Properties

Label 2.2.12.1-169.2-a
Base field \(\Q(\sqrt{3}) \)
Weight $[2, 2]$
Level norm $169$
Level $[169, 169, 3 w + 14]$
Dimension $1$
CM yes
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(w\), with minimal polynomial \(x^2 - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[169, 169, 3 w + 14]$
Dimension: $1$
CM: yes
Base change: no
Newspace dimension: $12$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}0$
11 $[11, 11, -2 w + 1]$ $\phantom{-}0$
11 $[11, 11, 2 w + 1]$ $\phantom{-}0$
13 $[13, 13, w + 4]$ $\phantom{-}7$
13 $[13, 13, -w + 4]$ $\phantom{-}0$
23 $[23, 23, -3 w + 2]$ $\phantom{-}0$
23 $[23, 23, 3 w + 2]$ $\phantom{-}0$
25 $[25, 5, 5]$ $\phantom{-}5$
37 $[37, 37, 2 w - 7]$ $\phantom{-}11$
37 $[37, 37, -2 w - 7]$ $\phantom{-}1$
47 $[47, 47, -4 w - 1]$ $\phantom{-}0$
47 $[47, 47, 4 w - 1]$ $\phantom{-}0$
49 $[49, 7, -7]$ $\phantom{-}13$
59 $[59, 59, 5 w - 4]$ $\phantom{-}0$
59 $[59, 59, -5 w - 4]$ $\phantom{-}0$
61 $[61, 61, -w - 8]$ $-14$
61 $[61, 61, w - 8]$ $\phantom{-}1$
71 $[71, 71, 5 w - 2]$ $\phantom{-}0$
71 $[71, 71, -5 w - 2]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$13$ $[13, 13, -w + 4]$ $1$