Properties

Label 99.12.f.a.91.7
Level $99$
Weight $12$
Character 99.91
Analytic conductor $76.066$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,12,Mod(37,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.37"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(76.0659748754\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.7
Character \(\chi\) \(=\) 99.91
Dual form 99.12.f.a.37.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(32.2868 - 23.4578i) q^{2} +(-140.693 + 433.009i) q^{4} +(5225.04 + 3796.22i) q^{5} +(-10421.9 + 32075.4i) q^{7} +(30871.8 + 95013.6i) q^{8} +257751. q^{10} +(-534118. + 5398.75i) q^{11} +(1.51212e6 - 1.09862e6i) q^{13} +(415926. + 1.28009e6i) q^{14} +(2.47120e6 + 1.79543e6i) q^{16} +(7.07508e6 + 5.14035e6i) q^{17} +(1.12278e6 + 3.45556e6i) q^{19} +(-2.37892e6 + 1.72839e6i) q^{20} +(-1.71184e7 + 1.27035e7i) q^{22} -3.57846e6 q^{23} +(-2.19890e6 - 6.76752e6i) q^{25} +(2.30504e7 - 7.09417e7i) q^{26} +(-1.24227e7 - 9.02559e6i) q^{28} +(-4.87068e7 + 1.49904e8i) q^{29} +(-7.75532e7 + 5.63457e7i) q^{31} -8.26977e7 q^{32} +3.49013e8 q^{34} +(-1.76220e8 + 1.28032e8i) q^{35} +(1.22645e8 - 3.77462e8i) q^{37} +(1.17311e8 + 8.52313e7i) q^{38} +(-1.99386e8 + 6.13646e8i) q^{40} +(-1.29621e8 - 3.98933e8i) q^{41} -1.37574e9 q^{43} +(7.28091e7 - 2.32038e8i) q^{44} +(-1.15537e8 + 8.39426e7i) q^{46} +(-1.45109e7 - 4.46598e7i) q^{47} +(6.79475e8 + 4.93667e8i) q^{49} +(-2.29746e8 - 1.66921e8i) q^{50} +(2.62967e8 + 8.09328e8i) q^{52} +(-3.26331e9 + 2.37093e9i) q^{53} +(-2.81129e9 - 1.99942e9i) q^{55} -3.36935e9 q^{56} +(1.94383e9 + 5.98248e9i) q^{58} +(-3.07095e9 + 9.45140e9i) q^{59} +(-3.60357e9 - 2.61815e9i) q^{61} +(-1.18220e9 + 3.63845e9i) q^{62} +(-7.73107e9 + 5.61695e9i) q^{64} +1.20715e10 q^{65} +1.31058e10 q^{67} +(-3.22123e9 + 2.34036e9i) q^{68} +(-2.68626e9 + 8.26747e9i) q^{70} +(-2.21873e9 - 1.61200e9i) q^{71} +(-1.15544e9 + 3.55607e9i) q^{73} +(-4.89460e9 - 1.50640e10i) q^{74} -1.65426e9 q^{76} +(5.39338e9 - 1.71883e10i) q^{77} +(-1.17002e10 + 8.50068e9i) q^{79} +(6.09628e9 + 1.87624e10i) q^{80} +(-1.35431e10 - 9.83966e9i) q^{82} +(9.56204e9 + 6.94723e9i) q^{83} +(1.74537e10 + 5.37171e10i) q^{85} +(-4.44183e10 + 3.22718e10i) q^{86} +(-1.70022e10 - 5.05819e10i) q^{88} -3.19799e10 q^{89} +(1.94794e10 + 5.99515e10i) q^{91} +(5.03464e8 - 1.54950e9i) q^{92} +(-1.51613e9 - 1.10153e9i) q^{94} +(-7.25149e9 + 2.23178e10i) q^{95} +(2.68932e10 - 1.95390e10i) q^{97} +3.35184e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 11 q^{2} - 6137 q^{4} - 6038 q^{5} + 55440 q^{7} + 347809 q^{8} + 782320 q^{10} + 288860 q^{11} - 794178 q^{13} - 9181256 q^{14} - 10033697 q^{16} - 11803154 q^{17} - 33326568 q^{19} - 34173582 q^{20}+ \cdots - 1187521497580 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.2868 23.4578i 0.713445 0.518348i −0.170838 0.985299i \(-0.554647\pi\)
0.884283 + 0.466951i \(0.154647\pi\)
\(3\) 0 0
\(4\) −140.693 + 433.009i −0.0686979 + 0.211430i
\(5\) 5225.04 + 3796.22i 0.747747 + 0.543270i 0.895128 0.445810i \(-0.147084\pi\)
−0.147380 + 0.989080i \(0.547084\pi\)
\(6\) 0 0
\(7\) −10421.9 + 32075.4i −0.234374 + 0.721329i 0.762830 + 0.646599i \(0.223809\pi\)
−0.997204 + 0.0747296i \(0.976191\pi\)
\(8\) 30871.8 + 95013.6i 0.333094 + 1.02516i
\(9\) 0 0
\(10\) 257751. 0.815080
\(11\) −534118. + 5398.75i −0.999949 + 0.0101073i
\(12\) 0 0
\(13\) 1.51212e6 1.09862e6i 1.12953 0.820649i 0.143901 0.989592i \(-0.454035\pi\)
0.985626 + 0.168943i \(0.0540353\pi\)
\(14\) 415926. + 1.28009e6i 0.206687 + 0.636116i
\(15\) 0 0
\(16\) 2.47120e6 + 1.79543e6i 0.589180 + 0.428065i
\(17\) 7.07508e6 + 5.14035e6i 1.20854 + 0.878058i 0.995098 0.0988967i \(-0.0315313\pi\)
0.213446 + 0.976955i \(0.431531\pi\)
\(18\) 0 0
\(19\) 1.12278e6 + 3.45556e6i 0.104028 + 0.320165i 0.989501 0.144525i \(-0.0461656\pi\)
−0.885473 + 0.464691i \(0.846166\pi\)
\(20\) −2.37892e6 + 1.72839e6i −0.166232 + 0.120775i
\(21\) 0 0
\(22\) −1.71184e7 + 1.27035e7i −0.708170 + 0.525533i
\(23\) −3.57846e6 −0.115929 −0.0579646 0.998319i \(-0.518461\pi\)
−0.0579646 + 0.998319i \(0.518461\pi\)
\(24\) 0 0
\(25\) −2.19890e6 6.76752e6i −0.0450335 0.138599i
\(26\) 2.30504e7 7.09417e7i 0.380473 1.17098i
\(27\) 0 0
\(28\) −1.24227e7 9.02559e6i −0.136410 0.0991075i
\(29\) −4.87068e7 + 1.49904e8i −0.440961 + 1.35714i 0.445892 + 0.895087i \(0.352887\pi\)
−0.886853 + 0.462052i \(0.847113\pi\)
\(30\) 0 0
\(31\) −7.75532e7 + 5.63457e7i −0.486531 + 0.353486i −0.803849 0.594834i \(-0.797218\pi\)
0.317318 + 0.948319i \(0.397218\pi\)
\(32\) −8.26977e7 −0.435681
\(33\) 0 0
\(34\) 3.49013e8 1.31737
\(35\) −1.76220e8 + 1.28032e8i −0.567129 + 0.412043i
\(36\) 0 0
\(37\) 1.22645e8 3.77462e8i 0.290763 0.894877i −0.693849 0.720121i \(-0.744086\pi\)
0.984612 0.174756i \(-0.0559137\pi\)
\(38\) 1.17311e8 + 8.52313e7i 0.240175 + 0.174498i
\(39\) 0 0
\(40\) −1.99386e8 + 6.13646e8i −0.307868 + 0.947520i
\(41\) −1.29621e8 3.98933e8i −0.174729 0.537760i 0.824892 0.565290i \(-0.191236\pi\)
−0.999621 + 0.0275300i \(0.991236\pi\)
\(42\) 0 0
\(43\) −1.37574e9 −1.42712 −0.713559 0.700595i \(-0.752918\pi\)
−0.713559 + 0.700595i \(0.752918\pi\)
\(44\) 7.28091e7 2.32038e8i 0.0665574 0.212114i
\(45\) 0 0
\(46\) −1.15537e8 + 8.39426e7i −0.0827091 + 0.0600917i
\(47\) −1.45109e7 4.46598e7i −0.00922901 0.0284040i 0.946336 0.323185i \(-0.104753\pi\)
−0.955565 + 0.294781i \(0.904753\pi\)
\(48\) 0 0
\(49\) 6.79475e8 + 4.93667e8i 0.343633 + 0.249664i
\(50\) −2.29746e8 1.66921e8i −0.103971 0.0755396i
\(51\) 0 0
\(52\) 2.62967e8 + 8.09328e8i 0.0959140 + 0.295193i
\(53\) −3.26331e9 + 2.37093e9i −1.07187 + 0.778757i −0.976247 0.216660i \(-0.930484\pi\)
−0.0956206 + 0.995418i \(0.530484\pi\)
\(54\) 0 0
\(55\) −2.81129e9 1.99942e9i −0.753200 0.535685i
\(56\) −3.36935e9 −0.817545
\(57\) 0 0
\(58\) 1.94383e9 + 5.98248e9i 0.388869 + 1.19682i
\(59\) −3.07095e9 + 9.45140e9i −0.559224 + 1.72112i 0.125294 + 0.992120i \(0.460013\pi\)
−0.684518 + 0.728996i \(0.739987\pi\)
\(60\) 0 0
\(61\) −3.60357e9 2.61815e9i −0.546284 0.396899i 0.280129 0.959962i \(-0.409623\pi\)
−0.826414 + 0.563063i \(0.809623\pi\)
\(62\) −1.18220e9 + 3.63845e9i −0.163885 + 0.504385i
\(63\) 0 0
\(64\) −7.73107e9 + 5.61695e9i −0.900015 + 0.653899i
\(65\) 1.20715e10 1.29044
\(66\) 0 0
