Base field \(\Q(\sqrt{34}) \)
Generator \(w\), with minimal polynomial \(x^2 - 34\); narrow class number \(4\) and class number \(2\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[3,3,-w + 1]$ |
| Dimension: | $2$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $8$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
| \(x^2 - x - 1\) |
Show full eigenvalues Hide large eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w - 6]$ | $\phantom{-}e$ |
| 3 | $[3, 3, w + 1]$ | $-e + 2$ |
| 3 | $[3, 3, w + 2]$ | $-1$ |
| 5 | $[5, 5, w + 2]$ | $\phantom{-}2 e + 1$ |
| 5 | $[5, 5, w + 3]$ | $-3 e + 2$ |
| 11 | $[11, 11, w + 1]$ | $\phantom{-}e + 2$ |
| 11 | $[11, 11, w + 10]$ | $\phantom{-}e + 2$ |
| 17 | $[17, 17, -3 w + 17]$ | $-2 e + 3$ |
| 29 | $[29, 29, w + 11]$ | $\phantom{-}4 e - 1$ |
| 29 | $[29, 29, w + 18]$ | $\phantom{-}3 e + 5$ |
| 37 | $[37, 37, w + 16]$ | $-e - 4$ |
| 37 | $[37, 37, w + 21]$ | $\phantom{-}4 e - 5$ |
| 47 | $[47, 47, -w - 9]$ | $\phantom{-}e - 5$ |
| 47 | $[47, 47, w - 9]$ | $\phantom{-}4 e + 6$ |
| 49 | $[49, 7, -7]$ | $\phantom{-}3 e - 9$ |
| 61 | $[61, 61, w + 20]$ | $-4 e - 3$ |
| 61 | $[61, 61, w + 41]$ | $\phantom{-}7 e - 11$ |
| 89 | $[89, 89, 2 w - 15]$ | $\phantom{-}4 e - 12$ |
| 89 | $[89, 89, -2 w - 15]$ | $-4 e + 7$ |
| 103 | $[103, 103, -14 w + 81]$ | $-8 e - 5$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $3$ | $[3,3,-w + 1]$ | $1$ |