Properties

Label 2.2.152.1-19.1-c
Base field \(\Q(\sqrt{38}) \)
Weight $[2, 2]$
Level norm $19$
Level $[19, 19, -3 w + 19]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{38}) \)

Generator \(w\), with minimal polynomial \(x^2 - 38\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[19, 19, -3 w + 19]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $56$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $\phantom{-}0$
9 $[9, 3, 3]$ $\phantom{-}3$
11 $[11, 11, -w + 7]$ $\phantom{-}0$
11 $[11, 11, w + 7]$ $\phantom{-}0$
13 $[13, 13, -w - 5]$ $-5$
13 $[13, 13, w - 5]$ $\phantom{-}5$
17 $[17, 17, -2 w + 13]$ $-5$
17 $[17, 17, -2 w - 13]$ $-5$
19 $[19, 19, -3 w + 19]$ $\phantom{-}1$
25 $[25, 5, 5]$ $-6$
29 $[29, 29, -w - 3]$ $-7$
29 $[29, 29, w - 3]$ $\phantom{-}7$
31 $[31, 31, -2 w + 11]$ $-10$
31 $[31, 31, -8 w + 49]$ $\phantom{-}10$
37 $[37, 37, -w - 1]$ $\phantom{-}2$
37 $[37, 37, w - 1]$ $-2$
43 $[43, 43, -w - 9]$ $\phantom{-}4$
43 $[43, 43, w - 9]$ $\phantom{-}4$
49 $[49, 7, -7]$ $\phantom{-}13$
53 $[53, 53, -3 w + 17]$ $-9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$19$ $[19, 19, -3 w + 19]$ $-1$