\(67\) 1.31058e10 1.18591 0.592954 0.805237i \(-0.297962\pi\)
0.592954 + 0.805237i \(0.297962\pi\)
\(68\) −3.22123e9 + 2.34036e9i −0.268672 + 0.195202i
\(69\) 0 0
\(70\) −2.68626e9 + 8.26747e9i −0.191033 + 0.587941i
\(71\) −2.21873e9 1.61200e9i −0.145943 0.106034i 0.512418 0.858736i \(-0.328750\pi\)
−0.658361 + 0.752702i \(0.728750\pi\)
\(72\) 0 0
\(73\) −1.15544e9 + 3.55607e9i −0.0652335 + 0.200768i −0.978361 0.206907i \(-0.933660\pi\)
0.913127 + 0.407675i \(0.133660\pi\)
\(74\) −4.89460e9 1.50640e10i −0.256414 0.789162i
\(75\) 0 0
\(76\) −1.65426e9 −0.0748391
\(77\) 5.39338e9 1.71883e10i 0.227071 0.723661i
\(78\) 0 0
\(79\) −1.17002e10 + 8.50068e9i −0.427803 + 0.310817i −0.780770 0.624819i \(-0.785173\pi\)
0.352967 + 0.935636i \(0.385173\pi\)
\(80\) 6.09628e9 + 1.87624e10i 0.208003 + 0.640168i
\(81\) 0 0
\(82\) −1.35431e10 9.83966e9i −0.403407 0.293092i
\(83\) 9.56204e9 + 6.94723e9i 0.266453 + 0.193590i 0.712987 0.701177i \(-0.247342\pi\)
−0.446534 + 0.894767i \(0.647342\pi\)
\(84\) 0 0
\(85\) 1.74537e10 + 5.37171e10i 0.426662 + 1.31313i
\(86\) −4.44183e10 + 3.22718e10i −1.01817 + 0.739744i
\(87\) 0 0
\(88\) −1.70022e10 5.05819e10i −0.343439 1.02174i
\(89\) −3.19799e10 −0.607061 −0.303531 0.952822i \(-0.598166\pi\)
−0.303531 + 0.952822i \(0.598166\pi\)
\(90\) 0 0
\(91\) 1.94794e10 + 5.99515e10i 0.327226 + 1.00710i
\(92\) 5.03464e8 1.54950e9i 0.00796408 0.0245109i
\(93\) 0 0
\(94\) −1.51613e9 1.10153e9i −0.0213075 0.0154808i
\(95\) −7.25149e9 + 2.23178e10i −0.0961496 + 0.295918i
\(96\) 0 0
\(97\) 2.68932e10 1.95390e10i 0.317978 0.231025i −0.417334 0.908753i \(-0.637036\pi\)
0.735312 + 0.677728i \(0.237036\pi\)
\(98\) 3.35184e10 0.374576
\(99\) 0 0
\(100\) 3.23977e9 0.0323977
\(101\) 1.58750e11 1.15339e11i 1.50295 1.09196i 0.533769 0.845630i \(-0.320775\pi\)
0.969186 0.246330i \(-0.0792247\pi\)
\(102\) 0 0
\(103\) −4.74085e10 + 1.45908e11i −0.402950 + 1.24015i 0.519644 + 0.854383i \(0.326065\pi\)
−0.922595 + 0.385771i \(0.873935\pi\)
\(104\) 1.51065e11 + 1.09755e11i 1.21753 + 0.884591i
\(105\) 0 0
\(106\) −4.97452e10 + 1.53100e11i −0.361051 + 1.11120i
\(107\) −7.50123e9 2.30864e10i −0.0517037 0.159128i 0.921871 0.387498i \(-0.126660\pi\)
−0.973574 + 0.228370i \(0.926660\pi\)
\(108\) 0 0
\(109\) −2.78393e10 −0.173305 −0.0866526 0.996239i \(-0.527617\pi\)
−0.0866526 + 0.996239i \(0.527617\pi\)
\(110\) −1.37670e11 + 1.39153e9i −0.815038 + 0.00823823i
\(111\) 0 0
\(112\) −8.33440e10 + 6.05530e10i −0.446864 + 0.324666i
\(113\) 7.24263e10 + 2.22905e11i 0.369798 + 1.13812i 0.946921 + 0.321465i \(0.104175\pi\)
−0.577123 + 0.816657i \(0.695825\pi\)
\(114\) 0 0
\(115\) −1.86976e10 1.35846e10i −0.0866857 0.0629808i
\(116\) −5.80571e10 4.21809e10i −0.256647 0.186465i
\(117\) 0 0
\(118\) 1.22558e11 + 3.77193e11i 0.493161 + 1.51779i
\(119\) −2.38615e11 + 1.73364e11i −0.916620 + 0.665963i
\(120\) 0 0
\(121\) 2.85253e11 5.76715e9i 0.999796 0.0202135i
\(122\) −1.77764e11 −0.595476
\(123\) 0 0
\(124\) −1.34870e10 4.15087e10i −0.0413139 0.127151i
\(125\) 1.11652e11 3.43630e11i 0.327237 1.00713i
\(126\) 0 0
\(127\) −5.22299e11 3.79472e11i −1.40281 1.01920i −0.994319 0.106437i \(-0.966056\pi\)
−0.408489 0.912763i \(-0.633944\pi\)
\(128\) −6.55141e10 + 2.01632e11i −0.168531 + 0.518685i
\(129\) 0 0
\(130\) 3.89749e11 2.83169e11i 0.920655 0.668895i
\(131\) −4.54488e11 −1.02927 −0.514636 0.857409i \(-0.672073\pi\)
−0.514636 + 0.857409i \(0.672073\pi\)
\(132\) 0 0
\(133\) −1.22540e11 −0.255326
\(134\) 4.23144e11 3.07432e11i 0.846080 0.614713i
\(135\) 0 0
\(136\) −2.69983e11 + 8.30921e11i −0.497590 + 1.53142i
\(137\) 6.88994e11 + 5.00583e11i 1.21970 + 0.886162i 0.996075 0.0885140i \(-0.0282118\pi\)
0.223622 + 0.974676i \(0.428212\pi\)
\(138\) 0 0
\(139\) −1.32242e11 + 4.07001e11i −0.216167 + 0.665294i 0.782902 + 0.622146i \(0.213739\pi\)
−0.999069 + 0.0431484i \(0.986261\pi\)
\(140\) −3.06458e10 9.43182e10i −0.0481579 0.148215i
\(141\) 0 0
\(142\) −1.09450e11 −0.159085
\(143\) −8.01718e11 + 5.94955e11i −1.12117 + 0.832024i
\(144\) 0 0
\(145\) −8.23563e11 + 5.98353e11i −1.06702 + 0.775236i
\(146\) 4.61121e10 + 1.41918e11i 0.0575273 + 0.177051i
\(147\) 0 0
\(148\) 1.46189e11 + 1.06213e11i 0.169229 + 0.122952i
\(149\) −4.34949e10 3.16009e10i −0.0485192 0.0352513i 0.563261 0.826279i \(-0.309546\pi\)
−0.611781 + 0.791028i \(0.709546\pi\)
\(150\) 0 0
\(151\) 3.39345e11 + 1.04440e12i 0.351777 + 1.08266i 0.957855 + 0.287253i \(0.0927422\pi\)
−0.606077 + 0.795406i \(0.707258\pi\)
\(152\) −2.93663e11 + 2.13359e11i −0.293569 + 0.213290i
\(153\) 0 0
\(154\) −2.29065e11 6.81474e11i −0.213105 0.633994i
\(155\) −6.19120e11 −0.555840
\(156\) 0 0
\(157\) −5.82806e10 1.79369e11i −0.0487614 0.150072i 0.923711 0.383090i \(-0.125140\pi\)
−0.972473 + 0.233018i \(0.925140\pi\)
\(158\) −1.78355e11 + 5.48920e11i −0.144102 + 0.443501i
\(159\) 0 0
\(160\) −4.32099e11 3.13938e11i −0.325779 0.236693i
\(161\) 3.72944e10 1.14780e11i 0.0271708 0.0836230i
\(162\) 0 0
\(163\) 1.41616e12 1.02890e12i 0.964010 0.700394i 0.00993162 0.999951i \(-0.496839\pi\)
0.954079 + 0.299556i \(0.0968386\pi\)
\(164\) 1.90978e11 0.125702
\(165\) 0 0
\(166\) 4.71695e11 0.290447
\(167\) −9.71654e11 + 7.05948e11i −0.578856 + 0.420564i −0.838312 0.545191i \(-0.816457\pi\)
0.259455 + 0.965755i \(0.416457\pi\)
\(168\) 0 0
\(169\) 5.25728e11 1.61803e12i 0.293349 0.902835i
\(170\) 1.82361e12 + 1.32493e12i 0.985060 + 0.715688i
\(171\) 0 0
\(172\) 1.93557e11 5.95708e11i 0.0980399 0.301736i
\(173\) −8.03234e11 2.47210e12i −0.394084 1.21287i −0.929673 0.368386i \(-0.879910\pi\)
0.535589 0.844479i \(-0.320090\pi\)
\(174\) 0 0
\(175\) 2.39988e11 0.110530
\(176\) −1.32961e12 9.45632e11i −0.593477 0.422088i
\(177\) 0 0
\(178\) −1.03253e12 + 7.50178e11i −0.433105 + 0.314669i
\(179\) −5.26435e11 1.62020e12i −0.214118 0.658988i −0.999215 0.0396147i \(-0.987387\pi\)
0.785097 0.619373i \(-0.212613\pi\)
\(180\) 0 0
\(181\) 1.32508e12 + 9.62724e11i 0.507001 + 0.368357i 0.811685 0.584096i \(-0.198551\pi\)
−0.304684 + 0.952453i \(0.598551\pi\)
\(182\) 2.03526e12 + 1.47870e12i 0.755486 + 0.548893i
\(183\) 0 0
\(184\) −1.10473e11 3.40002e11i −0.0386153 0.118846i
\(185\) 2.07375e12 1.50667e12i 0.703577 0.511179i
\(186\) 0 0
\(187\) −3.80668e12 2.70736e12i −1.21736 0.865798i
\(188\) 2.13797e10 0.00663947
