Properties

Label 2.2.157.1-39.2-b
Base field \(\Q(\sqrt{157}) \)
Weight $[2, 2]$
Level norm $39$
Level $[39, 39, 2 w - 15]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{157}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 39\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[39, 39, 2 w - 15]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $85$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 6]$ $\phantom{-}1$
3 $[3, 3, -w + 7]$ $\phantom{-}0$
4 $[4, 2, 2]$ $\phantom{-}1$
11 $[11, 11, -3 w - 17]$ $-1$
11 $[11, 11, 3 w - 20]$ $\phantom{-}0$
13 $[13, 13, 2 w - 13]$ $\phantom{-}4$
13 $[13, 13, 2 w + 11]$ $-1$
17 $[17, 17, w + 7]$ $\phantom{-}6$
17 $[17, 17, -w + 8]$ $\phantom{-}2$
19 $[19, 19, -w - 4]$ $-2$
19 $[19, 19, -w + 5]$ $\phantom{-}0$
25 $[25, 5, 5]$ $-1$
31 $[31, 31, -6 w - 35]$ $-5$
31 $[31, 31, -6 w + 41]$ $-8$
37 $[37, 37, -w - 1]$ $-4$
37 $[37, 37, w - 2]$ $-3$
47 $[47, 47, 3 w + 16]$ $\phantom{-}7$
47 $[47, 47, -3 w + 19]$ $-10$
49 $[49, 7, -7]$ $-5$
67 $[67, 67, 3 w - 22]$ $-9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 6]$ $-1$
$13$ $[13, 13, 2 w + 11]$ $1$