Properties

Label 9920.2.a.cp
Level $9920$
Weight $2$
Character orbit 9920.a
Self dual yes
Analytic conductor $79.212$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9920,2,Mod(1,9920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9920.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9920 = 2^{6} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9920.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,1,0,-6,0,-2,0,21,0,-8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.2115988051\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1240)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - q^{5} - \beta_{2} q^{7} + (\beta_{4} - \beta_{3} + 4) q^{9} + (\beta_{4} - 1) q^{11} + ( - \beta_{5} - 1) q^{13} - \beta_1 q^{15} + (\beta_{4} - \beta_1 + 1) q^{17} + (\beta_{5} + \beta_{3} + 1) q^{19}+ \cdots + (\beta_{5} + 2 \beta_{4} + 2 \beta_{3} + \cdots + 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} - 6 q^{5} - 2 q^{7} + 21 q^{9} - 8 q^{11} - 4 q^{13} - q^{15} + 3 q^{17} + 5 q^{19} - 8 q^{21} - 12 q^{23} + 6 q^{25} + 7 q^{27} + 4 q^{29} + 6 q^{31} + 14 q^{33} + 2 q^{35} - 3 q^{37} + 10 q^{39}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} - 9\nu^{4} + 10\nu^{3} + 111\nu^{2} + 92\nu - 180 ) / 43 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{5} - \nu^{4} + 68\nu^{3} - 2\nu^{2} - 157\nu + 66 ) / 43 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{5} - \nu^{4} + 68\nu^{3} + 41\nu^{2} - 157\nu - 235 ) / 43 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{5} + 18\nu^{4} - 63\nu^{3} - 222\nu^{2} + 203\nu + 403 ) / 43 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} - 2\beta_{2} + 9\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} + 13\beta_{4} - 11\beta_{3} - \beta_{2} + 65 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{5} - 3\beta_{4} - 6\beta_{3} - 27\beta_{2} + 91\beta _1 + 11 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.31203
−2.36730
−0.984679
1.45950
2.90399
3.30052
0 −3.31203 0 −1.00000 0 −1.94649 0 7.96954 0
1.2 0 −2.36730 0 −1.00000 0 0.985130 0 2.60412 0
1.3 0 −0.984679 0 −1.00000 0 4.16564 0 −2.03041 0
1.4 0 1.45950 0 −1.00000 0 −3.90059 0 −0.869870 0
1.5 0 2.90399 0 −1.00000 0 −5.00062 0 5.43318 0
1.6 0 3.30052 0 −1.00000 0 3.69693 0 7.89343 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9920.2.a.cp 6
4.b odd 2 1 9920.2.a.co 6
8.b even 2 1 1240.2.a.m 6
8.d odd 2 1 2480.2.a.ba 6
40.f even 2 1 6200.2.a.w 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1240.2.a.m 6 8.b even 2 1
2480.2.a.ba 6 8.d odd 2 1
6200.2.a.w 6 40.f even 2 1
9920.2.a.co 6 4.b odd 2 1
9920.2.a.cp 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9920))\):

\( T_{3}^{6} - T_{3}^{5} - 19T_{3}^{4} + 15T_{3}^{3} + 98T_{3}^{2} - 44T_{3} - 108 \) Copy content Toggle raw display
\( T_{7}^{6} + 2T_{7}^{5} - 36T_{7}^{4} - 52T_{7}^{3} + 352T_{7}^{2} + 320T_{7} - 576 \) Copy content Toggle raw display
\( T_{11}^{6} + 8T_{11}^{5} - 16T_{11}^{4} - 192T_{11}^{3} + 32T_{11}^{2} + 960T_{11} - 400 \) Copy content Toggle raw display
\( T_{13}^{6} + 4T_{13}^{5} - 48T_{13}^{4} - 248T_{13}^{3} + 288T_{13}^{2} + 3008T_{13} + 3856 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + \cdots - 108 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 2 T^{5} + \cdots - 576 \) Copy content Toggle raw display
$11$ \( T^{6} + 8 T^{5} + \cdots - 400 \) Copy content Toggle raw display
$13$ \( T^{6} + 4 T^{5} + \cdots + 3856 \) Copy content Toggle raw display
$17$ \( T^{6} - 3 T^{5} + \cdots + 48 \) Copy content Toggle raw display
$19$ \( T^{6} - 5 T^{5} + \cdots + 1376 \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots + 1376 \) Copy content Toggle raw display
$29$ \( T^{6} - 4 T^{5} + \cdots - 159792 \) Copy content Toggle raw display
$31$ \( (T - 1)^{6} \) Copy content Toggle raw display
$37$ \( T^{6} + 3 T^{5} + \cdots - 65956 \) Copy content Toggle raw display
$41$ \( T^{6} - 17 T^{5} + \cdots + 344 \) Copy content Toggle raw display
$43$ \( T^{6} - 17 T^{5} + \cdots - 31988 \) Copy content Toggle raw display
$47$ \( T^{6} + 6 T^{5} + \cdots + 33408 \) Copy content Toggle raw display
$53$ \( T^{6} + 9 T^{5} + \cdots - 21908 \) Copy content Toggle raw display
$59$ \( T^{6} + 39 T^{5} + \cdots - 4128 \) Copy content Toggle raw display
$61$ \( T^{6} + 2 T^{5} + \cdots - 23232 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots - 153984 \) Copy content Toggle raw display
$71$ \( T^{6} - 21 T^{5} + \cdots + 53888 \) Copy content Toggle raw display
$73$ \( T^{6} - 43 T^{5} + \cdots - 44368 \) Copy content Toggle raw display
$79$ \( T^{6} + 2 T^{5} + \cdots + 35712 \) Copy content Toggle raw display
$83$ \( T^{6} - 5 T^{5} + \cdots - 396 \) Copy content Toggle raw display
$89$ \( T^{6} - 6 T^{5} + \cdots - 40288 \) Copy content Toggle raw display
$97$ \( T^{6} + 12 T^{5} + \cdots - 129728 \) Copy content Toggle raw display
show more
show less