\(189\) 0 0
\(190\) 2.89398e11 + 8.90675e11i 0.0847911 + 0.260960i
\(191\) 1.35230e12 4.16195e12i 0.384937 1.18471i −0.551589 0.834116i \(-0.685978\pi\)
0.936526 0.350598i \(-0.114022\pi\)
\(192\) 0 0
\(193\) −3.07992e12 2.23769e12i −0.827893 0.601500i 0.0910691 0.995845i \(-0.470972\pi\)
−0.918963 + 0.394345i \(0.870972\pi\)
\(194\) 4.09953e11 1.26171e12i 0.107109 0.329647i
\(195\) 0 0
\(196\) −3.09360e11 + 2.24763e11i −0.0763934 + 0.0555030i
\(197\) 4.63372e12 1.11267 0.556334 0.830959i \(-0.312208\pi\)
0.556334 + 0.830959i \(0.312208\pi\)
\(198\) 0 0
\(199\) 7.75820e12 1.76226 0.881128 0.472878i \(-0.156785\pi\)
0.881128 + 0.472878i \(0.156785\pi\)
\(200\) 5.75123e11 4.17851e11i 0.127085 0.0923329i
\(201\) 0 0
\(202\) 2.41995e12 7.44784e12i 0.506260 1.55811i
\(203\) −4.30062e12 3.12458e12i −0.875593 0.636156i
\(204\) 0 0
\(205\) 8.37160e11 2.57651e12i 0.161496 0.497034i
\(206\) 1.89201e12 + 5.82302e12i 0.355349 + 1.09365i
\(207\) 0 0
\(208\) 5.70924e12 1.01679
\(209\) −6.18354e11 1.83962e12i −0.107259 0.319097i
\(210\) 0 0
\(211\) 4.42269e12 3.21327e12i 0.728003 0.528925i −0.160928 0.986966i \(-0.551449\pi\)
0.888931 + 0.458041i \(0.151449\pi\)
\(212\) −5.67510e11 1.74662e12i −0.0910179 0.280124i
\(213\) 0 0
\(214\) −7.83747e11 5.69426e11i −0.119371 0.0867284i
\(215\) −7.18830e12 5.22261e12i −1.06712 0.775311i
\(216\) 0 0
\(217\) −9.99058e11 3.07478e12i −0.140949 0.433797i
\(218\) −8.98842e11 + 6.53047e11i −0.123644 + 0.0898325i
\(219\) 0 0
\(220\) 1.26130e12 9.36008e11i 0.165003 0.122449i
\(221\) 1.63456e13 2.08566
\(222\) 0 0
\(223\) −2.89041e12 8.89576e12i −0.350980 1.08021i −0.958304 0.285751i \(-0.907757\pi\)
0.607324 0.794454i \(-0.292243\pi\)
\(224\) 8.61870e11 2.65256e12i 0.102112 0.314269i
\(225\) 0 0
\(226\) 7.56728e12 + 5.49795e12i 0.853775 + 0.620304i
\(227\) −1.03461e12 + 3.18421e12i −0.113929 + 0.350639i −0.991722 0.128402i \(-0.959015\pi\)
0.877793 + 0.479041i \(0.159015\pi\)
\(228\) 0 0
\(229\) −1.17357e13 + 8.52647e12i −1.23144 + 0.894693i −0.996997 0.0774368i \(-0.975326\pi\)
−0.234442 + 0.972130i \(0.575326\pi\)
\(230\) −9.22350e11 −0.0944915
\(231\) 0 0
\(232\) −1.57466e13 −1.53816
\(233\) −3.64575e12 + 2.64879e12i −0.347800 + 0.252691i −0.747945 0.663760i \(-0.768960\pi\)
0.400146 + 0.916452i \(0.368960\pi\)
\(234\) 0 0
\(235\) 9.37185e10 2.88436e11i 0.00853006 0.0262528i
\(236\) −3.66048e12 2.65950e12i −0.325478 0.236474i
\(237\) 0 0
\(238\) −3.63739e12 + 1.11947e13i −0.308757 + 0.950257i
\(239\) 4.98185e12 + 1.53326e13i 0.413240 + 1.27182i 0.913816 + 0.406129i \(0.133122\pi\)
−0.500576 + 0.865693i \(0.666878\pi\)
\(240\) 0 0
\(241\) 1.21575e13 0.963276 0.481638 0.876370i \(-0.340042\pi\)
0.481638 + 0.876370i \(0.340042\pi\)
\(242\) 9.07465e12 6.87761e12i 0.702822 0.532664i
\(243\) 0 0
\(244\) 1.64068e12 1.19202e12i 0.121445 0.0882350i
\(245\) 1.67622e12 + 5.15887e12i 0.121316 + 0.373371i
\(246\) 0 0
\(247\) 5.49411e12 + 3.99171e12i 0.380246 + 0.276265i
\(248\) −7.74782e12 5.62912e12i −0.524439 0.381027i
\(249\) 0 0
\(250\) −4.45590e12 1.37139e13i −0.288579 0.888156i
\(251\) 1.19796e10 8.70367e9i 0.000758989 0.000551438i −0.587406 0.809293i \(-0.699851\pi\)
0.588165 + 0.808741i \(0.299851\pi\)
\(252\) 0 0
\(253\) 1.91132e12 1.93192e10i 0.115923 0.00117173i
\(254\) −2.57649e13 −1.52913
\(255\) 0 0
\(256\) −3.43317e12 1.05662e13i −0.195153 0.600620i
\(257\) 1.65034e12 5.07922e12i 0.0918208 0.282595i −0.894591 0.446885i \(-0.852533\pi\)
0.986412 + 0.164290i \(0.0525333\pi\)
\(258\) 0 0
\(259\) 1.08290e13 + 7.86776e12i 0.577353 + 0.419472i
\(260\) −1.69837e12 + 5.22705e12i −0.0886501 + 0.272837i
\(261\) 0 0
\(262\) −1.46740e13 + 1.06613e13i −0.734330 + 0.533522i
\(263\) −7.78786e12 −0.381646 −0.190823 0.981624i \(-0.561116\pi\)
−0.190823 + 0.981624i \(0.561116\pi\)
\(264\) 0 0
\(265\) −2.60515e13 −1.22456
\(266\) −3.95644e12 + 2.87452e12i −0.182161 + 0.132348i
\(267\) 0 0
\(268\) −1.84389e12 + 5.67491e12i −0.0814693 + 0.250737i
\(269\) −3.45430e13 2.50969e13i −1.49528 1.08638i −0.972215 0.234089i \(-0.924789\pi\)
−0.523063 0.852294i \(-0.675211\pi\)
\(270\) 0 0
\(271\) 3.04802e12 9.38084e12i 0.126674 0.389862i −0.867529 0.497387i \(-0.834293\pi\)
0.994202 + 0.107526i \(0.0342928\pi\)
\(272\) 8.25480e12 + 2.54057e13i 0.336184 + 1.03467i
\(273\) 0 0
\(274\) 3.39880e13 1.32953
\(275\) 1.21101e12 + 3.60279e12i 0.0464320 + 0.138137i
\(276\) 0 0
\(277\) 3.76426e12 2.73490e12i 0.138689 0.100763i −0.516278 0.856421i \(-0.672683\pi\)
0.654966 + 0.755658i \(0.272683\pi\)
\(278\) 5.27763e12 + 1.62429e13i 0.190631 + 0.586701i
\(279\) 0 0
\(280\) −1.76050e13 1.27908e13i −0.611317 0.444148i
\(281\) 1.50837e13 + 1.09589e13i 0.513597 + 0.373150i 0.814186 0.580604i \(-0.197183\pi\)
−0.300590 + 0.953754i \(0.597183\pi\)
\(282\) 0 0
\(283\) 1.56903e13 + 4.82898e13i 0.513814 + 1.58136i 0.785429 + 0.618951i \(0.212442\pi\)
−0.271615 + 0.962406i \(0.587558\pi\)
\(284\) 1.01017e12 7.33932e11i 0.0324447 0.0235725i
\(285\) 0 0
\(286\) −1.19286e13 + 3.80157e13i −0.368619 + 1.17476i
\(287\) 1.41469e13 0.428854
\(288\) 0 0
\(289\) 1.30430e13 + 4.01422e13i 0.380574 + 1.17129i
\(290\) −1.25542e13 + 3.86379e13i −0.359419 + 1.10618i
\(291\) 0 0
\(292\) −1.37725e12 1.00063e12i −0.0379671 0.0275847i
\(293\) 2.52620e12 7.77484e12i 0.0683432 0.210339i −0.911052 0.412291i \(-0.864729\pi\)
0.979395 + 0.201952i \(0.0647286\pi\)
\(294\) 0 0
\(295\) −5.19254e13 + 3.77260e13i −1.35319 + 0.983150i
\(296\) 3.96503e13 1.01424
\(297\) 0 0
\(298\) −2.14560e12 −0.0528883
\(299\) −5.41104e12 + 3.93135e12i −0.130945 + 0.0951372i
\(300\) 0 0
\(301\) 1.43379e13 4.41274e13i 0.334479 1.02942i
\(302\) 3.54555e13 + 2.57600e13i 0.812168 + 0.590075i
\(303\) 0 0
\(304\) −3.42961e12 + 1.05553e13i −0.0757601 + 0.233166i
\(305\) −8.88976e12 2.73599e13i −0.192859 0.593560i
\(306\) 0 0
\(307\) −5.89564e13 −1.23387 −0.616936 0.787014i \(-0.711626\pi\)
−0.616936 + 0.787014i \(0.711626\pi\)
\(308\) 6.68390e12 + 4.75367e12i 0.137404 + 0.0977237i
\(309\) 0 0
\(310\) −1.99894e13 + 1.45232e13i −0.396562 + 0.288119i
\(311\) −7.17564e12 2.20843e13i −0.139855 0.430430i 0.856458 0.516216i \(-0.172660\pi\)
−0.996314 + 0.0857862i \(0.972660\pi\)
\(312\) 0 0
\(313\) 6.36764e13 + 4.62636e13i 1.19808 + 0.870454i 0.994094 0.108521i \(-0.0346114\pi\)
