Properties

Label 2.2.136.1-5.2-a
Base field \(\Q(\sqrt{34}) \)
Weight $[2, 2]$
Level norm $5$
Level $[5,5,-w + 2]$
Dimension $5$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{34}) \)

Generator \(w\), with minimal polynomial \(x^2 - 34\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[5,5,-w + 2]$
Dimension: $5$
CM: no
Base change: no
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^5 - x^4 - 5 x^3 + 3 x^2 + 4 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $\phantom{-}e$
3 $[3, 3, w + 1]$ $\phantom{-}e^4 - 5 e^2 - e + 3$
3 $[3, 3, w + 2]$ $-e^3 + e^2 + 3 e - 1$
5 $[5, 5, w + 2]$ $-e^4 + e^3 + 5 e^2 - 3 e - 2$
5 $[5, 5, w + 3]$ $-1$
11 $[11, 11, w + 1]$ $-2 e^4 + 2 e^3 + 9 e^2 - 3 e - 5$
11 $[11, 11, w + 10]$ $\phantom{-}e^4 - 2 e^3 - 4 e^2 + 7 e + 3$
17 $[17, 17, -3 w + 17]$ $\phantom{-}e^4 - e^3 - 4 e^2 + e$
29 $[29, 29, w + 11]$ $\phantom{-}2 e^4 - 2 e^3 - 9 e^2 + 5 e + 7$
29 $[29, 29, w + 18]$ $\phantom{-}e^4 - 3 e^3 - 3 e^2 + 9 e + 3$
37 $[37, 37, w + 16]$ $-e^4 + 2 e^3 + 3 e^2 - 5 e + 4$
37 $[37, 37, w + 21]$ $-e^3 - 3 e^2 + 5 e + 11$
47 $[47, 47, -w - 9]$ $\phantom{-}e^4 - 3 e^3 - 2 e^2 + 9 e$
47 $[47, 47, w - 9]$ $\phantom{-}2 e^4 + e^3 - 13 e^2 - 3 e + 11$
49 $[49, 7, -7]$ $-e^4 - e^3 + 6 e^2 + e - 3$
61 $[61, 61, w + 20]$ $\phantom{-}4 e^4 - e^3 - 20 e^2 - 5 e + 16$
61 $[61, 61, w + 41]$ $-3 e^4 + e^3 + 17 e^2 - 2 e - 10$
89 $[89, 89, 2 w - 15]$ $-e^4 + 2 e^3 + 3 e^2 - 6 e + 4$
89 $[89, 89, -2 w - 15]$ $\phantom{-}2 e^4 - 4 e^3 - 10 e^2 + 7 e + 14$
103 $[103, 103, -14 w + 81]$ $-e^4 - 3 e^3 + 6 e^2 + 13 e - 9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5,5,-w + 2]$ $1$