Properties

Label 99.6
Level 99
Weight 6
Dimension 1362
Nonzero newspaces 8
Newform subspaces 21
Sturm bound 4320
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 21 \)
Sturm bound: \(4320\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(99))\).

Total New Old
Modular forms 1880 1442 438
Cusp forms 1720 1362 358
Eisenstein series 160 80 80

Trace form

\( 1362 q - 33 q^{2} + 4 q^{3} + 75 q^{4} - 159 q^{5} - 362 q^{6} + 304 q^{7} + 1981 q^{8} + 808 q^{9} - 1098 q^{10} - 1468 q^{11} - 5488 q^{12} - 422 q^{13} - 2814 q^{14} + 4084 q^{15} + 10975 q^{16} + 12216 q^{17}+ \cdots - 1554516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(99))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
99.6.a \(\chi_{99}(1, \cdot)\) 99.6.a.a 1 1
99.6.a.b 1
99.6.a.c 1
99.6.a.d 2
99.6.a.e 2
99.6.a.f 2
99.6.a.g 3
99.6.a.h 5
99.6.a.i 5
99.6.d \(\chi_{99}(98, \cdot)\) 99.6.d.a 20 1
99.6.e \(\chi_{99}(34, \cdot)\) 99.6.e.a 46 2
99.6.e.b 54
99.6.f \(\chi_{99}(37, \cdot)\) 99.6.f.a 16 4
99.6.f.b 20
99.6.f.c 20
99.6.f.d 40
99.6.g \(\chi_{99}(32, \cdot)\) 99.6.g.a 4 2
99.6.g.b 112
99.6.j \(\chi_{99}(8, \cdot)\) 99.6.j.a 80 4
99.6.m \(\chi_{99}(4, \cdot)\) 99.6.m.a 464 8
99.6.p \(\chi_{99}(2, \cdot)\) 99.6.p.a 464 8

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(99))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(99)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)