0.203982 + 0.978975i \(0.434611\pi\)
\(314\) −6.08930e12 4.42414e12i −0.112578 0.0817929i
\(315\) 0 0
\(316\) −2.03474e12 6.26227e12i −0.0363269 0.111803i
\(317\) −3.55309e13 + 2.58147e13i −0.623419 + 0.452941i −0.854114 0.520085i \(-0.825900\pi\)
0.230695 + 0.973026i \(0.425900\pi\)
\(318\) 0 0
\(319\) 2.52059e13 8.03294e13i 0.427222 1.36153i
\(320\) −6.17183e13 −1.02823
\(321\) 0 0
\(322\) −1.48837e12 4.58074e12i −0.0239610 0.0737443i
\(323\) −9.81903e12 + 3.02199e13i −0.155401 + 0.478276i
\(324\) 0 0
\(325\) −1.07599e13 7.81752e12i −0.164608 0.119594i
\(326\) 2.15877e13 6.64401e13i 0.324720 0.999386i
\(327\) 0 0
\(328\) 3.39024e13 2.46316e13i 0.493088 0.358250i
\(329\) 1.58372e12 0.0226516
\(330\) 0 0
\(331\) 8.95166e13 1.23837 0.619184 0.785246i \(-0.287464\pi\)
0.619184 + 0.785246i \(0.287464\pi\)
\(332\) −4.35353e12 + 3.16302e12i −0.0592355 + 0.0430371i
\(333\) 0 0
\(334\) −1.48117e13 + 4.55856e13i −0.194984 + 0.600099i
\(335\) 6.84782e13 + 4.97523e13i 0.886759 + 0.644268i
\(336\) 0 0
\(337\) 3.88505e12 1.19570e13i 0.0486892 0.149850i −0.923756 0.382981i \(-0.874897\pi\)
0.972445 + 0.233132i \(0.0748973\pi\)
\(338\) −2.09811e13 6.45733e13i −0.258695 0.796180i
\(339\) 0 0
\(340\) −2.57156e13 −0.306946
\(341\) 4.11184e13 3.05140e13i 0.482933 0.358385i
\(342\) 0 0
\(343\) −7.68674e13 + 5.58474e13i −0.874227 + 0.635163i
\(344\) −4.24716e13 1.30714e14i −0.475365 1.46302i
\(345\) 0 0
\(346\) −8.39238e13 6.09742e13i −0.909844 0.661040i
\(347\) 1.33612e14 + 9.70746e13i 1.42571 + 1.03584i 0.990795 + 0.135373i \(0.0432234\pi\)
0.434920 + 0.900469i \(0.356777\pi\)
\(348\) 0 0
\(349\) 3.36625e13 + 1.03602e14i 0.348022 + 1.07110i 0.959946 + 0.280184i \(0.0903956\pi\)
−0.611925 + 0.790916i \(0.709604\pi\)
\(350\) 7.74845e12 5.62958e12i 0.0788571 0.0572930i
\(351\) 0 0
\(352\) 4.41704e13 4.46465e11i 0.435659 0.00440354i
\(353\) −6.04177e12 −0.0586683 −0.0293341 0.999570i \(-0.509339\pi\)
−0.0293341 + 0.999570i \(0.509339\pi\)
\(354\) 0 0
\(355\) −5.47345e12 1.68455e13i −0.0515235 0.158573i
\(356\) 4.49936e12 1.38476e13i 0.0417038 0.128351i
\(357\) 0 0
\(358\) −5.50032e13 3.99622e13i −0.494347 0.359164i
\(359\) −9.48959e12 + 2.92060e13i −0.0839901 + 0.258495i −0.984228 0.176903i \(-0.943392\pi\)
0.900238 + 0.435398i \(0.143392\pi\)
\(360\) 0 0
\(361\) 8.35623e13 6.07116e13i 0.717333 0.521173i
\(362\) 6.53658e13 0.552655
\(363\) 0 0
\(364\) −2.87002e13 −0.235411
\(365\) −1.95368e13 + 1.41943e13i −0.157850 + 0.114684i
\(366\) 0 0
\(367\) −4.34115e13 + 1.33607e14i −0.340363 + 1.04753i 0.623657 + 0.781698i \(0.285646\pi\)
−0.964020 + 0.265830i \(0.914354\pi\)
\(368\) −8.84308e12 6.42488e12i −0.0683032 0.0496251i
\(369\) 0 0
\(370\) 3.16118e13 9.72911e13i 0.236995 0.729396i
\(371\) −4.20387e13 1.29382e14i −0.310522 0.955689i
\(372\) 0 0
\(373\) 1.91339e14 1.37216 0.686079 0.727527i \(-0.259331\pi\)
0.686079 + 0.727527i \(0.259331\pi\)
\(374\) −1.86414e14 + 1.88424e12i −1.31730 + 0.0133150i
\(375\) 0 0
\(376\) 3.79532e12 2.75746e12i 0.0260444 0.0189224i
\(377\) 9.10367e13 + 2.80182e14i 0.615658 + 1.89480i
\(378\) 0 0
\(379\) −1.07821e14 7.83367e13i −0.708253 0.514576i 0.174357 0.984683i \(-0.444215\pi\)
−0.882610 + 0.470107i \(0.844215\pi\)
\(380\) −8.64357e12 6.27992e12i −0.0559607 0.0406578i
\(381\) 0 0
\(382\) −5.39686e13 1.66098e14i −0.339463 1.04476i
\(383\) −3.74400e13 + 2.72017e13i −0.232136 + 0.168657i −0.697773 0.716319i \(-0.745825\pi\)
0.465637 + 0.884976i \(0.345825\pi\)
\(384\) 0 0
\(385\) 9.34313e13 6.93354e13i 0.562935 0.417754i
\(386\) −1.51932e14 −0.902443
\(387\) 0 0
\(388\) 4.67689e12 + 1.43940e13i 0.0270012 + 0.0831011i
\(389\) 3.37260e13 1.03798e14i 0.191974 0.590835i −0.808025 0.589149i \(-0.799463\pi\)
0.999999 0.00168643i \(-0.000536807\pi\)
\(390\) 0 0
\(391\) −2.53179e13 1.83945e13i −0.140105 0.101793i
\(392\) −2.59285e13 + 7.97998e13i −0.141483 + 0.435440i
\(393\) 0 0
\(394\) 1.49608e14 1.08697e14i 0.793827 0.576749i
\(395\) −9.34043e13 −0.488746
\(396\) 0 0
\(397\) −4.54442e13 −0.231276 −0.115638 0.993291i \(-0.536891\pi\)
−0.115638 + 0.993291i \(0.536891\pi\)
\(398\) 2.50488e14 1.81990e14i 1.25727 0.913462i
\(399\) 0 0
\(400\) 6.71670e12 2.06719e13i 0.0327964 0.100937i
\(401\) −2.31901e13 1.68486e13i −0.111689 0.0811465i 0.530539 0.847661i \(-0.321990\pi\)
−0.642228 + 0.766514i \(0.721990\pi\)
\(402\) 0 0
\(403\) −5.53671e13 + 1.70403e14i −0.259462 + 0.798543i
\(404\) 2.76076e13 + 8.49675e13i 0.127624 + 0.392785i
\(405\) 0 0
\(406\) −2.12149e14 −0.954438
\(407\) −6.34690e13 + 2.02271e14i −0.281704 + 0.897770i
\(408\) 0 0
\(409\) 2.20000e14 1.59839e14i 0.950482 0.690566i −0.000438655 1.00000i \(-0.500140\pi\)
0.950921 + 0.309434i \(0.100140\pi\)
\(410\) −3.34100e13 1.02825e14i −0.142418 0.438318i
\(411\) 0 0
\(412\) −5.65096e13 4.10566e13i −0.234524 0.170392i
\(413\) −2.71152e14 1.97004e14i −1.11042 0.806769i
\(414\) 0 0
\(415\) 2.35889e13 + 7.25992e13i 0.0940683 + 0.289512i
\(416\) −1.25049e14 + 9.08531e13i −0.492113 + 0.357541i
\(417\) 0 0
\(418\) −6.31180e13 4.48903e13i −0.241927 0.172061i
\(419\) 2.90634e14 1.09944 0.549718 0.835351i \(-0.314735\pi\)
0.549718 + 0.835351i \(0.314735\pi\)
\(420\) 0 0
\(421\) 9.87384e13 + 3.03886e14i 0.363860 + 1.11985i 0.950692 + 0.310137i \(0.100375\pi\)
−0.586832 + 0.809709i \(0.699625\pi\)
\(422\) 6.74185e13 2.07493e14i 0.245223 0.754718i
\(423\) 0 0
\(424\) −3.26015e14 2.36864e14i −1.15538 0.839435i
\(425\) 1.92300e13 5.91838e13i 0.0672729 0.207045i
\(426\) 0 0
\(427\) 1.21534e14 8.82999e13i 0.414329 0.301028i
\(428\) 1.10520e13 0.0371964
\(429\) 0 0
\(430\) −3.54598e14 −1.16321
\(431\) 2.79597e14 2.03139e14i 0.905539 0.657913i −0.0343434 0.999410i \(-0.510934\pi\)
0.939883 + 0.341497i \(0.110934\pi\)
\(432\) 0 0
\(433\) 5.74077e13 1.76683e14i 0.181254 0.557841i −0.818610 0.574350i \(-0.805255\pi\)
0.999864 + 0.0165084i \(0.00525503\pi\)
\(434\) −1.04384e14 7.58394e13i −0.325417 0.236429i
\(435\) 0 0
\(436\) 3.91679e12 1.20547e13i 0.0119057 0.0366420i
\(437\) −4.01782e12 1.23656e13i −0.0120599 0.0371165i
\(438\) 0 0
\(439\) 3.73877e14 1.09439 0.547197 0.837004i \(-0.315695\pi\)
0.547197 + 0.837004i \(0.315695\pi\)
\(440\) 1.03183e14 3.28836e14i 0.298275 0.950583i
\(441\) 0 0
\(442\) 5.27748e14 3.83431e14i 1.48800 1.08110i
