Properties

Label 990.2.i.j.331.3
Level $990$
Weight $2$
Character 990.331
Analytic conductor $7.905$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(331,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.331"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-7,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 3 x^{12} - 4 x^{11} + 4 x^{10} - 27 x^{8} - 9 x^{7} - 81 x^{6} + 108 x^{4} + \cdots + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 331.3
Root \(1.01796 + 1.40134i\) of defining polynomial
Character \(\chi\) \(=\) 990.331
Dual form 990.2.i.j.661.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.01796 + 1.40134i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.704617 - 1.58225i) q^{6} +(0.170965 - 0.296120i) q^{7} +1.00000 q^{8} +(-0.927514 - 2.85302i) q^{9} +1.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} +(1.72258 + 0.180909i) q^{12} +(3.25957 + 5.64575i) q^{13} +(0.170965 + 0.296120i) q^{14} +(1.72258 + 0.180909i) q^{15} +(-0.500000 + 0.866025i) q^{16} +4.62820 q^{17} +(2.93454 + 0.623258i) q^{18} -4.74612 q^{19} +(-0.500000 + 0.866025i) q^{20} +(0.240930 + 0.541019i) q^{21} +(-0.500000 - 0.866025i) q^{22} +(-3.02499 - 5.23944i) q^{23} +(-1.01796 + 1.40134i) q^{24} +(-0.500000 + 0.866025i) q^{25} -6.51915 q^{26} +(4.94223 + 1.60450i) q^{27} -0.341930 q^{28} +(-4.54403 + 7.87048i) q^{29} +(-1.01796 + 1.40134i) q^{30} +(2.53454 + 4.38995i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-0.704617 - 1.58225i) q^{33} +(-2.31410 + 4.00814i) q^{34} -0.341930 q^{35} +(-2.00703 + 2.22976i) q^{36} -9.02949 q^{37} +(2.37306 - 4.11026i) q^{38} +(-11.2297 - 1.17937i) q^{39} +(-0.500000 - 0.866025i) q^{40} +(-1.23458 - 2.13836i) q^{41} +(-0.589001 - 0.0618582i) q^{42} +(-3.93674 + 6.81864i) q^{43} +1.00000 q^{44} +(-2.00703 + 2.22976i) q^{45} +6.04998 q^{46} +(0.573169 - 0.992759i) q^{47} +(-0.704617 - 1.58225i) q^{48} +(3.44154 + 5.96093i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-4.71132 + 6.48569i) q^{51} +(3.25957 - 5.64575i) q^{52} +0.392415 q^{53} +(-3.86065 + 3.47785i) q^{54} +1.00000 q^{55} +(0.170965 - 0.296120i) q^{56} +(4.83136 - 6.65094i) q^{57} +(-4.54403 - 7.87048i) q^{58} +(-7.48911 - 12.9715i) q^{59} +(-0.704617 - 1.58225i) q^{60} +(-5.54512 + 9.60443i) q^{61} -5.06908 q^{62} +(-1.00341 - 0.213111i) q^{63} +1.00000 q^{64} +(3.25957 - 5.64575i) q^{65} +(1.72258 + 0.180909i) q^{66} +(-6.04372 - 10.4680i) q^{67} +(-2.31410 - 4.00814i) q^{68} +(10.4216 + 1.09449i) q^{69} +(0.170965 - 0.296120i) q^{70} +0.850693 q^{71} +(-0.927514 - 2.85302i) q^{72} +6.30335 q^{73} +(4.51474 - 7.81976i) q^{74} +(-0.704617 - 1.58225i) q^{75} +(2.37306 + 4.11026i) q^{76} +(0.170965 + 0.296120i) q^{77} +(6.63623 - 9.13555i) q^{78} +(2.00334 - 3.46990i) q^{79} +1.00000 q^{80} +(-7.27943 + 5.29243i) q^{81} +2.46917 q^{82} +(0.999607 - 1.73137i) q^{83} +(0.348071 - 0.479161i) q^{84} +(-2.31410 - 4.00814i) q^{85} +(-3.93674 - 6.81864i) q^{86} +(-6.40360 - 14.3796i) q^{87} +(-0.500000 + 0.866025i) q^{88} +0.823380 q^{89} +(-0.927514 - 2.85302i) q^{90} +2.22909 q^{91} +(-3.02499 + 5.23944i) q^{92} +(-8.73188 - 0.917041i) q^{93} +(0.573169 + 0.992759i) q^{94} +(2.37306 + 4.11026i) q^{95} +(1.72258 + 0.180909i) q^{96} +(-9.65280 + 16.7191i) q^{97} -6.88308 q^{98} +(2.93454 + 0.623258i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 7 q^{2} - q^{3} - 7 q^{4} - 7 q^{5} + 2 q^{6} - 5 q^{7} + 14 q^{8} - 5 q^{9} + 14 q^{10} - 7 q^{11} - q^{12} - 5 q^{13} - 5 q^{14} - q^{15} - 7 q^{16} + 6 q^{17} + 7 q^{18} + 22 q^{19} - 7 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.01796 + 1.40134i −0.587720 + 0.809065i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −0.704617 1.58225i −0.287659 0.645951i
\(7\) 0.170965 0.296120i 0.0646188 0.111923i −0.831906 0.554916i \(-0.812750\pi\)
0.896525 + 0.442994i \(0.146084\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.927514 2.85302i −0.309171 0.951006i
\(10\) 1.00000 0.316228
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 1.72258 + 0.180909i 0.497265 + 0.0522239i
\(13\) 3.25957 + 5.64575i 0.904043 + 1.56585i 0.822197 + 0.569204i \(0.192748\pi\)
0.0818466 + 0.996645i \(0.473918\pi\)
\(14\) 0.170965 + 0.296120i 0.0456924 + 0.0791415i
\(15\) 1.72258 + 0.180909i 0.444768 + 0.0467104i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 4.62820 1.12250 0.561252 0.827645i \(-0.310320\pi\)
0.561252 + 0.827645i \(0.310320\pi\)
\(18\) 2.93454 + 0.623258i 0.691679 + 0.146903i
\(19\) −4.74612 −1.08884 −0.544418 0.838814i \(-0.683249\pi\)
−0.544418 + 0.838814i \(0.683249\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0.240930 + 0.541019i 0.0525752 + 0.118060i
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −3.02499 5.23944i −0.630754 1.09250i −0.987398 0.158258i \(-0.949412\pi\)
0.356644 0.934240i \(-0.383921\pi\)
\(24\) −1.01796 + 1.40134i −0.207790 + 0.286048i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −6.51915 −1.27851
\(27\) 4.94223 + 1.60450i 0.951132 + 0.308785i
\(28\) −0.341930 −0.0646188
\(29\) −4.54403 + 7.87048i −0.843805 + 1.46151i 0.0428508 + 0.999081i \(0.486356\pi\)
−0.886655 + 0.462431i \(0.846977\pi\)
\(30\) −1.01796 + 1.40134i −0.185853 + 0.255849i
\(31\) 2.53454 + 4.38995i 0.455217 + 0.788459i 0.998701 0.0509609i \(-0.0162284\pi\)
−0.543484 + 0.839420i \(0.682895\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −0.704617 1.58225i −0.122658 0.275434i
\(34\) −2.31410 + 4.00814i −0.396865 + 0.687390i
\(35\) −0.341930 −0.0577968
\(36\) −2.00703 + 2.22976i −0.334505 + 0.371627i
\(37\) −9.02949 −1.48444 −0.742219 0.670157i \(-0.766227\pi\)
−0.742219 + 0.670157i \(0.766227\pi\)
\(38\) 2.37306 4.11026i 0.384961 0.666773i
\(39\) −11.2297 1.17937i −1.79820 0.188850i
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) −1.23458 2.13836i −0.192810 0.333956i 0.753371 0.657596i \(-0.228427\pi\)
−0.946180 + 0.323640i \(0.895093\pi\)
\(42\) −0.589001 0.0618582i −0.0908849 0.00954492i
\(43\) −3.93674 + 6.81864i −0.600348 + 1.03983i 0.392420 + 0.919786i \(0.371638\pi\)
−0.992768 + 0.120047i \(0.961695\pi\)
\(44\) 1.00000 0.150756
\(45\) −2.00703 + 2.22976i −0.299190 + 0.332393i
\(46\) 6.04998 0.892021
\(47\) 0.573169 0.992759i 0.0836054 0.144809i −0.821191 0.570654i \(-0.806690\pi\)
0.904796 + 0.425845i \(0.140023\pi\)
\(48\) −0.704617 1.58225i −0.101703 0.228378i
\(49\) 3.44154 + 5.96093i 0.491649 + 0.851561i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) −4.71132 + 6.48569i −0.659717 + 0.908178i
\(52\) 3.25957 5.64575i 0.452022 0.782924i
\(53\) 0.392415 0.0539023 0.0269512 0.999637i \(-0.491420\pi\)
0.0269512 + 0.999637i \(0.491420\pi\)
\(54\) −3.86065 + 3.47785i −0.525367 + 0.473275i
\(55\) 1.00000 0.134840
\(56\) 0.170965 0.296120i 0.0228462 0.0395707i
\(57\) 4.83136 6.65094i 0.639930 0.880938i
\(58\) −4.54403 7.87048i −0.596660 1.03345i
\(59\) −7.48911 12.9715i −0.974999 1.68875i −0.679939 0.733269i \(-0.737994\pi\)
−0.295060 0.955479i \(-0.595340\pi\)
\(60\) −0.704617 1.58225i −0.0909657 0.204268i
\(61\) −5.54512 + 9.60443i −0.709980 + 1.22972i 0.254885 + 0.966971i \(0.417963\pi\)
−0.964864 + 0.262749i \(0.915371\pi\)
\(62\) −5.06908 −0.643774
\(63\) −1.00341 0.213111i −0.126418 0.0268495i
\(64\) 1.00000 0.125000
\(65\) 3.25957 5.64575i 0.404300 0.700269i
\(66\) 1.72258 + 0.180909i 0.212035 + 0.0222683i
\(67\) −6.04372 10.4680i −0.738358 1.27887i −0.953234 0.302233i \(-0.902268\pi\)
0.214876 0.976641i \(-0.431065\pi\)
