 3]$ | $\phantom{-}4$ |
| 11 | $[11, 11, w + 8]$ | $\phantom{-}4$ |
| 13 | $[13, 13, w + 4]$ | $\phantom{-}2$ |
| 13 | $[13, 13, w + 9]$ | $\phantom{-}2$ |
| 17 | $[17, 17, -w - 5]$ | $-2$ |
| 17 | $[17, 17, -w + 5]$ | $-2$ |
| 19 | $[19, 19, w + 2]$ | $\phantom{-}4$ |
| 19 | $[19, 19, w + 17]$ | $\phantom{-}4$ |
| 25 | $[25, 5, 5]$ | $-6$ |
| 29 | $[29, 29, w + 10]$ | $\phantom{-}6$ |
| 29 | $[29, 29, w + 19]$ | $\phantom{-}6$ |
| 41 | $[41, 41, -w - 1]$ | $\phantom{-}6$ |
| 41 | $[41, 41, w - 1]$ | $\phantom{-}6$ |
| 47 | $[47, 47, -2 w + 11]$ | $\phantom{-}0$ |
| 47 | $[47, 47, 4 w - 25]$ | $\phantom{-}0$ |
| 53 | $[53, 53, w + 25]$ | $-2$ |
| 53 | $[53, 53, w + 28]$ | $-2$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $2$ | $[2, 2, w]$ | $-1$ |
| $3$ | $[3, 3, w]$ | $-1$ |