Properties

Label 990.6.a.ba
Level $990$
Weight $6$
Character orbit 990.a
Self dual yes
Analytic conductor $158.780$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,6,Mod(1,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 990.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,0,48,-75,0,273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(158.779981615\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 462x + 3072 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + 16 q^{4} - 25 q^{5} + ( - \beta_{2} - 2 \beta_1 + 91) q^{7} + 64 q^{8} - 100 q^{10} + 121 q^{11} + (3 \beta_{2} - 13 \beta_1 - 68) q^{13} + ( - 4 \beta_{2} - 8 \beta_1 + 364) q^{14} + 256 q^{16}+ \cdots + ( - 484 \beta_{2} - 24 \beta_1 + 78736) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + 48 q^{4} - 75 q^{5} + 273 q^{7} + 192 q^{8} - 300 q^{10} + 363 q^{11} - 204 q^{13} + 1092 q^{14} + 768 q^{16} + 627 q^{17} - 1725 q^{19} - 1200 q^{20} + 1452 q^{22} + 732 q^{23} + 1875 q^{25}+ \cdots + 236208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 462x + 3072 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 8\nu - 311 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} - 8\beta _1 + 925 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.4037
−23.8155
7.41173
4.00000 0 16.0000 −25.0000 0 −142.542 64.0000 0 −100.000
1.2 4.00000 0 16.0000 −25.0000 0 170.240 64.0000 0 −100.000
1.3 4.00000 0 16.0000 −25.0000 0 245.302 64.0000 0 −100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.6.a.ba 3
3.b odd 2 1 110.6.a.g 3
12.b even 2 1 880.6.a.k 3
15.d odd 2 1 550.6.a.l 3
15.e even 4 2 550.6.b.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.6.a.g 3 3.b odd 2 1
550.6.a.l 3 15.d odd 2 1
550.6.b.k 6 15.e even 4 2
880.6.a.k 3 12.b even 2 1
990.6.a.ba 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(990))\):

\( T_{7}^{3} - 273T_{7}^{2} - 17472T_{7} + 5952592 \) Copy content Toggle raw display
\( T_{17}^{3} - 627T_{17}^{2} - 2850906T_{17} + 1839018960 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 273 T^{2} + \cdots + 5952592 \) Copy content Toggle raw display
$11$ \( (T - 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 204 T^{2} + \cdots - 340553840 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 1839018960 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 5618777552 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 3774572208 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 18666595548 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 170764182080 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 566059440364 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 25758181944 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 5284163292160 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 20675131920 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 12560852819916 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 282883115232 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 48702632528260 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 6885873035264 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 16794837141696 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 63435730635232 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 455163121410304 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 37489435741440 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 64106131539132 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 43490447216512 \) Copy content Toggle raw display
show more
show less