\(68\) −2.31410 4.00814i −0.280626 0.486058i
\(69\) 10.4216 + 1.09449i 1.25461 + 0.131762i
\(70\) 0.170965 0.296120i 0.0204342 0.0353931i
\(71\) 0.850693 0.100959 0.0504793 0.998725i \(-0.483925\pi\)
0.0504793 + 0.998725i \(0.483925\pi\)
\(72\) −0.927514 2.85302i −0.109309 0.336232i
\(73\) 6.30335 0.737752 0.368876 0.929479i \(-0.379743\pi\)
0.368876 + 0.929479i \(0.379743\pi\)
\(74\) 4.51474 7.81976i 0.524828 0.909029i
\(75\) −0.704617 1.58225i −0.0813622 0.182702i
\(76\) 2.37306 + 4.11026i 0.272209 + 0.471479i
\(77\) 0.170965 + 0.296120i 0.0194833 + 0.0337460i
\(78\) 6.63623 9.13555i 0.751405 1.03440i
\(79\) 2.00334 3.46990i 0.225394 0.390394i −0.731044 0.682331i \(-0.760966\pi\)
0.956438 + 0.291937i \(0.0942998\pi\)
\(80\) 1.00000 0.111803
\(81\) −7.27943 + 5.29243i −0.808826 + 0.588048i
\(82\) 2.46917 0.272674
\(83\) 0.999607 1.73137i 0.109721 0.190043i −0.805936 0.592003i \(-0.798338\pi\)
0.915657 + 0.401960i \(0.131671\pi\)
\(84\) 0.348071 0.479161i 0.0379777 0.0522808i
\(85\) −2.31410 4.00814i −0.250999 0.434744i
\(86\) −3.93674 6.81864i −0.424510 0.735273i
\(87\) −6.40360 14.3796i −0.686538 1.54165i
\(88\) −0.500000 + 0.866025i −0.0533002 + 0.0923186i
\(89\) 0.823380 0.0872782 0.0436391 0.999047i \(-0.486105\pi\)
0.0436391 + 0.999047i \(0.486105\pi\)
\(90\) −0.927514 2.85302i −0.0977686 0.300735i
\(91\) 2.22909 0.233673
\(92\) −3.02499 + 5.23944i −0.315377 + 0.546249i
\(93\) −8.73188 0.917041i −0.905454 0.0950927i
\(94\) 0.573169 + 0.992759i 0.0591179 + 0.102395i
\(95\) 2.37306 + 4.11026i 0.243471 + 0.421704i
\(96\) 1.72258 + 0.180909i 0.175810 + 0.0184639i
\(97\) −9.65280 + 16.7191i −0.980093 + 1.69757i −0.318106 + 0.948055i \(0.603047\pi\)
−0.661987 + 0.749516i \(0.730286\pi\)
\(98\) −6.88308 −0.695296
\(99\) 2.93454 + 0.623258i 0.294933 + 0.0626398i
\(100\) 1.00000 0.100000
\(101\) −9.56562 + 16.5681i −0.951815 + 1.64859i −0.210321 + 0.977632i \(0.567451\pi\)
−0.741494 + 0.670960i \(0.765882\pi\)
\(102\) −3.26111 7.32297i −0.322898 0.725082i
\(103\) 1.01656 + 1.76074i 0.100165 + 0.173491i 0.911753 0.410740i \(-0.134730\pi\)
−0.811588 + 0.584231i \(0.801396\pi\)
\(104\) 3.25957 + 5.64575i 0.319628 + 0.553611i
\(105\) 0.348071 0.479161i 0.0339683 0.0467613i
\(106\) −0.196208 + 0.339841i −0.0190574 + 0.0330083i
\(107\) −13.9835 −1.35184 −0.675920 0.736975i \(-0.736254\pi\)
−0.675920 + 0.736975i \(0.736254\pi\)
\(108\) −1.08158 5.08234i −0.104075 0.489048i
\(109\) −11.4527 −1.09697 −0.548486 0.836160i \(-0.684795\pi\)
−0.548486 + 0.836160i \(0.684795\pi\)
\(110\) −0.500000 + 0.866025i −0.0476731 + 0.0825723i
\(111\) 9.19166 12.6534i 0.872433 1.20101i
\(112\) 0.170965 + 0.296120i 0.0161547 + 0.0279807i
\(113\) 4.49455 + 7.78479i 0.422812 + 0.732331i 0.996213 0.0869431i \(-0.0277098\pi\)
−0.573402 + 0.819274i \(0.694376\pi\)
\(114\) 3.34420 + 7.50955i 0.313213 + 0.703334i
\(115\) −3.02499 + 5.23944i −0.282082 + 0.488580i
\(116\) 9.08805 0.843805
\(117\) 13.0841 14.5361i 1.20963 1.34387i
\(118\) 14.9782 1.37886
\(119\) 0.791261 1.37050i 0.0725347 0.125634i
\(120\) 1.72258 + 0.180909i 0.157249 + 0.0165146i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −5.54512 9.60443i −0.502031 0.869544i
\(123\) 4.25333 + 0.446694i 0.383510 + 0.0402770i
\(124\) 2.53454 4.38995i 0.227608 0.394229i
\(125\) 1.00000 0.0894427
\(126\) 0.686264 0.762423i 0.0611373 0.0679220i
\(127\) 15.1160 1.34132 0.670662 0.741763i \(-0.266010\pi\)
0.670662 + 0.741763i \(0.266010\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −5.54779 12.4578i −0.488456 1.09685i
\(130\) 3.25957 + 5.64575i 0.285884 + 0.495165i
\(131\) 3.13808 + 5.43532i 0.274176 + 0.474886i 0.969927 0.243397i \(-0.0782617\pi\)
−0.695751 + 0.718283i \(0.744928\pi\)
\(132\) −1.01796 + 1.40134i −0.0886021 + 0.121971i
\(133\) −0.811422 + 1.40542i −0.0703592 + 0.121866i
\(134\) 12.0874 1.04420
\(135\) −1.08158 5.08234i −0.0930875 0.437418i
\(136\) 4.62820 0.396865
\(137\) 3.37535 5.84627i 0.288375 0.499481i −0.685047 0.728499i \(-0.740218\pi\)
0.973422 + 0.229018i \(0.0735516\pi\)
\(138\) −6.15864 + 8.47809i −0.524258 + 0.721703i
\(139\) 3.29001 + 5.69847i 0.279055 + 0.483338i 0.971150 0.238469i \(-0.0766454\pi\)
−0.692095 + 0.721806i \(0.743312\pi\)
\(140\) 0.170965 + 0.296120i 0.0144492 + 0.0250267i
\(141\) 0.807730 + 1.81379i 0.0680231 + 0.152749i
\(142\) −0.425346 + 0.736722i −0.0356943 + 0.0618243i
\(143\) −6.51915 −0.545159
\(144\) 2.93454 + 0.623258i 0.244545 + 0.0519382i
\(145\) 9.08805 0.754722
\(146\) −3.15168 + 5.45886i −0.260835 + 0.451779i
\(147\) −11.8566 1.24521i −0.977919 0.102703i
\(148\) 4.51474 + 7.81976i 0.371110 + 0.642781i
\(149\) −6.91485 11.9769i −0.566486 0.981183i −0.996910 0.0785560i \(-0.974969\pi\)
0.430423 0.902627i \(-0.358364\pi\)
\(150\) 1.72258 + 0.180909i 0.140648 + 0.0147711i
\(151\) −3.04273 + 5.27016i −0.247614 + 0.428880i −0.962863 0.269990i \(-0.912980\pi\)
0.715249 + 0.698869i \(0.246313\pi\)
\(152\) −4.74612 −0.384961
\(153\) −4.29272 13.2043i −0.347046 1.06751i
\(154\) −0.341930 −0.0275535
\(155\) 2.53454 4.38995i 0.203579 0.352610i
\(156\) 4.59350 + 10.3149i 0.367775 + 0.825855i
\(157\) 8.05263 + 13.9476i 0.642670 + 1.11314i 0.984834 + 0.173497i \(0.0555066\pi\)
−0.342165 + 0.939640i \(0.611160\pi\)
\(158\) 2.00334 + 3.46990i 0.159378 + 0.276050i
\(159\) −0.399463 + 0.549907i −0.0316795 + 0.0436105i
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) −2.06867 −0.163034
\(162\) −0.943663 8.95039i −0.0741412 0.703209i
\(163\) 14.5582 1.14029 0.570145 0.821544i \(-0.306887\pi\)
0.570145 + 0.821544i \(0.306887\pi\)
\(164\) −1.23458 + 2.13836i −0.0964048 + 0.166978i
\(165\) −1.01796 + 1.40134i −0.0792481 + 0.109094i
\(166\) 0.999607 + 1.73137i 0.0775846 + 0.134380i
\(167\) −7.42739 12.8646i −0.574749 0.995495i −0.996069 0.0885824i \(-0.971766\pi\)
0.421320 0.906912i \(-0.361567\pi\)
\(168\) 0.240930 + 0.541019i 0.0185881 + 0.0417405i
\(169\) −14.7496 + 25.5471i −1.13459 + 1.96516i
\(170\) 4.62820 0.354967
\(171\) 4.40210 + 13.5408i 0.336637 + 1.03549i
\(172\) 7.87349 0.600348
\(173\) 4.82513 8.35738i 0.366848 0.635400i −0.622223 0.782840i \(-0.713770\pi\)
0.989071 + 0.147441i \(0.0471035\pi\)
\(174\) 15.6549 + 1.64411i 1.18679 + 0.124640i
\(175\) 0.170965 + 0.296120i 0.0129238 + 0.0223846i
\(176\) −0.500000 0.866025i −0.0376889 0.0652791i
\(177\) 25.8011 + 2.70969i 1.93933 + 0.203673i
\(178\) −0.411690 + 0.713068i −0.0308575 + 0.0534467i
\(179\) −21.7265 −1.62391 −0.811956 0.583719i \(-0.801597\pi\)
−0.811956 + 0.583719i \(0.801597\pi\)
\(180\) 2.93454 + 0.623258i 0.218728 + 0.0464549i
\(181\) 5.95042 0.442291 0.221146 0.975241i \(-0.429020\pi\)
0.221146 + 0.975241i \(0.429020\pi\)
\(182\) −1.11455 + 1.93045i −0.0826157 + 0.143095i
\(183\) −7.81437 17.5475i −0.577655 1.29715i
\(184\) −3.02499 5.23944i −0.223005 0.386256i
\(185\) 4.51474 + 7.81976i 0.331931 + 0.574921i
\(186\) 5.16012 7.10351i 0.378359 0.520855i
\(187\) −2.31410 + 4.00814i −0.169224 + 0.293104i
\(188\) −1.14634 −0.0836054
\(189\) 1.32007 1.18918i 0.0960211 0.0865002i
\(190\) −4.74612 −0.344320
\(191\) −12.4479 + 21.5604i −0.900698 + 1.56005i −0.0741074 + 0.997250i \(0.523611\pi\)
−0.826590 + 0.562804i \(0.809723\pi\)
\(192\) −1.01796 + 1.40134i −0.0734649 + 0.101133i
\(193\) 4.94115 + 8.55832i 0.355672 + 0.616041i 0.987233 0.159285i \(-0.0509188\pi\)
−0.631561 + 0.775326i \(0.717585\pi\)
\(194\) −9.65280 16.7191i −0.693030 1.20036i
\(195\) 4.59350 + 10.3149i 0.328948 + 0.738667i
