Properties

Label 2.2.12.1-2592.1-b
Base field \(\Q(\sqrt{3}) \)
Weight $[2, 2]$
Level norm $2592$
Level $[2592, 72, -36 w + 36]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(w\), with minimal polynomial \(x^2 - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[2592, 72, -36 w + 36]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}0$
11 $[11, 11, -2 w + 1]$ $\phantom{-}2$
11 $[11, 11, 2 w + 1]$ $-2$
13 $[13, 13, w + 4]$ $\phantom{-}1$
13 $[13, 13, -w + 4]$ $-3$
23 $[23, 23, -3 w + 2]$ $\phantom{-}6$
23 $[23, 23, 3 w + 2]$ $\phantom{-}2$
25 $[25, 5, 5]$ $\phantom{-}2$
37 $[37, 37, 2 w - 7]$ $-1$
37 $[37, 37, -2 w - 7]$ $\phantom{-}3$
47 $[47, 47, -4 w - 1]$ $\phantom{-}6$
47 $[47, 47, 4 w - 1]$ $\phantom{-}2$
49 $[49, 7, -7]$ $-1$
59 $[59, 59, 5 w - 4]$ $-6$
59 $[59, 59, -5 w - 4]$ $\phantom{-}6$
61 $[61, 61, -w - 8]$ $\phantom{-}7$
61 $[61, 61, w - 8]$ $-5$
71 $[71, 71, 5 w - 2]$ $\phantom{-}0$
71 $[71, 71, -5 w - 2]$ $-16$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 1]$ $1$
$3$ $[3, 3, w]$ $1$