\(443\) 1.88388e14 + 5.79798e14i 0.524605 + 1.61457i 0.765095 + 0.643917i \(0.222692\pi\)
−0.240490 + 0.970652i \(0.577308\pi\)
\(444\) 0 0
\(445\) −1.67097e14 1.21403e14i −0.453929 0.329798i
\(446\) −3.01997e14 2.19413e14i −0.810327 0.588737i
\(447\) 0 0
\(448\) −9.95934e13 3.06517e14i −0.260736 0.802463i
\(449\) 4.71532e14 3.42588e14i 1.21943 0.885967i 0.223377 0.974732i \(-0.428292\pi\)
0.996053 + 0.0887649i \(0.0282920\pi\)
\(450\) 0 0
\(451\) 7.13868e13 + 2.12378e14i 0.180155 + 0.535967i
\(452\) −1.06710e14 −0.266038
\(453\) 0 0
\(454\) 4.12901e13 + 1.27078e14i 0.100471 + 0.309217i
\(455\) −1.25808e14 + 3.87197e14i −0.302444 + 0.930828i
\(456\) 0 0
\(457\) −2.02436e13 1.47078e13i −0.0475060 0.0345151i 0.563779 0.825926i \(-0.309347\pi\)
−0.611285 + 0.791411i \(0.709347\pi\)
\(458\) −1.78896e14 + 5.50586e14i −0.414802 + 1.27663i
\(459\) 0 0
\(460\) 8.51287e12 6.18497e12i 0.0192712 0.0140013i
\(461\) −1.22926e14 −0.274972 −0.137486 0.990504i \(-0.543902\pi\)
−0.137486 + 0.990504i \(0.543902\pi\)
\(462\) 0 0
\(463\) 6.08822e14 1.32983 0.664913 0.746921i \(-0.268469\pi\)
0.664913 + 0.746921i \(0.268469\pi\)
\(464\) −3.89507e14 + 2.82993e14i −0.840748 + 0.610840i
\(465\) 0 0
\(466\) −5.55750e13 + 1.71042e14i −0.117154 + 0.360563i
\(467\) −5.71275e14 4.15055e14i −1.19015 0.864696i −0.196871 0.980429i \(-0.563078\pi\)
−0.993280 + 0.115734i \(0.963078\pi\)
\(468\) 0 0
\(469\) −1.36587e14 + 4.20373e14i −0.277946 + 0.855429i
\(470\) −3.74019e12 1.15111e13i −0.00752238 0.0231515i
\(471\) 0 0
\(472\) −9.92818e14 −1.95069
\(473\) 7.34808e14 7.42728e12i 1.42704 0.0144243i
\(474\) 0 0
\(475\) 2.09167e13 1.51969e13i 0.0396898 0.0288363i
\(476\) −4.14966e13 1.27714e14i −0.0778350 0.239551i
\(477\) 0 0
\(478\) 5.20516e14 + 3.78177e14i 0.954071 + 0.693173i
\(479\) 5.38003e14 + 3.90882e14i 0.974853 + 0.708272i 0.956552 0.291560i \(-0.0941745\pi\)
0.0183004 + 0.999833i \(0.494174\pi\)
\(480\) 0 0
\(481\) −2.29233e14 7.05505e14i −0.405955 1.24940i
\(482\) 3.92528e14 2.85188e14i 0.687245 0.499313i
\(483\) 0 0
\(484\) −3.76360e13 + 1.24329e14i −0.0644101 + 0.212776i
\(485\) 2.14692e14 0.363276
\(486\) 0 0
\(487\) 3.30008e14 + 1.01566e15i 0.545902 + 1.68011i 0.718835 + 0.695181i \(0.244676\pi\)
−0.172933 + 0.984934i \(0.555324\pi\)
\(488\) 1.37511e14 4.23215e14i 0.224920 0.692233i
\(489\) 0 0
\(490\) 1.75135e14 + 1.27243e14i 0.280088 + 0.203496i
\(491\) 8.02394e13 2.46952e14i 0.126894 0.390538i −0.867348 0.497703i \(-0.834177\pi\)
0.994241 + 0.107164i \(0.0341771\pi\)
\(492\) 0 0
\(493\) −1.11516e15 + 8.10213e14i −1.72457 + 1.25297i
\(494\) 2.71024e14 0.414486
\(495\) 0 0
\(496\) −2.92815e14 −0.437969
\(497\) 7.48290e13 5.43665e13i 0.110690 0.0804213i
\(498\) 0 0
\(499\) 2.63603e14 8.11287e14i 0.381415 1.17387i −0.557633 0.830087i \(-0.688290\pi\)
0.939048 0.343786i \(-0.111710\pi\)
\(500\) 1.33086e14 + 9.66929e13i 0.190458 + 0.138376i
\(501\) 0 0
\(502\) 1.82614e11 5.62028e11i 0.000255660 0.000786842i
\(503\) 6.48409e13 + 1.99560e14i 0.0897894 + 0.276343i 0.985861 0.167567i \(-0.0535909\pi\)
−0.896071 + 0.443910i \(0.853591\pi\)
\(504\) 0 0
\(505\) 1.26733e15 1.71706
\(506\) 6.12573e13 4.54590e13i 0.0820975 0.0609246i
\(507\) 0 0
\(508\) 2.37799e14 1.72771e14i 0.311860 0.226579i
\(509\) 1.59134e14 + 4.89765e14i 0.206451 + 0.635390i 0.999651 + 0.0264285i \(0.00841343\pi\)
−0.793200 + 0.608961i \(0.791587\pi\)
\(510\) 0 0
\(511\) −1.02021e14 7.41224e13i −0.129531 0.0941097i
\(512\) −7.09975e14 5.15827e14i −0.891781 0.647917i
\(513\) 0 0
\(514\) −6.58629e13 2.02705e14i −0.0809737 0.249211i
\(515\) −8.01611e14 + 5.82405e14i −0.975044 + 0.708411i
\(516\) 0 0
\(517\) 7.99163e12 + 2.37753e13i 0.00951562 + 0.0283092i
\(518\) 5.34196e14 0.629342
\(519\) 0 0
\(520\) 3.72668e14 + 1.14695e15i 0.429836 + 1.32290i
\(521\) −2.76262e14 + 8.50248e14i −0.315293 + 0.970372i 0.660341 + 0.750966i \(0.270412\pi\)
−0.975634 + 0.219406i \(0.929588\pi\)
\(522\) 0 0
\(523\) 2.67635e14 + 1.94448e14i 0.299078 + 0.217293i 0.727196 0.686430i \(-0.240823\pi\)
−0.428118 + 0.903723i \(0.640823\pi\)
\(524\) 6.39434e13 1.96798e14i 0.0707088 0.217619i
\(525\) 0 0
\(526\) −2.51445e14 + 1.82686e14i −0.272284 + 0.197826i
\(527\) −8.38332e14 −0.898375
\(528\) 0 0
\(529\) −9.40004e14 −0.986560
\(530\) −8.41121e14 + 6.11110e14i −0.873658 + 0.634750i
\(531\) 0 0
\(532\) 1.72406e13 5.30610e13i 0.0175403 0.0539836i
\(533\) −6.34277e14 4.60829e14i −0.638674 0.464024i
\(534\) 0 0
\(535\) 4.84468e13 1.49104e14i 0.0477880 0.147076i
\(536\) 4.04598e14 + 1.24523e15i 0.395019 + 1.21574i
\(537\) 0 0
\(538\) −1.70400e15 −1.62992
\(539\) −3.65585e14 2.60008e14i −0.346139 0.246178i
\(540\) 0 0
\(541\) −5.82825e14 + 4.23447e14i −0.540696 + 0.392839i −0.824343 0.566090i \(-0.808455\pi\)
0.283647 + 0.958929i \(0.408455\pi\)
\(542\) −1.21643e14 3.74377e14i −0.111709 0.343806i
\(543\) 0 0
\(544\) −5.85093e14 4.25095e14i −0.526539 0.382553i
\(545\) −1.45461e14 1.05684e14i −0.129589 0.0941516i
\(546\) 0 0
\(547\) 4.82688e14 + 1.48556e15i 0.421441 + 1.29706i 0.906362 + 0.422503i \(0.138848\pi\)
−0.484921 + 0.874558i \(0.661152\pi\)
\(548\) −3.13694e14 + 2.27912e14i −0.271152 + 0.197003i
\(549\) 0 0
\(550\) 1.23613e14 + 8.79150e13i 0.104730 + 0.0744849i
\(551\) −5.72690e14 −0.480381
\(552\) 0 0
\(553\) −1.50724e14 4.63882e14i −0.123935 0.381434i
\(554\) 5.73816e13 1.76602e14i 0.0467163 0.143778i
\(555\) 0 0
\(556\) −1.57629e14 1.14524e14i −0.125813 0.0914085i
\(557\) 9.72549e13 2.99320e14i 0.0768613 0.236555i −0.905242 0.424895i \(-0.860311\pi\)
0.982104 + 0.188341i \(0.0603109\pi\)
\(558\) 0 0
\(559\) −2.08028e15 + 1.51141e15i −1.61197 + 1.17116i
\(560\) −6.65348e14 −0.510522
\(561\) 0 0
\(562\) 7.44076e14 0.559845
\(563\) 7.72939e14 5.61573e14i 0.575903 0.418418i −0.261342 0.965246i \(-0.584165\pi\)
0.837245 + 0.546829i \(0.184165\pi\)
\(564\) 0 0
\(565\) −4.67766e14 + 1.43964e15i −0.341792 + 1.05193i
\(566\) 1.63936e15 + 1.19107e15i 1.18627 + 0.861877i
\(567\) 0 0
\(568\) 8.46659e13 2.60575e14i 0.0600887 0.184934i
\(569\) 2.08485e14 + 6.41650e14i 0.146540 + 0.451004i 0.997206 0.0747028i \(-0.0238008\pi\)
−0.850666 + 0.525707i \(0.823801\pi\)
\(570\) 0 0
\(571\) 2.55622e15 1.76238 0.881190 0.472762i \(-0.156743\pi\)
0.881190 + 0.472762i \(0.156743\pi\)