\(196\) 3.44154 5.96093i 0.245824 0.425780i
\(197\) 25.5227 1.81842 0.909210 0.416337i \(-0.136686\pi\)
0.909210 + 0.416337i \(0.136686\pi\)
\(198\) −2.00703 + 2.22976i −0.142633 + 0.158462i
\(199\) 5.03309 0.356786 0.178393 0.983959i \(-0.442910\pi\)
0.178393 + 0.983959i \(0.442910\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 20.8216 + 2.18672i 1.46864 + 0.154240i
\(202\) −9.56562 16.5681i −0.673035 1.16573i
\(203\) 1.55374 + 2.69116i 0.109051 + 0.188882i
\(204\) 7.97243 + 0.837282i 0.558182 + 0.0586214i
\(205\) −1.23458 + 2.13836i −0.0862271 + 0.149350i
\(206\) −2.03313 −0.141655
\(207\) −12.1425 + 13.4900i −0.843961 + 0.937620i
\(208\) −6.51915 −0.452022
\(209\) 2.37306 4.11026i 0.164148 0.284313i
\(210\) 0.240930 + 0.541019i 0.0166257 + 0.0373339i
\(211\) 2.01027 + 3.48190i 0.138393 + 0.239704i 0.926888 0.375337i \(-0.122473\pi\)
−0.788495 + 0.615041i \(0.789140\pi\)
\(212\) −0.196208 0.339841i −0.0134756 0.0233404i
\(213\) −0.865971 + 1.19211i −0.0593354 + 0.0816821i
\(214\) 6.99177 12.1101i 0.477948 0.827830i
\(215\) 7.87349 0.536968
\(216\) 4.94223 + 1.60450i 0.336276 + 0.109172i
\(217\) 1.73327 0.117662
\(218\) 5.72636 9.91834i 0.387838 0.671755i
\(219\) −6.41656 + 8.83315i −0.433591 + 0.596889i
\(220\) −0.500000 0.866025i −0.0337100 0.0583874i
\(221\) 15.0860 + 26.1296i 1.01479 + 1.75767i
\(222\) 6.36233 + 14.2869i 0.427012 + 0.958874i
\(223\) −5.40299 + 9.35826i −0.361811 + 0.626675i −0.988259 0.152788i \(-0.951175\pi\)
0.626448 + 0.779463i \(0.284508\pi\)
\(224\) −0.341930 −0.0228462
\(225\) 2.93454 + 0.623258i 0.195636 + 0.0415506i
\(226\) −8.98910 −0.597946
\(227\) −9.54374 + 16.5303i −0.633441 + 1.09715i 0.353403 + 0.935471i \(0.385025\pi\)
−0.986843 + 0.161680i \(0.948309\pi\)
\(228\) −8.17556 0.858615i −0.541440 0.0568632i
\(229\) −11.1559 19.3226i −0.737203 1.27687i −0.953750 0.300601i \(-0.902813\pi\)
0.216547 0.976272i \(-0.430520\pi\)
\(230\) −3.02499 5.23944i −0.199462 0.345478i
\(231\) −0.589001 0.0618582i −0.0387534 0.00406997i
\(232\) −4.54403 + 7.87048i −0.298330 + 0.516723i
\(233\) 4.69942 0.307869 0.153935 0.988081i \(-0.450805\pi\)
0.153935 + 0.988081i \(0.450805\pi\)
\(234\) 6.04660 + 18.5993i 0.395279 + 1.21587i
\(235\) −1.14634 −0.0747789
\(236\) −7.48911 + 12.9715i −0.487499 + 0.844374i
\(237\) 2.82318 + 6.33958i 0.183385 + 0.411800i
\(238\) 0.791261 + 1.37050i 0.0512898 + 0.0888366i
\(239\) 5.58240 + 9.66901i 0.361096 + 0.625436i 0.988141 0.153546i \(-0.0490695\pi\)
−0.627046 + 0.778982i \(0.715736\pi\)
\(240\) −1.01796 + 1.40134i −0.0657090 + 0.0904562i
\(241\) 7.93318 13.7407i 0.511021 0.885114i −0.488898 0.872341i \(-0.662601\pi\)
0.999918 0.0127728i \(-0.00406582\pi\)
\(242\) 1.00000 0.0642824
\(243\) −0.00632911 15.5885i −0.000406013 1.00000i
\(244\) 11.0902 0.709980
\(245\) 3.44154 5.96093i 0.219872 0.380830i
\(246\) −2.51351 + 3.46015i −0.160256 + 0.220611i
\(247\) −15.4703 26.7954i −0.984354 1.70495i
\(248\) 2.53454 + 4.38995i 0.160943 + 0.278762i
\(249\) 1.40868 + 3.16326i 0.0892715 + 0.200463i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 11.2471 0.709910 0.354955 0.934883i \(-0.384496\pi\)
0.354955 + 0.934883i \(0.384496\pi\)
\(252\) 0.317145 + 0.975534i 0.0199783 + 0.0614528i
\(253\) 6.04998 0.380359
\(254\) −7.55798 + 13.0908i −0.474230 + 0.821390i
\(255\) 7.97243 + 0.837282i 0.499253 + 0.0524326i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.98710 3.44176i −0.123952 0.214691i 0.797371 0.603490i \(-0.206224\pi\)
−0.921323 + 0.388799i \(0.872890\pi\)
\(258\) 13.5627 + 1.42438i 0.844376 + 0.0886782i
\(259\) −1.54373 + 2.67381i −0.0959226 + 0.166143i
\(260\) −6.51915 −0.404300
\(261\) 26.6693 + 5.66421i 1.65079 + 0.350606i
\(262\) −6.27617 −0.387743
\(263\) 1.80954 3.13422i 0.111581 0.193264i −0.804827 0.593510i \(-0.797742\pi\)
0.916408 + 0.400246i \(0.131075\pi\)
\(264\) −0.704617 1.58225i −0.0433662 0.0973808i
\(265\) −0.196208 0.339841i −0.0120529 0.0208763i
\(266\) −0.811422 1.40542i −0.0497514 0.0861720i
\(267\) −0.838169 + 1.15384i −0.0512951 + 0.0706137i
\(268\) −6.04372 + 10.4680i −0.369179 + 0.639437i
\(269\) 14.9521 0.911643 0.455821 0.890071i \(-0.349346\pi\)
0.455821 + 0.890071i \(0.349346\pi\)
\(270\) 4.94223 + 1.60450i 0.300774 + 0.0976465i
\(271\) −11.2316 −0.682273 −0.341137 0.940014i \(-0.610812\pi\)
−0.341137 + 0.940014i \(0.610812\pi\)
\(272\) −2.31410 + 4.00814i −0.140313 + 0.243029i
\(273\) −2.26913 + 3.12372i −0.137334 + 0.189056i
\(274\) 3.37535 + 5.84627i 0.203912 + 0.353186i
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) −4.26292 9.57258i −0.256598 0.576202i
\(277\) 6.80210 11.7816i 0.408699 0.707887i −0.586045 0.810278i \(-0.699316\pi\)
0.994744 + 0.102391i \(0.0326493\pi\)
\(278\) −6.58003 −0.394644
\(279\) 10.1738 11.3028i 0.609089 0.676683i
\(280\) −0.341930 −0.0204342
\(281\) −0.349163 + 0.604768i −0.0208293 + 0.0360774i −0.876252 0.481853i \(-0.839964\pi\)
0.855423 + 0.517930i \(0.173297\pi\)
\(282\) −1.97466 0.207383i −0.117589 0.0123495i
\(283\) 14.9959 + 25.9736i 0.891412 + 1.54397i 0.838183 + 0.545389i \(0.183618\pi\)
0.0532296 + 0.998582i \(0.483048\pi\)
\(284\) −0.425346 0.736722i −0.0252397 0.0437164i
\(285\) −8.17556 0.858615i −0.484279 0.0508600i
\(286\) 3.25957 5.64575i 0.192743 0.333840i
\(287\) −0.844283 −0.0498365
\(288\) −2.00703 + 2.22976i −0.118265 + 0.131390i
\(289\) 4.42022 0.260013
\(290\) −4.54403 + 7.87048i −0.266834 + 0.462171i
\(291\) −13.6030 30.5463i −0.797425 1.79065i
\(292\) −3.15168 5.45886i −0.184438 0.319456i
\(293\) 1.65341 + 2.86379i 0.0965934 + 0.167305i 0.910273 0.414010i \(-0.135872\pi\)
−0.813679 + 0.581314i \(0.802539\pi\)
\(294\) 7.00670 9.64555i 0.408639 0.562540i
\(295\) −7.48911 + 12.9715i −0.436033 + 0.755231i
\(296\) −9.02949 −0.524828
\(297\) −3.86065 + 3.47785i −0.224017 + 0.201805i
\(298\) 13.8297 0.801133
\(299\) 19.7204 34.1567i 1.14046 1.97533i
\(300\) −1.01796 + 1.40134i −0.0587720 + 0.0809065i
\(301\) 1.34609 + 2.33150i 0.0775875 + 0.134385i
\(302\) −3.04273 5.27016i −0.175089 0.303264i
\(303\) −13.4802 30.2704i −0.774417 1.73899i
\(304\) 2.37306 4.11026i 0.136104 0.235740i
\(305\) 11.0902 0.635025
\(306\) 13.5817 + 2.88456i 0.776411 + 0.164900i
\(307\) 6.04837 0.345198 0.172599 0.984992i \(-0.444783\pi\)
0.172599 + 0.984992i \(0.444783\pi\)
\(308\) 0.170965 0.296120i 0.00974164 0.0168730i
\(309\) −3.50222 0.367810i −0.199234 0.0209240i
\(310\) 2.53454 + 4.38995i 0.143952 + 0.249333i
\(311\) −1.30782 2.26521i −0.0741596 0.128448i 0.826561 0.562847i \(-0.190294\pi\)
−0.900720 + 0.434399i \(0.856961\pi\)
\(312\) −11.2297 1.17937i −0.635759 0.0667687i
\(313\) 13.2700 22.9842i 0.750062 1.29915i −0.197729 0.980257i \(-0.563357\pi\)
0.947792 0.318890i \(-0.103310\pi\)
\(314\) −16.1053 −0.908872
\(315\) 0.317145 + 0.975534i 0.0178691 + 0.0549651i
\(316\) −4.00669 −0.225394
\(317\) −0.520712 + 0.901900i −0.0292461 + 0.0506558i −0.880278 0.474458i \(-0.842644\pi\)
0.851032 + 0.525114i \(0.175977\pi\)
\(318\) −0.276502 0.620899i −0.0155055 0.0348183i
\(319\) −4.54403 7.87048i −0.254417 0.440663i
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 14.2347 19.5957i 0.794503 1.09373i
\(322\) 1.03434 1.79152i 0.0576413 0.0998376i
\(323\) −21.9660 −1.22222
\(324\) 8.22310 + 3.65796i 0.456839 + 0.203220i
\(325\) −6.51915 −0.361617
\(326\) −7.27912 + 12.6078i −0.403153 + 0.698282i
\(327\) 11.6584 16.0492i 0.644711 0.887521i
\(328\) −1.23458 2.13836i −0.0681685 0.118071i
