Properties

Label 2.2.157.1-39.1-a
Base field \(\Q(\sqrt{157}) \)
Weight $[2, 2]$
Level norm $39$
Level $[39, 39, w]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{157}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 39\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[39, 39, w]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $85$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 6]$ $\phantom{-}1$
3 $[3, 3, -w + 7]$ $\phantom{-}0$
4 $[4, 2, 2]$ $-1$
11 $[11, 11, -3 w - 17]$ $-4$
11 $[11, 11, 3 w - 20]$ $-4$
13 $[13, 13, 2 w - 13]$ $\phantom{-}1$
13 $[13, 13, 2 w + 11]$ $-4$
17 $[17, 17, w + 7]$ $-4$
17 $[17, 17, -w + 8]$ $-3$
19 $[19, 19, -w - 4]$ $\phantom{-}3$
19 $[19, 19, -w + 5]$ $-5$
25 $[25, 5, 5]$ $\phantom{-}1$
31 $[31, 31, -6 w - 35]$ $\phantom{-}2$
31 $[31, 31, -6 w + 41]$ $\phantom{-}0$
37 $[37, 37, -w - 1]$ $\phantom{-}3$
37 $[37, 37, w - 2]$ $-6$
47 $[47, 47, 3 w + 16]$ $-6$
47 $[47, 47, -3 w + 19]$ $-9$
49 $[49, 7, -7]$ $-5$
67 $[67, 67, 3 w - 22]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 6]$ $-1$
$13$ $[13, 13, 2 w - 13]$ $-1$