\(572\) −1.44825e14 4.30857e14i −0.0988927 0.294209i
\(573\) 0 0
\(574\) 4.56757e14 3.31854e14i 0.305964 0.222296i
\(575\) 7.86867e12 + 2.42173e13i 0.00522069 + 0.0160676i
\(576\) 0 0
\(577\) −1.81188e13 1.31641e13i −0.0117940 0.00856885i 0.581873 0.813280i \(-0.302320\pi\)
−0.593667 + 0.804711i \(0.702320\pi\)
\(578\) 1.36276e15 + 9.90106e14i 0.878653 + 0.638379i
\(579\) 0 0
\(580\) −1.43223e14 4.40794e14i −0.0906063 0.278857i
\(581\) −3.22490e14 + 2.34303e14i −0.202092 + 0.146828i
\(582\) 0 0
\(583\) 1.73019e15 1.28398e15i 1.06394 0.789551i
\(584\) −3.73546e14 −0.227548
\(585\) 0 0
\(586\) −1.00817e14 3.10284e14i −0.0602696 0.185491i
\(587\) 6.16952e14 1.89878e15i 0.365378 1.12452i −0.584367 0.811490i \(-0.698657\pi\)
0.949744 0.313027i \(-0.101343\pi\)
\(588\) 0 0
\(589\) −2.81781e14 2.04726e14i −0.163787 0.118998i
\(590\) −7.91539e14 + 2.43611e15i −0.455813 + 1.40285i
\(591\) 0 0
\(592\) 9.80787e14 7.12583e14i 0.554377 0.402778i
\(593\) −5.45617e14 −0.305554 −0.152777 0.988261i \(-0.548822\pi\)
−0.152777 + 0.988261i \(0.548822\pi\)
\(594\) 0 0
\(595\) −1.90490e15 −1.04720
\(596\) 1.98029e13 1.43877e13i 0.0107864 0.00783675i
\(597\) 0 0
\(598\) −8.24847e13 + 2.53862e14i −0.0441079 + 0.135750i
\(599\) 2.48278e14 + 1.80384e14i 0.131550 + 0.0955766i 0.651614 0.758550i \(-0.274092\pi\)
−0.520064 + 0.854127i \(0.674092\pi\)
\(600\) 0 0
\(601\) −3.42838e14 + 1.05515e15i −0.178353 + 0.548913i −0.999771 0.0214137i \(-0.993183\pi\)
0.821418 + 0.570326i \(0.193183\pi\)
\(602\) −5.72206e14 1.76107e15i −0.294966 0.907812i
\(603\) 0 0
\(604\) −4.99976e14 −0.253073
\(605\) 1.51235e15 + 1.05275e15i 0.758576 + 0.528045i
\(606\) 0 0
\(607\) 1.73776e15 1.26255e15i 0.855956 0.621888i −0.0708260 0.997489i \(-0.522564\pi\)
0.926782 + 0.375600i \(0.122564\pi\)
\(608\) −9.28514e13 2.85767e14i −0.0453230 0.139490i
\(609\) 0 0
\(610\) −9.28823e14 6.74830e14i −0.445266 0.323504i
\(611\) −7.10062e13 5.15890e13i −0.0337341 0.0245093i
\(612\) 0 0
\(613\) 3.68081e14 + 1.13284e15i 0.171755 + 0.528609i 0.999470 0.0325399i \(-0.0103596\pi\)
−0.827715 + 0.561149i \(0.810360\pi\)
\(614\) −1.90352e15 + 1.38299e15i −0.880299 + 0.639575i
\(615\) 0 0
\(616\) 1.79963e15 1.81903e13i 0.817503 0.00826314i
\(617\) −2.63353e15 −1.18569 −0.592844 0.805317i \(-0.701995\pi\)
−0.592844 + 0.805317i \(0.701995\pi\)
\(618\) 0 0
\(619\) −4.41352e14 1.35834e15i −0.195203 0.600774i −0.999974 0.00718827i \(-0.997712\pi\)
0.804771 0.593585i \(-0.202288\pi\)
\(620\) 8.71059e13 2.68084e14i 0.0381850 0.117521i
\(621\) 0 0
\(622\) −7.49728e14 5.44709e14i −0.322891 0.234594i
\(623\) 3.33293e14 1.02577e15i 0.142279 0.437891i
\(624\) 0 0
\(625\) 1.60679e15 1.16740e15i 0.673936 0.489643i
\(626\) 3.14115e15 1.30596
\(627\) 0 0
\(628\) 8.58682e13 0.0350796
\(629\) 2.80800e15 2.04013e15i 1.13715 0.826191i
\(630\) 0 0
\(631\) 1.05806e15 3.25639e15i 0.421066 1.29591i −0.485645 0.874156i \(-0.661415\pi\)
0.906711 0.421752i \(-0.138585\pi\)
\(632\) −1.16889e15 8.49245e14i −0.461135 0.335034i
\(633\) 0 0
\(634\) −5.41625e14 + 1.66695e15i −0.209995 + 0.646297i
\(635\) −1.28847e15 3.96552e15i −0.495245 1.52421i
\(636\) 0 0
\(637\) 1.56980e15 0.593029
\(638\) −1.07053e15 3.18486e15i −0.400946 1.19282i
\(639\) 0 0
\(640\) −1.10775e15 + 8.04828e14i −0.407805 + 0.296288i
\(641\) 3.80594e14 + 1.17135e15i 0.138913 + 0.427531i 0.996178 0.0873448i \(-0.0278382\pi\)
−0.857265 + 0.514875i \(0.827838\pi\)
\(642\) 0 0
\(643\) −4.22211e15 3.06754e15i −1.51485 1.10060i −0.963968 0.266017i \(-0.914292\pi\)
−0.550879 0.834585i \(-0.685708\pi\)
\(644\) 4.44539e13 + 3.22977e13i 0.0158139 + 0.0114894i
\(645\) 0 0
\(646\) 3.91865e14 + 1.20604e15i 0.137043 + 0.421776i
\(647\) 2.83350e15 2.05866e15i 0.982540 0.713857i 0.0242652 0.999706i \(-0.492275\pi\)
0.958275 + 0.285848i \(0.0922754\pi\)
\(648\) 0 0
\(649\) 1.58922e15 5.06475e15i 0.541800 1.72668i
\(650\) −5.30785e14 −0.179430
\(651\) 0 0
\(652\) 2.46280e14 + 7.57972e14i 0.0818591 + 0.251937i
\(653\) 1.66588e14 5.12705e14i 0.0549062 0.168984i −0.919843 0.392287i \(-0.871684\pi\)
0.974749 + 0.223303i \(0.0716840\pi\)
\(654\) 0 0
\(655\) −2.37472e15 1.72534e15i −0.769636 0.559173i
\(656\) 3.95937e14 1.21857e15i 0.127249 0.391633i
\(657\) 0 0
\(658\) 5.11332e13 3.71504e13i 0.0161607 0.0117414i
\(659\) 3.99623e15 1.25251 0.626254 0.779619i \(-0.284587\pi\)
0.626254 + 0.779619i \(0.284587\pi\)
\(660\) 0 0
\(661\) −3.94254e13 −0.0121526 −0.00607629 0.999982i \(-0.501934\pi\)
−0.00607629 + 0.999982i \(0.501934\pi\)
\(662\) 2.89021e15 2.09986e15i 0.883508 0.641906i
\(663\) 0 0
\(664\) −3.64884e14 + 1.12300e15i −0.109706 + 0.337640i
\(665\) −6.40278e14 4.65189e14i −0.190919 0.138711i
\(666\) 0 0
\(667\) 1.74295e14 5.36425e14i 0.0511202 0.157332i
\(668\) −1.68977e14 5.20057e14i −0.0491537 0.151280i
\(669\) 0 0
\(670\) 3.37802e15 0.966609
\(671\) 1.93887e15 + 1.37895e15i 0.550268 + 0.391357i
\(672\) 0 0
\(673\) 2.80265e15 2.03624e15i 0.782502 0.568521i −0.123227 0.992379i \(-0.539324\pi\)
0.905729 + 0.423858i \(0.139324\pi\)
\(674\) −1.55047e14 4.77187e14i −0.0429373 0.132148i
\(675\) 0 0
\(676\) 6.26653e14 + 4.55290e14i 0.170734 + 0.124046i
\(677\) 1.18222e15 + 8.58935e14i 0.319493 + 0.232125i 0.735959 0.677026i \(-0.236731\pi\)
−0.416466 + 0.909151i \(0.636731\pi\)
\(678\) 0 0
\(679\) 3.46444e14 + 1.06624e15i 0.0921189 + 0.283513i
\(680\) −4.56503e15 + 3.31669e15i −1.20405 + 0.874793i
\(681\) 0 0
\(682\) 6.11794e14 1.94975e15i 0.158778 0.506016i
\(683\) −3.32282e15 −0.855447 −0.427724 0.903910i \(-0.640684\pi\)
−0.427724 + 0.903910i \(0.640684\pi\)
\(684\) 0 0
\(685\) 1.69970e15 + 5.23114e15i 0.430600 + 1.32525i
\(686\) −1.17175e15 + 3.60627e15i −0.294477 + 0.906308i
\(687\) 0 0
\(688\) −3.39973e15 2.47005e15i −0.840830 0.610898i
\(689\) −2.32976e15 + 7.17025e15i −0.571617 + 1.75926i
\(690\) 0 0
\(691\) −1.64511e15 + 1.19524e15i −0.397251 + 0.288620i −0.768420 0.639945i \(-0.778957\pi\)
0.371169 + 0.928565i \(0.378957\pi\)
\(692\) 1.18345e15 0.283509
\(693\) 0 0
\(694\) 6.59106e15 1.55410
\(695\) −2.23603e15 + 1.62457e15i −0.523073 + 0.380035i
\(696\) 0 0
\(697\) 1.13357e15 3.48878e15i 0.261017 0.803329i
\(698\) 3.51714e15 + 2.55535e15i 0.803498 + 0.583775i
\(699\) 0 0
\(700\) −3.37647e13 + 1.03917e14i −0.00759317 + 0.0233694i