\(329\) −0.195984 0.339454i −0.0108049 0.0187147i
\(330\) −0.704617 1.58225i −0.0387879 0.0871000i
\(331\) −6.70843 + 11.6193i −0.368728 + 0.638656i −0.989367 0.145440i \(-0.953540\pi\)
0.620639 + 0.784097i \(0.286873\pi\)
\(332\) −1.99921 −0.109721
\(333\) 8.37498 + 25.7613i 0.458946 + 1.41171i
\(334\) 14.8548 0.812818
\(335\) −6.04372 + 10.4680i −0.330204 + 0.571930i
\(336\) −0.589001 0.0618582i −0.0321327 0.00337464i
\(337\) 5.09519 + 8.82513i 0.277553 + 0.480735i 0.970776 0.239988i \(-0.0771434\pi\)
−0.693223 + 0.720723i \(0.743810\pi\)
\(338\) −14.7496 25.5471i −0.802275 1.38958i
\(339\) −15.4844 1.62621i −0.840998 0.0883234i
\(340\) −2.31410 + 4.00814i −0.125500 + 0.217372i
\(341\) −5.06908 −0.274506
\(342\) −13.9277 2.95806i −0.753124 0.159954i
\(343\) 4.74705 0.256316
\(344\) −3.93674 + 6.81864i −0.212255 + 0.367637i
\(345\) −4.26292 9.57258i −0.229508 0.515370i
\(346\) 4.82513 + 8.35738i 0.259401 + 0.449295i
\(347\) 4.52500 + 7.83753i 0.242915 + 0.420740i 0.961543 0.274654i \(-0.0885632\pi\)
−0.718629 + 0.695394i \(0.755230\pi\)
\(348\) −9.25128 + 12.7355i −0.495920 + 0.682692i
\(349\) 16.3023 28.2364i 0.872642 1.51146i 0.0133891 0.999910i \(-0.495738\pi\)
0.859253 0.511550i \(-0.170929\pi\)
\(350\) −0.341930 −0.0182769
\(351\) 7.05097 + 33.1325i 0.376353 + 1.76848i
\(352\) 1.00000 0.0533002
\(353\) 12.6341 21.8830i 0.672447 1.16471i −0.304761 0.952429i \(-0.598577\pi\)
0.977208 0.212284i \(-0.0680901\pi\)
\(354\) −15.2472 + 20.9896i −0.810381 + 1.11558i
\(355\) −0.425346 0.736722i −0.0225750 0.0391011i
\(356\) −0.411690 0.713068i −0.0218195 0.0377926i
\(357\) 1.11507 + 2.50394i 0.0590158 + 0.132523i
\(358\) 10.8632 18.8157i 0.574139 0.994439i
\(359\) 30.2888 1.59858 0.799291 0.600944i \(-0.205208\pi\)
0.799291 + 0.600944i \(0.205208\pi\)
\(360\) −2.00703 + 2.22976i −0.105780 + 0.117519i
\(361\) 3.52568 0.185562
\(362\) −2.97521 + 5.15322i −0.156374 + 0.270847i
\(363\) 1.72258 + 0.180909i 0.0904119 + 0.00949525i
\(364\) −1.11455 1.93045i −0.0584181 0.101183i
\(365\) −3.15168 5.45886i −0.164966 0.285730i
\(366\) 19.1038 + 2.00632i 0.998571 + 0.104872i
\(367\) 2.03594 3.52636i 0.106275 0.184074i −0.807983 0.589206i \(-0.799441\pi\)
0.914259 + 0.405131i \(0.132774\pi\)
\(368\) 6.04998 0.315377
\(369\) −4.95569 + 5.50565i −0.257983 + 0.286613i
\(370\) −9.02949 −0.469421
\(371\) 0.0670893 0.116202i 0.00348310 0.00603291i
\(372\) 3.57176 + 8.02055i 0.185187 + 0.415846i
\(373\) −9.92038 17.1826i −0.513658 0.889682i −0.999874 0.0158432i \(-0.994957\pi\)
0.486217 0.873838i \(-0.338377\pi\)
\(374\) −2.31410 4.00814i −0.119659 0.207256i
\(375\) −1.01796 + 1.40134i −0.0525672 + 0.0723649i
\(376\) 0.573169 0.992759i 0.0295590 0.0511976i
\(377\) −59.2464 −3.05134
\(378\) 0.369825 + 1.73781i 0.0190217 + 0.0893831i
\(379\) −17.9227 −0.920626 −0.460313 0.887757i \(-0.652263\pi\)
−0.460313 + 0.887757i \(0.652263\pi\)
\(380\) 2.37306 4.11026i 0.121735 0.210852i
\(381\) −15.3874 + 21.1826i −0.788323 + 1.08522i
\(382\) −12.4479 21.5604i −0.636889 1.10312i
\(383\) 8.97127 + 15.5387i 0.458410 + 0.793990i 0.998877 0.0473755i \(-0.0150857\pi\)
−0.540467 + 0.841365i \(0.681752\pi\)
\(384\) −0.704617 1.58225i −0.0359573 0.0807439i
\(385\) 0.170965 0.296120i 0.00871319 0.0150917i
\(386\) −9.88230 −0.502996
\(387\) 23.1051 + 4.90722i 1.17450 + 0.249448i
\(388\) 19.3056 0.980093
\(389\) 0.0739301 0.128051i 0.00374841 0.00649243i −0.864145 0.503243i \(-0.832140\pi\)
0.867894 + 0.496750i \(0.165474\pi\)
\(390\) −11.2297 1.17937i −0.568640 0.0597198i
\(391\) −14.0003 24.2492i −0.708023 1.22633i
\(392\) 3.44154 + 5.96093i 0.173824 + 0.301072i
\(393\) −10.8112 1.13541i −0.545352 0.0572741i
\(394\) −12.7614 + 22.1033i −0.642909 + 1.11355i
\(395\) −4.00669 −0.201598
\(396\) −0.927514 2.85302i −0.0466093 0.143370i
\(397\) 11.9339 0.598944 0.299472 0.954105i \(-0.403189\pi\)
0.299472 + 0.954105i \(0.403189\pi\)
\(398\) −2.51654 + 4.35878i −0.126143 + 0.218486i
\(399\) −1.14348 2.56774i −0.0572457 0.128548i
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) 8.25631 + 14.3003i 0.412300 + 0.714125i 0.995141 0.0984614i \(-0.0313921\pi\)
−0.582841 + 0.812587i \(0.698059\pi\)
\(402\) −12.3045 + 16.9386i −0.613695 + 0.844822i
\(403\) −16.5230 + 28.6188i −0.823071 + 1.42560i
\(404\) 19.1312 0.951815
\(405\) 8.22310 + 3.65796i 0.408609 + 0.181765i
\(406\) −3.10748 −0.154222
\(407\) 4.51474 7.81976i 0.223788 0.387611i
\(408\) −4.71132 + 6.48569i −0.233245 + 0.321089i
\(409\) −11.5738 20.0464i −0.572288 0.991233i −0.996330 0.0855901i \(-0.972722\pi\)
0.424042 0.905642i \(-0.360611\pi\)
\(410\) −1.23458 2.13836i −0.0609718 0.105606i
\(411\) 4.75665 + 10.6813i 0.234628 + 0.526869i
\(412\) 1.01656 1.76074i 0.0500825 0.0867454i
\(413\) −5.12151 −0.252013
\(414\) −5.61144 17.2607i −0.275787 0.848317i
\(415\) −1.99921 −0.0981376
\(416\) 3.25957 5.64575i 0.159814 0.276806i
\(417\) −11.3346 1.19038i −0.555058 0.0582934i
\(418\) 2.37306 + 4.11026i 0.116070 + 0.201040i
\(419\) −15.9157 27.5669i −0.777535 1.34673i −0.933359 0.358945i \(-0.883136\pi\)
0.155823 0.987785i \(-0.450197\pi\)
\(420\) −0.589001 0.0618582i −0.0287403 0.00301837i
\(421\) 4.58954 7.94932i 0.223681 0.387426i −0.732242 0.681044i \(-0.761526\pi\)
0.955923 + 0.293618i \(0.0948594\pi\)
\(422\) −4.02055 −0.195717
\(423\) −3.36398 0.714465i −0.163562 0.0347385i
\(424\) 0.392415 0.0190574
\(425\) −2.31410 + 4.00814i −0.112250 + 0.194423i
\(426\) −0.599413 1.34601i −0.0290416 0.0652143i
\(427\) 1.89604 + 3.28404i 0.0917560 + 0.158926i
\(428\) 6.99177 + 12.1101i 0.337960 + 0.585364i
\(429\) 6.63623 9.13555i 0.320400 0.441069i
\(430\) −3.93674 + 6.81864i −0.189847 + 0.328824i
\(431\) −6.08652 −0.293177 −0.146589 0.989198i \(-0.546829\pi\)
−0.146589 + 0.989198i \(0.546829\pi\)
\(432\) −3.86065 + 3.47785i −0.185745 + 0.167328i
\(433\) −40.5802 −1.95016 −0.975080 0.221854i \(-0.928789\pi\)
−0.975080 + 0.221854i \(0.928789\pi\)
\(434\) −0.866636 + 1.50106i −0.0415999 + 0.0720531i
\(435\) −9.25128 + 12.7355i −0.443565 + 0.610619i
\(436\) 5.72636 + 9.91834i 0.274243 + 0.475002i
\(437\) 14.3570 + 24.8670i 0.686787 + 1.18955i
\(438\) −4.44145 9.97348i −0.212221 0.476551i
\(439\) 11.3914 19.7304i 0.543680 0.941681i −0.455009 0.890487i \(-0.650364\pi\)
0.998689 0.0511942i \(-0.0163027\pi\)
\(440\) 1.00000 0.0476731
\(441\) 13.8146 15.3476i 0.657836 0.730839i
\(442\) −30.1719 −1.43513
\(443\) −2.24947 + 3.89619i −0.106875 + 0.185114i −0.914503 0.404579i \(-0.867418\pi\)
0.807627 + 0.589693i \(0.200751\pi\)
\(444\) −15.5540 1.63351i −0.738160 0.0775231i
\(445\) −0.411690 0.713068i −0.0195160 0.0338027i
\(446\) −5.40299 9.35826i −0.255839 0.443126i
\(447\) 23.8227 + 2.50191i 1.12678 + 0.118336i
\(448\) 0.170965 0.296120i 0.00807734 0.0139904i
\(449\) 12.8049 0.604299 0.302149 0.953261i \(-0.402296\pi\)
0.302149 + 0.953261i \(0.402296\pi\)
\(450\) −2.00703 + 2.22976i −0.0946123 + 0.105112i
\(451\) 2.46917 0.116269
\(452\) 4.49455 7.78479i 0.211406 0.366166i
\(453\) −4.28792 9.62872i −0.201464 0.452397i
\(454\) −9.54374 16.5303i −0.447910 0.775803i
\(455\) −1.11455 1.93045i −0.0522508 0.0905010i
\(456\) 4.83136 6.65094i 0.226249 0.311459i
\(457\) 3.66247 6.34359i 0.171323 0.296741i −0.767559 0.640978i \(-0.778529\pi\)
0.938883 + 0.344237i \(0.111862\pi\)
\(458\) 22.3118 1.04256
\(459\) 22.8736 + 7.42592i 1.06765 + 0.346612i
\(460\) 6.04998 0.282082
\(461\) 0.112855 0.195471i 0.00525619 0.00910398i −0.863385 0.504545i \(-0.831660\pi\)
0.868642 + 0.495441i \(0.164994\pi\)
\(462\) 0.348071 0.479161i 0.0161937 0.0222926i
\(463\) 14.0500 + 24.3353i 0.652959 + 1.13096i 0.982401 + 0.186782i \(0.0598059\pi\)
−0.329442 + 0.944176i \(0.606861\pi\)
\(464\) −4.54403 7.87048i −0.210951 0.365378i
\(465\) 3.57176 + 8.02055i 0.165636 + 0.371944i
\(466\) −2.34971 + 4.06982i −0.108848 + 0.188531i
\(467\) 6.65716 0.308056 0.154028 0.988066i \(-0.450775\pi\)
0.154028 + 0.988066i \(0.450775\pi\)
\(468\) −19.1307 4.06311i −0.884318 0.187818i
\(469\) −4.13306 −0.190847
\(470\) 0.573169 0.992759i 0.0264383 0.0457925i
\(471\) −27.7425 2.91358i −1.27831 0.134251i
\(472\) −7.48911 12.9715i −0.344714 0.597062i
\(473\) −3.93674 6.81864i −0.181012 0.313521i
\(474\) −6.90183 0.724845i −0.317012 0.0332932i
\(475\) 2.37306 4.11026i 0.108884 0.188592i
\(476\) −1.58252 −0.0725347
\(477\) −0.363971 1.11957i −0.0166651 0.0512615i
\(478\) −11.1648 −0.510666
\(479\) 0.125108 0.216694i 0.00571635 0.00990100i −0.863153 0.504942i \(-0.831514\pi\)
0.868869 + 0.495041i \(0.164847\pi\)
\(480\) −0.704617 1.58225i −0.0321612 0.0722195i
\(481\) −29.4323 50.9782i −1.34200 2.32441i
\(482\) 7.93318 + 13.7407i 0.361346 + 0.625870i
\(483\) 2.10582 2.89891i 0.0958184 0.131905i
\(484\) −0.500000 + 0.866025i −0.0227273 + 0.0393648i
\(485\) 19.3056 0.876622
\(486\) 13.5032 + 7.78875i 0.612516 + 0.353305i
\(487\) 8.39142 0.380252 0.190126 0.981760i \(-0.439110\pi\)
0.190126 + 0.981760i \(0.439110\pi\)
\(488\) −5.54512 + 9.60443i −0.251016 + 0.434772i
\(489\) −14.8197 + 20.4011i −0.670170 + 0.922568i
\(490\) 3.44154 + 5.96093i 0.155473 + 0.269287i
\(491\) −9.25409 16.0286i −0.417631 0.723359i 0.578069 0.815988i \(-0.303806\pi\)
−0.995701 + 0.0926290i \(0.970473\pi\)
\(492\) −1.73982 3.90684i −0.0784370 0.176134i
\(493\) −21.0307 + 36.4262i −0.947173 + 1.64055i
\(494\) 30.9407 1.39209
\(495\) −0.927514 2.85302i −0.0416887 0.128234i
\(496\) −5.06908 −0.227608
\(497\) 0.145439 0.251907i 0.00652382 0.0112996i
\(498\) −3.44380 0.361675i −0.154320 0.0162071i
\(499\) −1.60582 2.78136i −0.0718862 0.124511i 0.827842 0.560962i \(-0.189569\pi\)
−0.899728 + 0.436451i \(0.856235\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) 25.5885 + 2.68736i 1.14321 + 0.120062i
\(502\) −5.62354 + 9.74026i −0.250991 + 0.434729i
\(503\) 21.0230 0.937368 0.468684 0.883366i \(-0.344728\pi\)
0.468684 + 0.883366i \(0.344728\pi\)
\(504\) −1.00341 0.213111i −0.0446954 0.00949272i
\(505\) 19.1312 0.851329
\(506\) −3.02499 + 5.23944i −0.134477 + 0.232921i
\(507\) −20.7857 46.6752i −0.923125 2.07292i
\(508\) −7.55798 13.0908i −0.335331 0.580811i
\(509\) 13.7034 + 23.7349i 0.607391 + 1.05203i 0.991669 + 0.128815i \(0.0411174\pi\)
−0.384277 + 0.923218i \(0.625549\pi\)
\(510\) −4.71132 + 6.48569i −0.208621 + 0.287191i
\(511\) 1.07765 1.86655i 0.0476726 0.0825713i
\(512\) 1.00000 0.0441942
\(513\) −23.4564 7.61513i −1.03563 0.336216i
\(514\) 3.97420 0.175294
\(515\) 1.01656 1.76074i 0.0447951 0.0775875i
\(516\) −8.01490 + 11.0334i −0.352836 + 0.485720i
\(517\) 0.573169 + 0.992759i 0.0252080 + 0.0436615i
\(518\) −1.54373 2.67381i −0.0678275 0.117481i
\(519\) 6.79974 + 15.2691i 0.298476 + 0.670241i
\(520\) 3.25957 5.64575i 0.142942 0.247582i
\(521\) −12.4239 −0.544300 −0.272150 0.962255i \(-0.587735\pi\)
−0.272150 + 0.962255i \(0.587735\pi\)
\(522\) −18.2400 + 20.2642i −0.798343 + 0.886939i
\(523\) −14.5774 −0.637425 −0.318712 0.947851i \(-0.603250\pi\)
−0.318712 + 0.947851i \(0.603250\pi\)
\(524\) 3.13808 5.43532i 0.137088 0.237443i
\(525\) −0.589001 0.0618582i −0.0257061 0.00269971i
\(526\) 1.80954 + 3.13422i 0.0788997 + 0.136658i
\(527\) 11.7304 + 20.3176i 0.510982 + 0.885047i
\(528\) 1.72258 + 0.180909i 0.0749655 + 0.00787304i
\(529\) −6.80113 + 11.7799i −0.295701 + 0.512169i
\(530\) 0.392415 0.0170454
\(531\) −30.0617 + 33.3978i −1.30457 + 1.44934i
\(532\) 1.62284 0.0703592
\(533\) 8.04844 13.9403i 0.348616 0.603821i
\(534\) −0.580168 1.30279i −0.0251063 0.0563774i
\(535\) 6.99177 + 12.1101i 0.302281 + 0.523566i
\(536\) −6.04372 10.4680i −0.261049 0.452150i
\(537\) 22.1167 30.4462i 0.954405 1.31385i
\(538\) −7.47603 + 12.9489i −0.322314 + 0.558265i
\(539\) −6.88308 −0.296475
\(540\) −3.86065 + 3.47785i −0.166136 + 0.149663i
\(541\) 27.7784 1.19429 0.597144 0.802134i \(-0.296302\pi\)
0.597144 + 0.802134i \(0.296302\pi\)
\(542\) 5.61582 9.72688i 0.241220 0.417805i
\(543\) −6.05729 + 8.33857i −0.259943 + 0.357842i
\(544\) −2.31410 4.00814i −0.0992162 0.171847i
\(545\) 5.72636 + 9.91834i 0.245290 + 0.424855i
\(546\) −1.57066 3.52698i −0.0672179 0.150941i
\(547\) 11.9469 20.6926i 0.510813 0.884754i −0.489109 0.872223i \(-0.662678\pi\)
0.999921 0.0125309i \(-0.00398881\pi\)
\(548\) −6.75069 −0.288375
\(549\) 32.5448 + 6.91208i 1.38898 + 0.295001i
\(550\) 1.00000 0.0426401
\(551\) 21.5665 37.3543i 0.918764 1.59135i
\(552\) 10.4216 + 1.09449i 0.443571 + 0.0465848i
\(553\) −0.685004 1.18646i −0.0291293 0.0504535i
\(554\) 6.80210 + 11.7816i 0.288994 + 0.500552i
\(555\) −15.5540 1.63351i −0.660230 0.0693388i
\(556\) 3.29001 5.69847i 0.139528 0.241669i
\(557\) 14.3933 0.609862 0.304931 0.952374i \(-0.401367\pi\)
0.304931 + 0.952374i \(0.401367\pi\)
\(558\) 4.70165 + 14.4622i 0.199037 + 0.612233i
\(559\) −51.3284 −2.17096
\(560\) 0.170965 0.296120i 0.00722460 0.0125134i
\(561\) −3.26111 7.32297i −0.137684 0.309176i
\(562\) −0.349163 0.604768i −0.0147286 0.0255106i
\(563\) −5.57890 9.66293i −0.235123 0.407244i 0.724186 0.689605i \(-0.242216\pi\)
−0.959308 + 0.282361i \(0.908882\pi\)
\(564\) 1.16693 1.60641i 0.0491365 0.0676421i
\(565\) 4.49455 7.78479i 0.189087 0.327509i
\(566\) −29.9918 −1.26065
\(567\) 0.322667 + 3.06041i 0.0135507 + 0.128525i
\(568\) 0.850693 0.0356943
\(569\) −21.8161 + 37.7866i −0.914578 + 1.58410i −0.107061 + 0.994252i \(0.534144\pi\)
−0.807517 + 0.589844i \(0.799189\pi\)
\(570\) 4.83136 6.65094i 0.202364 0.278577i
\(571\) −22.4431 38.8725i −0.939213 1.62676i −0.766944 0.641714i \(-0.778223\pi\)
−0.172269 0.985050i \(-0.555110\pi\)
\(572\) 3.25957 + 5.64575i 0.136290 + 0.236061i
\(573\) −17.5420 39.3913i −0.732827 1.64560i
\(574\) 0.422142 0.731171i 0.0176199 0.0305185i
\(575\) 6.04998 0.252302
\(576\) −0.927514 2.85302i −0.0386464 0.118876i
\(577\) −26.7049 −1.11174 −0.555870 0.831269i \(-0.687615\pi\)
−0.555870 + 0.831269i \(0.687615\pi\)
\(578\) −2.21011 + 3.82803i −0.0919285 + 0.159225i
\(579\) −17.0230 1.78779i −0.707453 0.0742982i
\(580\) −4.54403 7.87048i −0.188680 0.326804i
\(581\) −0.341796 0.592008i −0.0141801 0.0245606i
\(582\) 33.2554 + 3.49255i 1.37848 + 0.144771i
\(583\) −0.196208 + 0.339841i −0.00812608 + 0.0140748i
\(584\) 6.30335 0.260835
\(585\) −19.1307 4.06311i −0.790958 0.167989i
\(586\) −3.30683 −0.136604
\(587\) 4.95379 8.58021i 0.204465 0.354143i −0.745497 0.666509i \(-0.767788\pi\)
0.949962 + 0.312365i \(0.101121\pi\)
\(588\) 4.84994 + 10.8908i 0.200008 + 0.449127i
\(589\) −12.0292 20.8353i −0.495656 0.858502i
\(590\) −7.48911 12.9715i −0.308322 0.534029i
\(591\) −25.9811 + 35.7661i −1.06872 + 1.47122i
\(592\) 4.51474 7.81976i 0.185555 0.321390i
\(593\) 15.9871 0.656511 0.328255 0.944589i \(-0.393539\pi\)
0.328255 + 0.944589i \(0.393539\pi\)
\(594\) −1.08158 5.08234i −0.0443777 0.208531i
\(595\) −1.58252 −0.0648770
\(596\) −6.91485 + 11.9769i −0.283243 + 0.490592i
\(597\) −5.12348 + 7.05307i −0.209690 + 0.288663i
\(598\) 19.7204 + 34.1567i 0.806425 + 1.39677i
\(599\) 1.48203 + 2.56696i 0.0605542 + 0.104883i 0.894713 0.446641i \(-0.147380\pi\)