\(701\) −2.30452e15 7.09258e15i −0.514199 1.58254i −0.784735 0.619831i \(-0.787201\pi\)
0.270537 0.962710i \(-0.412799\pi\)
\(702\) 0 0
\(703\) 1.44205e15 0.316756
\(704\) 4.09898e15 3.04185e15i 0.893360 0.662962i
\(705\) 0 0
\(706\) −1.95070e14 + 1.41726e14i −0.0418566 + 0.0304106i
\(707\) 2.04505e15 + 6.29402e15i 0.435409 + 1.34005i
\(708\) 0 0
\(709\) 4.24603e15 + 3.08492e15i 0.890079 + 0.646680i 0.935899 0.352269i \(-0.114590\pi\)
−0.0458195 + 0.998950i \(0.514590\pi\)
\(710\) −5.71879e14 4.15495e14i −0.118955 0.0864260i
\(711\) 0 0
\(712\) −9.87278e14 3.03853e15i −0.202209 0.622334i
\(713\) 2.77521e14 2.01631e14i 0.0564031 0.0409793i
\(714\) 0 0
\(715\) −6.44759e15 + 6.51708e13i −1.29037 + 0.0130428i
\(716\) 7.75628e14 0.154039
\(717\) 0 0
\(718\) 3.78717e14 + 1.16557e15i 0.0740681 + 0.227958i
\(719\) 2.22904e15 6.86028e15i 0.432623 1.33148i −0.462881 0.886421i \(-0.653184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(720\) 0 0
\(721\) −4.18599e15 3.04130e15i −0.800118 0.581319i
\(722\) 1.27381e15 3.92037e15i 0.241629 0.743657i
\(723\) 0 0
\(724\) −6.03297e14 + 4.38321e14i −0.112712 + 0.0818899i
\(725\) 1.12158e15 0.207956
\(726\) 0 0
\(727\) −7.78583e15 −1.42189 −0.710945 0.703248i \(-0.751732\pi\)
−0.710945 + 0.703248i \(0.751732\pi\)
\(728\) −5.09484e15 + 3.70162e15i −0.923439 + 0.670918i
\(729\) 0 0
\(730\) −2.97815e14 + 9.16581e14i −0.0531706 + 0.163642i
\(731\) −9.73347e15 7.07178e15i −1.72473 1.25309i
\(732\) 0 0
\(733\) −2.00870e15 + 6.18215e15i −0.350626 + 1.07911i 0.607877 + 0.794031i \(0.292021\pi\)
−0.958503 + 0.285083i \(0.907979\pi\)
\(734\) 1.73250e15 + 5.33209e15i 0.300154 + 0.923781i
\(735\) 0 0
\(736\) 2.95930e14 0.0505081
\(737\) −7.00003e15 + 7.07548e13i −1.18585 + 0.0119863i
\(738\) 0 0
\(739\) −4.37127e15 + 3.17592e15i −0.729564 + 0.530060i −0.889426 0.457080i \(-0.848895\pi\)
0.159861 + 0.987139i \(0.448895\pi\)
\(740\) 3.60638e14 + 1.10993e15i 0.0597444 + 0.183874i
\(741\) 0 0
\(742\) −4.39231e15 3.19120e15i −0.716921 0.520873i
\(743\) −1.46907e15 1.06734e15i −0.238015 0.172928i 0.462383 0.886680i \(-0.346994\pi\)
−0.700398 + 0.713752i \(0.746994\pi\)
\(744\) 0 0
\(745\) −1.07299e14 3.30232e14i −0.0171292 0.0527181i
\(746\) 6.17772e15 4.48837e15i 0.978959 0.711255i
\(747\) 0 0
\(748\) 1.70788e15 1.26742e15i 0.266686 0.197907i
\(749\) 8.18684e14 0.126901
\(750\) 0 0
\(751\) 2.01220e15 + 6.19290e15i 0.307362 + 0.945964i 0.978785 + 0.204890i \(0.0656835\pi\)
−0.671423 + 0.741075i \(0.734316\pi\)
\(752\) 4.43245e13 1.36417e14i 0.00672118 0.0206857i
\(753\) 0 0
\(754\) 9.51174e15 + 6.91068e15i 1.42140 + 1.03271i
\(755\) −2.19166e15 + 6.74524e15i −0.325136 + 1.00067i
\(756\) 0 0
\(757\) −1.51162e15 + 1.09826e15i −0.221012 + 0.160575i −0.692782 0.721147i \(-0.743615\pi\)
0.471770 + 0.881722i \(0.343615\pi\)
\(758\) −5.31881e15 −0.772029
\(759\) 0 0
\(760\) −2.34436e15 −0.335390
\(761\) −5.17404e15 + 3.75916e15i −0.734876 + 0.533919i −0.891102 0.453802i \(-0.850067\pi\)
0.156226 + 0.987721i \(0.450067\pi\)
\(762\) 0 0
\(763\) 2.90139e14 8.92956e14i 0.0406182 0.125010i
\(764\) 1.61190e15 + 1.17112e15i 0.224040 + 0.162775i
\(765\) 0 0
\(766\) −5.70727e14 + 1.75652e15i −0.0781934 + 0.240654i
\(767\) 5.73984e15 + 1.76654e16i 0.780774 + 2.40297i
\(768\) 0 0
\(769\) 1.97046e15 0.264224 0.132112 0.991235i \(-0.457824\pi\)
0.132112 + 0.991235i \(0.457824\pi\)
\(770\) 1.39015e15 4.43031e15i 0.185081 0.589841i
\(771\) 0 0
\(772\) 1.40227e15 1.01881e15i 0.184050 0.133720i
\(773\) −7.55676e14 2.32573e15i −0.0984801 0.303090i 0.889665 0.456614i \(-0.150938\pi\)
−0.988145 + 0.153523i \(0.950938\pi\)
\(774\) 0 0
\(775\) 5.51853e14 + 4.00944e14i 0.0709028 + 0.0515139i
\(776\) 2.68671e15 + 1.95201e15i 0.342754 + 0.249025i
\(777\) 0 0
\(778\) −1.34596e15 4.14245e15i −0.169295 0.521038i
\(779\) 1.23300e15 8.95828e14i 0.153995 0.111884i
\(780\) 0 0
\(781\) 1.19377e15 + 8.49021e14i 0.147007 + 0.104553i
\(782\) −1.24893e15 −0.152721
\(783\) 0 0
\(784\) 7.92772e14 + 2.43990e15i 0.0955895 + 0.294194i
\(785\) 3.76406e14 1.15846e15i 0.0450685 0.138707i
\(786\) 0 0
\(787\) 5.58356e15 + 4.05670e15i 0.659251 + 0.478974i 0.866410 0.499334i \(-0.166422\pi\)
−0.207159 + 0.978307i \(0.566422\pi\)
\(788\) −6.51933e14 + 2.00644e15i −0.0764379 + 0.235252i
\(789\) 0 0
\(790\) −3.01573e15 + 2.19106e15i −0.348693 + 0.253341i
\(791\) −7.90461e15 −0.907631
\(792\) 0 0
\(793\) −8.32535e15 −0.942758
\(794\) −1.46725e15 + 1.06602e15i −0.165003 + 0.119881i
\(795\) 0 0
\(796\) −1.09153e15 + 3.35937e15i −0.121063 + 0.372594i
\(797\) 3.28488e15 + 2.38661e15i 0.361825 + 0.262882i 0.753813 0.657089i \(-0.228212\pi\)
−0.391988 + 0.919970i \(0.628212\pi\)
\(798\) 0 0
\(799\) 1.26902e14 3.90563e14i 0.0137867 0.0424310i
\(800\) 1.81844e14 + 5.59658e14i 0.0196202 + 0.0603849i
\(801\) 0 0
\(802\) −1.14397e15 −0.121746
\(803\) 5.97943e14 1.90560e15i 0.0632010 0.201417i
\(804\) 0 0
\(805\) 6.30597e14 4.58155e14i 0.0657467 0.0477678i
\(806\) 2.20963e15 + 6.80055e15i 0.228811 + 0.704208i
\(807\) 0 0
\(808\) 1.58596e16 + 1.15227e16i 1.62006 + 1.17704i
\(809\) −3.89900e15 2.83279e15i −0.395582 0.287407i 0.372157 0.928170i \(-0.378618\pi\)
−0.767739 + 0.640763i \(0.778618\pi\)
\(810\) 0 0
\(811\) −3.04299e15 9.36536e15i −0.304569 0.937367i −0.979838 0.199795i \(-0.935972\pi\)
0.675269 0.737572i \(-0.264028\pi\)
\(812\) 1.95804e15 1.42260e15i 0.194654 0.141424i
\(813\) 0 0
\(814\) 2.69562e15 + 8.01954e15i 0.264378 + 0.786530i
\(815\) 1.13055e16 1.10134
\(816\) 0 0
\(817\) −1.54465e15 4.75396e15i −0.148460 0.456913i
\(818\) 3.35363e15 1.03214e16i 0.320163 0.985362i
\(819\) 0 0
\(820\) 9.97871e14 + 7.24996e14i 0.0939936 + 0.0682903i
\(821\) 7.43347e14 2.28779e15i 0.0695511 0.214056i −0.910240 0.414082i \(-0.864103\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(822\) 0 0
\(823\) −4.75367e15 + 3.45375e15i −0.438864 + 0.318854i −0.785183 0.619263i \(-0.787431\pi\)
0.346319 + 0.938117i \(0.387431\pi\)
\(824\) −1.53269e16 −1.40557
\(825\) 0 0
\(826\) −1.33759e16 −1.21041
\(827\) 3.23995e15 2.35396e15i 0.291245 0.211602i −0.432562 0.901604i \(-0.642390\pi\)
0.723807 + 0.690002i \(0.242390\pi\)
\(828\) 0 0
\(829\) −1.73494e15 + 5.33960e15i −0.153899 + 0.473651i −0.998048 0.0624575i \(-0.980106\pi\)