−0.834159 + 0.551524i \(0.814047\pi\)
\(600\) −0.704617 1.58225i −0.0287659 0.0645951i
\(601\) −9.29940 + 16.1070i −0.379330 + 0.657020i −0.990965 0.134121i \(-0.957179\pi\)
0.611635 + 0.791140i \(0.290512\pi\)
\(602\) −2.69218 −0.109725
\(603\) −24.2599 + 26.9521i −0.987938 + 1.09757i
\(604\) 6.08546 0.247614
\(605\) −0.500000 + 0.866025i −0.0203279 + 0.0352089i
\(606\) 32.9550 + 3.46101i 1.33871 + 0.140594i
\(607\) −11.7851 20.4124i −0.478343 0.828514i 0.521349 0.853344i \(-0.325429\pi\)
−0.999692 + 0.0248298i \(0.992096\pi\)
\(608\) 2.37306 + 4.11026i 0.0962403 + 0.166693i
\(609\) −5.35288 0.562170i −0.216909 0.0227803i
\(610\) −5.54512 + 9.60443i −0.224515 + 0.388872i
\(611\) 7.47315 0.302331
\(612\) −9.28893 + 10.3198i −0.375483 + 0.417152i
\(613\) 13.1149 0.529707 0.264853 0.964289i \(-0.414676\pi\)
0.264853 + 0.964289i \(0.414676\pi\)
\(614\) −3.02418 + 5.23804i −0.122046 + 0.211390i
\(615\) −1.73982 3.90684i −0.0701562 0.157539i
\(616\) 0.170965 + 0.296120i 0.00688838 + 0.0119310i
\(617\) 7.92102 + 13.7196i 0.318888 + 0.552331i 0.980256 0.197731i \(-0.0633572\pi\)
−0.661368 + 0.750061i \(0.730024\pi\)
\(618\) 2.06964 2.84910i 0.0832532 0.114608i
\(619\) −7.86675 + 13.6256i −0.316191 + 0.547660i −0.979690 0.200518i \(-0.935738\pi\)
0.663499 + 0.748178i \(0.269071\pi\)
\(620\) −5.06908 −0.203579
\(621\) −6.54353 30.7481i −0.262583 1.23388i
\(622\) 2.61564 0.104877
\(623\) 0.140769 0.243820i 0.00563981 0.00976843i
\(624\) 6.63623 9.13555i 0.265662 0.365715i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 13.2700 + 22.9842i 0.530374 + 0.918635i
\(627\) 3.34420 + 7.50955i 0.133554 + 0.299903i
\(628\) 8.05263 13.9476i 0.321335 0.556568i
\(629\) −41.7903 −1.66629
\(630\) −1.00341 0.213111i −0.0399768 0.00849054i
\(631\) 7.66327 0.305070 0.152535 0.988298i \(-0.451256\pi\)
0.152535 + 0.988298i \(0.451256\pi\)
\(632\) 2.00334 3.46990i 0.0796888 0.138025i
\(633\) −6.92570 0.727352i −0.275272 0.0289097i
\(634\) −0.520712 0.901900i −0.0206801 0.0358190i
\(635\) −7.55798 13.0908i −0.299929 0.519493i
\(636\) 0.675965 + 0.0709913i 0.0268038 + 0.00281499i
\(637\) −22.4359 + 38.8602i −0.888943 + 1.53970i
\(638\) 9.08805 0.359799
\(639\) −0.789030 2.42704i −0.0312135 0.0960123i
\(640\) 1.00000 0.0395285
\(641\) 8.95567 15.5117i 0.353728 0.612674i −0.633172 0.774011i \(-0.718247\pi\)
0.986899 + 0.161337i \(0.0515807\pi\)
\(642\) 9.85305 + 22.1255i 0.388869 + 0.873223i
\(643\) 2.18779 + 3.78936i 0.0862779 + 0.149438i 0.905935 0.423417i \(-0.139169\pi\)
−0.819657 + 0.572854i \(0.805836\pi\)
\(644\) 1.03434 + 1.79152i 0.0407585 + 0.0705959i
\(645\) −8.01490 + 11.0334i −0.315586 + 0.434441i
\(646\) 10.9830 19.0231i 0.432120 0.748454i
\(647\) −31.6184 −1.24305 −0.621524 0.783395i \(-0.713486\pi\)
−0.621524 + 0.783395i \(0.713486\pi\)
\(648\) −7.27943 + 5.29243i −0.285963 + 0.207906i
\(649\) 14.9782 0.587946
\(650\) 3.25957 5.64575i 0.127851 0.221444i
\(651\) −1.76440 + 2.42891i −0.0691524 + 0.0951963i
\(652\) −7.27912 12.6078i −0.285072 0.493760i
\(653\) 3.39512 + 5.88052i 0.132861 + 0.230122i 0.924778 0.380506i \(-0.124250\pi\)
−0.791917 + 0.610629i \(0.790917\pi\)
\(654\) 8.06978 + 18.1211i 0.315553 + 0.708589i
\(655\) 3.13808 5.43532i 0.122615 0.212376i
\(656\) 2.46917 0.0964048
\(657\) −5.84645 17.9836i −0.228092 0.701606i
\(658\) 0.391968 0.0152805
\(659\) 3.07140 5.31982i 0.119645 0.207231i −0.799982 0.600024i \(-0.795158\pi\)
0.919627 + 0.392793i \(0.128491\pi\)
\(660\) 1.72258 + 0.180909i 0.0670512 + 0.00704186i
\(661\) 10.3682 + 17.9582i 0.403276 + 0.698494i 0.994119 0.108292i \(-0.0345383\pi\)
−0.590843 + 0.806786i \(0.701205\pi\)
\(662\) −6.70843 11.6193i −0.260730 0.451598i
\(663\) −51.9734 5.45836i −2.01848 0.211985i
\(664\) 0.999607 1.73137i 0.0387923 0.0671902i
\(665\) 1.62284 0.0629312
\(666\) −26.4974 5.62770i −1.02675 0.218069i
\(667\) 54.9825 2.12893
\(668\) −7.42739 + 12.8646i −0.287375 + 0.497747i
\(669\) −7.61408 17.0978i −0.294377 0.661038i
\(670\) −6.04372 10.4680i −0.233489 0.404415i
\(671\) −5.54512 9.60443i −0.214067 0.370775i
\(672\) 0.348071 0.479161i 0.0134271 0.0184840i
\(673\) 18.8458 32.6418i 0.726451 1.25825i −0.231924 0.972734i \(-0.574502\pi\)
0.958374 0.285515i \(-0.0921647\pi\)
\(674\) −10.1904 −0.392519
\(675\) −3.86065 + 3.47785i −0.148596 + 0.133862i
\(676\) 29.4993 1.13459
\(677\) −16.8547 + 29.1932i −0.647779 + 1.12199i 0.335874 + 0.941907i \(0.390969\pi\)
−0.983652 + 0.180079i \(0.942365\pi\)
\(678\) 9.15055 12.5968i 0.351425 0.483777i
\(679\) 3.30058 + 5.71678i 0.126665 + 0.219390i
\(680\) −2.31410 4.00814i −0.0887417 0.153705i
\(681\) −13.4494 30.2012i −0.515381 1.15731i
\(682\) 2.53454 4.38995i 0.0970526 0.168100i
\(683\) 16.2605 0.622189 0.311094 0.950379i \(-0.399304\pi\)
0.311094 + 0.950379i \(0.399304\pi\)
\(684\) 9.52561 10.5827i 0.364221 0.404640i
\(685\) −6.75069 −0.257931
\(686\) −2.37352 + 4.11106i −0.0906215 + 0.156961i
\(687\) 38.4338 + 4.03640i 1.46634 + 0.153998i
\(688\) −3.93674 6.81864i −0.150087 0.259958i
\(689\) 1.27911 + 2.21548i 0.0487300 + 0.0844029i
\(690\) 10.4216 + 1.09449i 0.396742 + 0.0416667i
\(691\) 17.6033 30.4898i 0.669660 1.15989i −0.308339 0.951276i \(-0.599773\pi\)
0.977999 0.208609i \(-0.0668935\pi\)
\(692\) −9.65027 −0.366848
\(693\) 0.686264 0.762423i 0.0260690 0.0289620i
\(694\) −9.05000 −0.343533
\(695\) 3.29001 5.69847i 0.124797 0.216155i
\(696\) −6.40360 14.3796i −0.242728 0.545056i
\(697\) −5.71390 9.89677i −0.216429 0.374867i
\(698\) 16.3023 + 28.2364i 0.617051 + 1.06876i
\(699\) −4.78383 + 6.58550i −0.180941 + 0.249086i
\(700\) 0.170965 0.296120i 0.00646188 0.0111923i
\(701\) 49.5189 1.87030 0.935151 0.354248i \(-0.115263\pi\)
0.935151 + 0.354248i \(0.115263\pi\)
\(702\) −32.2191 10.4599i −1.21603 0.394785i
\(703\) 42.8550 1.61631
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) 1.16693 1.60641i 0.0439490 0.0605010i
\(706\) 12.6341 + 21.8830i 0.475492 + 0.823576i
\(707\) 3.27078 + 5.66515i 0.123010 + 0.213060i
\(708\) −10.5539 23.6993i −0.396640 0.890674i
\(709\) −23.8956 + 41.3885i −0.897419 + 1.55438i −0.0666381 + 0.997777i \(0.521227\pi\)
−0.830781 + 0.556599i \(0.812106\pi\)
\(710\) 0.850693 0.0319259
\(711\) −11.7578 2.49720i −0.440952 0.0936524i
\(712\) 0.823380 0.0308575
\(713\) 15.3339 26.5591i 0.574260 0.994647i
\(714\) −2.72602 0.286292i −0.102019 0.0107142i
\(715\) 3.25957 + 5.64575i 0.121901 + 0.211139i
\(716\) 10.8632 + 18.8157i 0.405978 + 0.703174i
\(717\) −19.2322 2.01981i −0.718241 0.0754312i
\(718\) −15.1444 + 26.2309i −0.565184 + 0.978928i
\(719\) −0.191464 −0.00714038 −0.00357019 0.999994i \(-0.501136\pi\)
−0.00357019 + 0.999994i \(0.501136\pi\)
\(720\) −0.927514 2.85302i −0.0345664 0.106326i
\(721\) 0.695188 0.0258901
\(722\) −1.76284 + 3.05333i −0.0656061 + 0.113633i
\(723\) 11.1797 + 25.1045i 0.415778 + 0.933648i
\(724\) −2.97521 5.15322i −0.110573 0.191518i
\(725\) −4.54403 7.87048i −0.168761 0.292302i
\(726\) −1.01796 + 1.40134i −0.0377800 + 0.0520087i
\(727\) −18.5806 + 32.1825i −0.689115 + 1.19358i 0.283010 + 0.959117i \(0.408667\pi\)
−0.972125 + 0.234465i \(0.924666\pi\)
\(728\) 2.22909 0.0826157
\(729\) 21.8512 + 15.8596i 0.809303 + 0.587391i
\(730\) 6.30335 0.233298
\(731\) −18.2200 + 31.5580i −0.673892 + 1.16722i
\(732\) −11.2894 + 15.5412i −0.417269 + 0.574419i
\(733\) 5.14789 + 8.91641i 0.190142 + 0.329335i 0.945297 0.326211i \(-0.105772\pi\)
−0.755155 + 0.655546i \(0.772439\pi\)
\(734\) 2.03594 + 3.52636i 0.0751481 + 0.130160i
\(735\) 4.84994 + 10.8908i 0.178893 + 0.401712i
\(736\) −3.02499 + 5.23944i −0.111503 + 0.193128i
\(737\) 12.0874 0.445247
\(738\) −2.29019 7.04458i −0.0843030 0.259315i
\(739\) 8.56279 0.314987 0.157494 0.987520i \(-0.449659\pi\)
0.157494 + 0.987520i \(0.449659\pi\)
\(740\) 4.51474 7.81976i 0.165965 0.287460i
\(741\) 53.2977 + 5.59744i 1.95794 + 0.205627i
\(742\) 0.0670893 + 0.116202i 0.00246293 + 0.00426591i
\(743\) −9.82196 17.0121i −0.360333 0.624115i 0.627683 0.778469i \(-0.284004\pi\)
−0.988016 + 0.154354i \(0.950670\pi\)
\(744\) −8.73188 0.917041i −0.320126 0.0336204i
\(745\) −6.91485 + 11.9769i −0.253340 + 0.438798i
\(746\) 19.8408 0.726422
\(747\) −5.86678 1.24603i −0.214654 0.0455898i
\(748\) 4.62820 0.169224
\(749\) −2.39070 + 4.14081i −0.0873543 + 0.151302i
\(750\) −0.704617 1.58225i −0.0257290 0.0577756i
\(751\) −12.9493 22.4288i −0.472525 0.818438i 0.526980 0.849877i \(-0.323324\pi\)
−0.999506 + 0.0314396i \(0.989991\pi\)
\(752\) 0.573169 + 0.992759i 0.0209013 + 0.0362022i
\(753\) −11.4491 + 15.7610i −0.417228 + 0.574363i
\(754\) 29.6232 51.3089i 1.07881 1.86856i
\(755\) 6.08546 0.221473
\(756\) −1.68990 0.548626i −0.0614609 0.0199533i
\(757\) 21.2937 0.773933 0.386967 0.922094i \(-0.373523\pi\)
0.386967 + 0.922094i \(0.373523\pi\)
\(758\) 8.96134 15.5215i 0.325491 0.563766i
\(759\) −6.15864 + 8.47809i −0.223544 + 0.307735i
\(760\) 2.37306 + 4.11026i 0.0860800 + 0.149095i
\(761\) 1.39177 + 2.41062i 0.0504517 + 0.0873849i 0.890148 0.455671i \(-0.150601\pi\)
−0.839697 + 0.543056i \(0.817267\pi\)
\(762\) −10.6510 23.9172i −0.385844 0.866430i
\(763\) −1.95802 + 3.39138i −0.0708849 + 0.122776i
\(764\) 24.8958 0.900698
\(765\) −9.28893 + 10.3198i −0.335842 + 0.373112i
\(766\) −17.9425 −0.648290
\(767\) 48.8226 84.5632i 1.76288 3.05340i
\(768\) 1.72258 + 0.180909i 0.0621581 + 0.00652798i
\(769\) 2.97443 + 5.15186i 0.107261 + 0.185781i 0.914660 0.404225i \(-0.132459\pi\)
−0.807399 + 0.590006i \(0.799125\pi\)
\(770\) 0.170965 + 0.296120i 0.00616116 + 0.0106714i
\(771\) 6.84587 + 0.718968i 0.246548 + 0.0258930i
\(772\) 4.94115 8.55832i 0.177836 0.308021i
\(773\) −4.24185 −0.152569 −0.0762844 0.997086i \(-0.524306\pi\)
−0.0762844 + 0.997086i \(0.524306\pi\)
\(774\) −15.8023 + 17.5560i −0.568003 + 0.631037i
\(775\) −5.06908 −0.182087
\(776\) −9.65280 + 16.7191i −0.346515 + 0.600182i
\(777\) −2.17547 4.88513i −0.0780447 0.175253i
\(778\) 0.0739301 + 0.128051i 0.00265052 + 0.00459084i
\(779\) 5.85949 + 10.1489i 0.209938 + 0.363623i
\(780\) 6.63623 9.13555i 0.237615 0.327105i
\(781\) −0.425346 + 0.736722i −0.0152201 + 0.0263620i
\(782\) 28.0005 1.00130
\(783\) −35.0858 + 31.6068i −1.25386 + 1.12954i
\(784\) −6.88308 −0.245824
\(785\) 8.05263 13.9476i 0.287411 0.497810i
\(786\) 6.38889 8.79505i 0.227884 0.313709i
\(787\) 16.1751 + 28.0162i 0.576582 + 0.998669i 0.995868 + 0.0908146i \(0.0289471\pi\)
−0.419286 + 0.907854i \(0.637720\pi\)
\(788\) −12.7614 22.1033i −0.454605 0.787399i
\(789\) 2.55007 + 5.72629i 0.0907848 + 0.203861i
\(790\) 2.00334 3.46990i 0.0712758 0.123453i
\(791\) 3.07365 0.109286
\(792\) 2.93454 + 0.623258i 0.104274 + 0.0221465i
\(793\) −72.2989 −2.56741
\(794\) −5.96694 + 10.3350i −0.211759 + 0.366777i
\(795\) 0.675965 + 0.0709913i 0.0239740 + 0.00251780i
\(796\) −2.51654 4.35878i −0.0891965 0.154493i
\(797\) −8.97667 15.5480i −0.317970 0.550740i 0.662094 0.749420i \(-0.269668\pi\)
−0.980064 + 0.198680i \(0.936334\pi\)
\(798\) 2.79547 + 0.293586i 0.0989586 + 0.0103928i
\(799\) 2.65274 4.59468i 0.0938473 0.162548i
\(800\) 1.00000 0.0353553
\(801\) −0.763697 2.34912i −0.0269839 0.0830021i
\(802\) −16.5126 −0.583081
\(803\) −3.15168 + 5.45886i −0.111220 + 0.192639i
\(804\) −8.51702 19.1254i −0.300372 0.674499i
\(805\) 1.03434 + 1.79152i 0.0364555 + 0.0631429i
\(806\) −16.5230 28.6188i −0.581999 1.00805i
\(807\) −15.2206 + 20.9529i −0.535790 + 0.737578i
\(808\) −9.56562 + 16.5681i −0.336517 + 0.582865i
\(809\) 5.96281 0.209641 0.104821 0.994491i \(-0.466573\pi\)
0.104821 + 0.994491i \(0.466573\pi\)
\(810\) −7.27943 + 5.29243i −0.255773 + 0.185957i
\(811\) 11.9034 0.417983 0.208992 0.977917i \(-0.432982\pi\)
0.208992 + 0.977917i \(0.432982\pi\)
\(812\) 1.55374 2.69116i 0.0545256 0.0944411i
\(813\) 11.4334 15.7394i 0.400985 0.552003i
\(814\) 4.51474 + 7.81976i 0.158242 + 0.274083i
\(815\) −7.27912 12.6078i −0.254976 0.441632i
\(816\) −3.26111 7.32297i −0.114162 0.256355i
\(817\) 18.6843 32.3621i 0.653680 1.13221i
\(818\) 23.1476 0.809338
\(819\) −2.06752 6.35965i −0.0722449 0.222224i
\(820\) 2.46917 0.0862271
\(821\) −3.46404 + 5.99989i −0.120896 + 0.209398i −0.920121 0.391634i \(-0.871910\pi\)
0.799225 + 0.601031i \(0.205243\pi\)
\(822\) −11.6286 1.22126i −0.405594 0.0425963i
\(823\) 13.2286 + 22.9126i 0.461120 + 0.798683i 0.999017 0.0443276i \(-0.0141146\pi\)
−0.537897 + 0.843010i \(0.680781\pi\)
\(824\) 1.01656 + 1.76074i 0.0354137 + 0.0613383i
\(825\) 1.72258 + 0.180909i 0.0599724 + 0.00629843i
\(826\) 2.56075 4.43535i 0.0891000 0.154326i
\(827\) −9.64401 −0.335355 −0.167677 0.985842i \(-0.553627\pi\)
−0.167677 + 0.985842i \(0.553627\pi\)
\(828\) 17.7539 + 3.77070i 0.616992 + 0.131041i
\(829\) −27.5168 −0.955699 −0.477850 0.878442i \(-0.658584\pi\)
−0.477850 + 0.878442i \(0.658584\pi\)
\(830\) 0.999607 1.73137i 0.0346969 0.0600968i
\(831\) 9.58576 + 21.5253i 0.332526 + 0.746703i
\(832\) 3.25957 + 5.64575i 0.113005 + 0.195731i
\(833\) 15.9281 + 27.5883i 0.551877 + 0.955880i
\(834\) 6.69820 9.22086i 0.231940 0.319292i
\(835\) −7.42739 + 12.8646i −0.257036 + 0.445199i
\(836\) −4.74612 −0.164148
\(837\) 5.48261 + 25.7628i 0.189507 + 0.890493i
\(838\) 31.8315 1.09960
\(839\) −5.97432 + 10.3478i −0.206256 + 0.357247i −0.950532 0.310626i \(-0.899461\pi\)
0.744276 + 0.667872i \(0.232795\pi\)
\(840\) 0.348071 0.479161i 0.0120096 0.0165326i
\(841\) −26.7964 46.4126i −0.924012 1.60044i
\(842\) 4.58954 + 7.94932i 0.158166 + 0.273952i
\(843\) −0.492052 1.10493i −0.0169472 0.0380557i
\(844\) 2.01027 3.48190i 0.0691965 0.119852i
\(845\) 29.4993 1.01481
\(846\) 2.30074 2.55606i 0.0791009 0.0878792i
\(847\) −0.341930 −0.0117489
\(848\) −0.196208 + 0.339841i −0.00673779 + 0.0116702i
\(849\) −51.6631 5.42577i −1.77307 0.186212i
\(850\) −2.31410 4.00814i −0.0793730 0.137478i
\(851\) 27.3141 + 47.3094i 0.936315 + 1.62175i
\(852\) 1.46538 + 0.153898i 0.0502032 + 0.00527245i
\(853\) 9.44223 16.3544i 0.323296 0.559965i −0.657870 0.753131i \(-0.728542\pi\)
0.981166 + 0.193166i \(0.0618757\pi\)
\(854\) −3.79209 −0.129763
\(855\) 9.52561 10.5827i 0.325769 0.361921i
\(856\) −13.9835 −0.477948
\(857\) 0.168677 0.292157i 0.00576190 0.00997990i −0.863130 0.504982i \(-0.831499\pi\)
0.868892 + 0.495002i \(0.164833\pi\)
\(858\) 4.59350 + 10.3149i 0.156820 + 0.352146i
\(859\) 26.9505 + 46.6796i 0.919538 + 1.59269i 0.800118 + 0.599843i \(0.204770\pi\)
0.119420 + 0.992844i \(0.461896\pi\)
\(860\) −3.93674 6.81864i −0.134242 0.232514i
\(861\) 0.859447 1.18313i 0.0292899 0.0403209i
\(862\) 3.04326 5.27108i 0.103654 0.179534i
\(863\) 40.0758 1.36419 0.682097 0.731261i \(-0.261068\pi\)
0.682097 + 0.731261i \(0.261068\pi\)
\(864\) −1.08158 5.08234i −0.0367961 0.172905i
\(865\) −9.65027 −0.328119
\(866\) 20.2901 35.1435i 0.689486 1.19422i
\(867\) −4.49961 + 6.19424i −0.152815 + 0.210367i
\(868\) −0.866636 1.50106i −0.0294155 0.0509492i
\(869\) 2.00334 + 3.46990i 0.0679588 + 0.117708i
\(870\) −6.40360 14.3796i −0.217102 0.487513i
\(871\) 39.3999 68.2427i 1.33502 2.31231i
\(872\) −11.4527 −0.387838
\(873\) 56.6531 + 12.0324i 1.91742 + 0.407234i
\(874\) −28.7139 −0.971264
\(875\) 0.170965 0.296120i 0.00577968 0.0100107i
\(876\) 10.8580 + 1.14033i 0.366858 + 0.0385282i
\(877\) 0.767873 + 1.33000i 0.0259292 + 0.0449108i 0.878699 0.477377i \(-0.158412\pi\)
−0.852770 + 0.522287i \(0.825079\pi\)
\(878\) 11.3914 + 19.7304i 0.384440 + 0.665869i
\(879\) −5.69626 0.598234i −0.192130 0.0201779i
\(880\) −0.500000 + 0.866025i −0.0168550 + 0.0291937i
\(881\) −22.0850 −0.744062 −0.372031 0.928220i \(-0.621339\pi\)
−0.372031 + 0.928220i \(0.621339\pi\)
\(882\) 6.38416 + 19.6376i 0.214966 + 0.661231i
\(883\) 55.3080 1.86126 0.930631 0.365958i \(-0.119259\pi\)
0.930631 + 0.365958i \(0.119259\pi\)
\(884\) 15.0860 26.1296i 0.507396 0.878835i
\(885\) −10.5539 23.6993i −0.354766 0.796643i
\(886\) −2.24947 3.89619i −0.0755723 0.130895i
\(887\) 8.83810 + 15.3080i 0.296754 + 0.513993i 0.975391 0.220480i \(-0.0707625\pi\)
−0.678637 + 0.734474i \(0.737429\pi\)
\(888\) 9.19166 12.6534i 0.308452 0.424620i
\(889\) 2.58430 4.47614i 0.0866747 0.150125i
\(890\) 0.823380 0.0275998
\(891\) −0.943663 8.95039i −0.0316139 0.299849i
\(892\) 10.8060 0.361811
\(893\) −2.72033 + 4.71175i −0.0910325 + 0.157673i
\(894\) −14.0781 + 19.3801i −0.470841 + 0.648168i
\(895\) 10.8632 + 18.8157i 0.363118 + 0.628938i
\(896\) 0.170965 + 0.296120i 0.00571154 + 0.00989269i
\(897\) 27.7906 + 62.4051i 0.927901 + 2.08364i
\(898\) −6.40243 + 11.0893i −0.213652 + 0.370056i
\(899\) −46.0681 −1.53646
\(900\) −0.927514 2.85302i −0.0309171 0.0951006i
\(901\) 1.81617 0.0605056
\(902\) −1.23458 + 2.13836i −0.0411072 + 0.0711997i
\(903\) −4.63750 0.487040i −0.154326 0.0162077i
\(904\) 4.49455 + 7.78479i 0.149487 + 0.258918i
\(905\) −2.97521 5.15322i −0.0988993 0.171299i
\(906\) 10.4827 + 1.10091i 0.348264 + 0.0365754i
\(907\) 8.71014 15.0864i 0.289216 0.500936i −0.684407 0.729100i \(-0.739939\pi\)
0.973623 + 0.228164i \(0.0732722\pi\)
\(908\) 19.0875 0.633441
\(909\) 56.1415 + 11.9237i 1.86210 + 0.395485i
\(910\) 2.22909 0.0738937
\(911\) −11.0560 + 19.1496i −0.366302 + 0.634454i −0.988984 0.148021i \(-0.952710\pi\)
0.622682 + 0.782475i \(0.286043\pi\)
\(912\) 3.34420 + 7.50955i 0.110737 + 0.248666i
\(913\) 0.999607 + 1.73137i 0.0330822 + 0.0573000i
\(914\) 3.66247 + 6.34359i 0.121144 + 0.209827i
\(915\) −11.2894 + 15.5412i −0.373217 + 0.513776i
\(916\) −11.1559 + 19.3226i −0.368601 + 0.638436i
\(917\) 2.14601 0.0708676
\(918\) −17.8678 + 16.0962i −0.589727 + 0.531252i
\(919\) 2.35200 0.0775854 0.0387927 0.999247i \(-0.487649\pi\)
0.0387927 + 0.999247i \(0.487649\pi\)
\(920\) −3.02499 + 5.23944i −0.0997310 + 0.172739i
\(921\) −6.15699 + 8.47582i −0.202880 + 0.279288i
\(922\) 0.112855 + 0.195471i 0.00371669 + 0.00643749i
\(923\) 2.77290 + 4.80280i 0.0912710 + 0.158086i
\(924\) 0.240930 + 0.541019i 0.00792601 + 0.0177982i
\(925\) 4.51474 7.81976i 0.148444 0.257112i
\(926\) −28.1000 −0.923423
\(927\) 4.08055 4.53339i 0.134023 0.148896i
\(928\) 9.08805 0.298330
\(929\) 14.7721 25.5860i 0.484657 0.839451i −0.515187 0.857078i \(-0.672278\pi\)
0.999845 + 0.0176267i \(0.00561104\pi\)
\(930\) −8.73188 0.917041i −0.286330 0.0300710i
\(931\) −16.3340 28.2913i −0.535325 0.927209i
\(932\) −2.34971 4.06982i −0.0769674 0.133311i
\(933\) 4.50564 + 0.473191i 0.147508 + 0.0154916i
\(934\) −3.32858 + 5.76527i −0.108914 + 0.188645i
\(935\) 4.62820 0.151358
\(936\) 13.0841 14.5361i 0.427668 0.475129i
\(937\) −5.02273 −0.164085 −0.0820426 0.996629i \(-0.526144\pi\)
−0.0820426 + 0.996629i \(0.526144\pi\)
\(938\) 2.06653 3.57934i 0.0674747 0.116870i
\(939\) 18.7005 + 41.9928i 0.610267 + 1.37038i
\(940\) 0.573169 + 0.992759i 0.0186947 + 0.0323802i
\(941\) 6.09508 + 10.5570i 0.198694 + 0.344148i 0.948105 0.317957i \(-0.102997\pi\)
−0.749411 + 0.662105i \(0.769663\pi\)
\(942\) 16.3945 22.5690i 0.534162 0.735336i
\(943\) −7.46921 + 12.9370i −0.243231 + 0.421288i
\(944\) 14.9782 0.487499
\(945\) −1.68990 0.548626i −0.0549723 0.0178468i
\(946\) 7.87349 0.255989
\(947\) −10.6157 + 18.3870i −0.344965 + 0.597497i −0.985347 0.170559i \(-0.945443\pi\)
0.640382 + 0.768056i \(0.278776\pi\)
\(948\) 4.07865 5.61474i 0.132468 0.182358i
\(949\) 20.5462 + 35.5871i 0.666959 + 1.15521i
\(950\) 2.37306 + 4.11026i 0.0769923 + 0.133355i
\(951\) −0.733805 1.64779i −0.0237953 0.0534334i
\(952\) 0.791261 1.37050i 0.0256449 0.0444183i
\(953\) −60.5205 −1.96045 −0.980226 0.197879i \(-0.936595\pi\)
−0.980226 + 0.197879i \(0.936595\pi\)
\(954\) 1.15156 + 0.244576i 0.0372831 + 0.00791844i
\(955\) 24.8958 0.805609
\(956\) 5.58240 9.66901i 0.180548 0.312718i
\(957\) 15.6549 + 1.64411i 0.506050 + 0.0531465i
\(958\) 0.125108 + 0.216694i 0.00404207 + 0.00700107i
\(959\) −1.15413 1.99902i −0.0372689 0.0645516i
\(960\) 1.72258 + 0.180909i 0.0555959 + 0.00583880i
\(961\) 2.65221 4.59376i 0.0855551 0.148186i
\(962\) 58.8646 1.89787
\(963\) 12.9699 + 39.8953i 0.417951 + 1.28561i
\(964\) −15.8664 −0.511021
\(965\) 4.94115 8.55832i 0.159061 0.275502i
\(966\) 1.45762 + 3.27316i 0.0468982 + 0.105312i
\(967\) 6.54203 + 11.3311i 0.210378 + 0.364385i 0.951833 0.306618i \(-0.0991973\pi\)
−0.741455 + 0.671002i \(0.765864\pi\)
\(968\) −0.500000 0.866025i −0.0160706 0.0278351i
\(969\) 22.3605 30.7819i 0.718323 0.988856i
\(970\) −9.65280 + 16.7191i −0.309933 + 0.536819i
\(971\) −44.1202 −1.41588 −0.707942 0.706271i \(-0.750376\pi\)
−0.707942 + 0.706271i \(0.750376\pi\)
\(972\) −13.4968 + 7.79971i −0.432911 + 0.250176i
\(973\) 2.24991 0.0721288
\(974\) −4.19571 + 7.26718i −0.134439 + 0.232856i
\(975\) 6.63623 9.13555i 0.212530 0.292572i
\(976\) −5.54512 9.60443i −0.177495 0.307430i
\(977\) 5.96736 + 10.3358i 0.190913 + 0.330671i 0.945553 0.325468i \(-0.105522\pi\)
−0.754640 + 0.656139i \(0.772189\pi\)
\(978\) −10.2580 23.0348i −0.328014 0.736571i
\(979\) −0.411690 + 0.713068i −0.0131577 + 0.0227898i
\(980\) −6.88308 −0.219872
\(981\) 10.6226 + 32.6748i 0.339152 + 1.04323i
\(982\) 18.5082 0.590620
\(983\) 23.6319 40.9317i 0.753741 1.30552i −0.192257 0.981345i \(-0.561581\pi\)
0.945998 0.324173i \(-0.105086\pi\)
\(984\) 4.25333 + 0.446694i 0.135591 + 0.0142401i
\(985\) −12.7614 22.1033i −0.406611 0.704271i
\(986\) −21.0307 36.4262i −0.669753 1.16005i
\(987\) 0.675195 + 0.0709104i 0.0214917 + 0.00225710i
\(988\) −15.4703 + 26.7954i −0.492177 + 0.852476i
\(989\) 47.6345 1.51469
\(990\) 2.93454 + 0.623258i 0.0932659 + 0.0198085i
\(991\) −17.3542 −0.551274 −0.275637 0.961262i \(-0.588889\pi\)
−0.275637 + 0.961262i \(0.588889\pi\)
\(992\) 2.53454 4.38995i 0.0804717 0.139381i
\(993\) −9.45374 21.2288i −0.300005 0.673676i
\(994\) 0.145439 + 0.251907i 0.00461304 + 0.00799002i
\(995\) −2.51654 4.35878i −0.0797798 0.138183i
\(996\) 2.03512 2.80158i 0.0644853 0.0887715i
\(997\) −4.99850 + 8.65766i −0.158304 + 0.274191i −0.934257 0.356600i \(-0.883936\pi\)
0.775953 + 0.630791i \(0.217269\pi\)
\(998\) 3.21163 0.101662
\(999\) −44.6258 14.4878i −1.41190 0.458373i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.i.j.331.3 14
3.2 odd 2 2970.2.i.k.991.5 14
9.2 odd 6 8910.2.a.ca.1.3 7
9.4 even 3 inner 990.2.i.j.661.3 yes 14
9.5 odd 6 2970.2.i.k.1981.5 14
9.7 even 3 8910.2.a.cd.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.i.j.331.3 14 1.1 even 1 trivial
990.2.i.j.661.3 yes 14 9.4 even 3 inner
2970.2.i.k.991.5 14 3.2 odd 2
2970.2.i.k.1981.5 14 9.5 odd 6
8910.2.a.ca.1.3 7 9.2 odd 6
8910.2.a.cd.1.3 7 9.7 even 3