0.844149 + 0.536109i \(0.180106\pi\)
\(830\) 2.46463e15 + 1.79065e15i 0.217181 + 0.157791i
\(831\) 0 0
\(832\) −5.51940e15 + 1.69870e16i −0.479969 + 1.47719i
\(833\) 2.26972e15 + 6.98547e15i 0.196076 + 0.603460i
\(834\) 0 0
\(835\) −7.75686e15 −0.661318
\(836\) 8.83570e14 8.93093e12i 0.0748353 0.000756419i
\(837\) 0 0
\(838\) 9.38366e15 6.81763e15i 0.784387 0.569890i
\(839\) 4.25508e14 + 1.30958e15i 0.0353359 + 0.108753i 0.967169 0.254135i \(-0.0817908\pi\)
−0.931833 + 0.362888i \(0.881791\pi\)
\(840\) 0 0
\(841\) −1.02284e16 7.43139e15i −0.838361 0.609105i
\(842\) 1.03164e16 + 7.49532e15i 0.840065 + 0.610343i
\(843\) 0 0
\(844\) 7.69134e14 + 2.36715e15i 0.0618185 + 0.190258i
\(845\) 8.88933e15 6.45847e15i 0.709834 0.515725i
\(846\) 0 0
\(847\) −2.78791e15 + 9.20973e15i −0.219745 + 0.725919i
\(848\) −1.23212e16 −0.964882
\(849\) 0 0
\(850\) −7.67445e14 2.36195e15i −0.0593257 0.182586i
\(851\) −4.38879e14 + 1.35073e15i −0.0337079 + 0.103742i
\(852\) 0 0
\(853\) −4.25141e15 3.08883e15i −0.322340 0.234193i 0.414834 0.909897i \(-0.363840\pi\)
−0.737173 + 0.675704i \(0.763840\pi\)
\(854\) 1.85264e15 5.70185e15i 0.139564 0.429534i
\(855\) 0 0
\(856\) 1.96195e15 1.42544e15i 0.145909 0.106009i
\(857\) 4.10237e15 0.303138 0.151569 0.988447i \(-0.451567\pi\)
0.151569 + 0.988447i \(0.451567\pi\)
\(858\) 0 0
\(859\) 1.28203e16 0.935268 0.467634 0.883922i \(-0.345107\pi\)
0.467634 + 0.883922i \(0.345107\pi\)
\(860\) 3.27278e15 2.37781e15i 0.237233 0.172360i
\(861\) 0 0
\(862\) 4.26211e15 1.31174e16i 0.305025 0.938770i
\(863\) −5.84746e15 4.24843e15i −0.415823 0.302113i 0.360132 0.932901i \(-0.382732\pi\)
−0.775955 + 0.630788i \(0.782732\pi\)
\(864\) 0 0
\(865\) 5.18769e15 1.59661e16i 0.364238 1.12101i
\(866\) −2.29107e15 7.05118e15i −0.159842 0.491942i
\(867\) 0 0
\(868\) 1.47197e15 0.101401
\(869\) 6.20339e15 4.60353e15i 0.424639 0.315125i
\(870\) 0 0
\(871\) 1.98174e16 1.43982e16i 1.33951 0.973214i
\(872\) −8.59448e14 2.64511e15i −0.0577270 0.177665i
\(873\) 0 0
\(874\) −4.19792e14 3.04996e14i −0.0278433 0.0202293i
\(875\) 9.85846e15 + 7.16259e15i 0.649777 + 0.472091i
\(876\) 0 0
\(877\) 2.94068e15 + 9.05048e15i 0.191404 + 0.589080i 1.00000 0.000715567i \(0.000227772\pi\)
−0.808596 + 0.588364i \(0.799772\pi\)
\(878\) 1.20713e16 8.77032e15i 0.780791 0.567278i
\(879\) 0 0
\(880\) −3.35743e15 9.98845e15i −0.214463 0.638033i
\(881\) −1.52374e16 −0.967261 −0.483631 0.875272i \(-0.660682\pi\)
−0.483631 + 0.875272i \(0.660682\pi\)
\(882\) 0 0
\(883\) 6.64114e15 + 2.04393e16i 0.416350 + 1.28139i 0.911037 + 0.412324i \(0.135283\pi\)
−0.494687 + 0.869071i \(0.664717\pi\)
\(884\) −2.29972e15 + 7.07780e15i −0.143280 + 0.440972i
\(885\) 0 0
\(886\) 1.96832e16 + 1.43007e16i 1.21119 + 0.879978i
\(887\) −2.92775e15 + 9.01069e15i −0.179042 + 0.551034i −0.999795 0.0202492i \(-0.993554\pi\)
0.820753 + 0.571283i \(0.193554\pi\)
\(888\) 0 0
\(889\) 1.76151e16 1.27981e16i 1.06396 0.773012i
\(890\) −8.24286e15 −0.494804
\(891\) 0 0
\(892\) 4.25861e15 0.252500
\(893\) 1.38032e14 1.00286e14i 0.00813389 0.00590961i
\(894\) 0 0
\(895\) 3.39999e15 1.04641e16i 0.197902 0.609080i
\(896\) −5.78464e15 4.20278e15i −0.334643 0.243133i
\(897\) 0 0
\(898\) 7.18794e15 2.21222e16i 0.410756 1.26418i
\(899\) −4.66908e15 1.43700e16i −0.265188 0.816163i
\(900\) 0 0
\(901\) −3.52756e16 −1.97919
\(902\) 7.28676e15 + 5.18243e15i 0.406348 + 0.289000i
\(903\) 0 0
\(904\) −1.89431e16 + 1.37630e16i −1.04358 + 0.758204i
\(905\) 3.26887e15 + 1.00605e16i 0.178991 + 0.550877i
\(906\) 0 0
\(907\) −2.12763e16 1.54582e16i −1.15095 0.836214i −0.162343 0.986734i \(-0.551905\pi\)
−0.988607 + 0.150520i \(0.951905\pi\)
\(908\) −1.23323e15 8.95994e14i −0.0663089 0.0481763i
\(909\) 0 0
\(910\) 5.02084e15 + 1.54525e16i 0.266716 + 0.820866i
\(911\) −4.32920e15 + 3.14535e15i −0.228589 + 0.166080i −0.696185 0.717863i \(-0.745121\pi\)
0.467595 + 0.883943i \(0.345121\pi\)
\(912\) 0 0
\(913\) −5.14477e15 3.65902e15i −0.268396 0.190887i
\(914\) −9.98615e14 −0.0517838
\(915\) 0 0
\(916\) −2.04091e15 6.28127e15i −0.104568 0.321827i
\(917\) 4.73665e15 1.45779e16i 0.241235 0.742444i
\(918\) 0 0
\(919\) 5.46508e15 + 3.97061e15i 0.275018 + 0.199812i 0.716742 0.697339i \(-0.245633\pi\)
−0.441723 + 0.897151i \(0.645633\pi\)
\(920\) 7.13493e14 2.19591e15i 0.0356908 0.109845i
\(921\) 0 0
\(922\) −3.96890e15 + 2.88357e15i −0.196178 + 0.142531i
\(923\) −5.12594e15 −0.251863
\(924\) 0 0
\(925\) −2.82416e15 −0.137123
\(926\) 1.96569e16 1.42816e16i 0.948758 0.689313i
\(927\) 0 0
\(928\) 4.02794e15 1.23967e16i 0.192118 0.591279i
\(929\) 8.97426e15 + 6.52018e15i 0.425513 + 0.309153i 0.779852 0.625964i \(-0.215294\pi\)
−0.354339 + 0.935117i \(0.615294\pi\)
\(930\) 0 0
\(931\) −9.42997e14 + 2.90225e15i −0.0441863 + 0.135991i
\(932\) −6.34019e14 1.95131e15i −0.0295335 0.0908947i
\(933\) 0 0
\(934\) −2.81809e16 −1.29732
\(935\) −9.61237e15 2.85970e16i −0.439913 1.30875i
\(936\) 0 0
\(937\) −4.54857e15 + 3.30473e15i −0.205735 + 0.149475i −0.685882 0.727713i \(-0.740583\pi\)
0.480147 + 0.877188i \(0.340583\pi\)
\(938\) 5.45103e15 + 1.67765e16i 0.245111 + 0.754374i
\(939\) 0 0
\(940\) 1.11710e14 + 8.11620e13i 0.00496465 + 0.00360703i
\(941\) 2.91770e16 + 2.11983e16i 1.28913 + 0.936610i 0.999788 0.0206142i \(-0.00656217\pi\)
0.289346 + 0.957225i \(0.406562\pi\)
\(942\) 0 0
\(943\) 4.63844e14 + 1.42756e15i 0.0202562 + 0.0623421i
\(944\) −2.45583e16 + 1.78426e16i −1.06623 + 0.774663i
\(945\) 0 0
\(946\) 2.35504e16 1.74768e16i 1.01064 0.749997i
\(947\) −3.78479e16 −1.61479 −0.807397 0.590008i \(-0.799125\pi\)
−0.807397 + 0.590008i \(0.799125\pi\)
\(948\) 0 0
\(949\) 2.15960e15 + 6.64658e15i 0.0910773 + 0.280307i
\(950\) 3.18850e14 9.81318e14i 0.0133692 0.0411462i
\(951\) 0 0
\(952\) −2.38384e16 1.73196e16i −0.988039 0.717852i
\(953\) 6.60895e15 2.03402e16i 0.272346 0.838195i −0.717563 0.696493i \(-0.754743\pi\)
0.989909 0.141702i \(-0.0452575\pi\)
\(954\) 0 0
\(955\) 2.28655e16 1.66128e16i 0.931456 0.676742i
\(956\) −7.34005e15 −0.297290
\(957\) 0 0
\(958\) 2.65396e16 1.06264
\(959\) −2.32371e16 + 1.68827e16i −0.925079 + 0.672109i
\(960\) 0 0
\(961\) −5.01199e15 + 1.54253e16i −0.197257 + 0.607093i
\(962\) −2.39508e16 1.74013e16i −0.937253 0.680954i
\(963\) 0 0
\(964\) −1.71048e15 + 5.26431e15i −0.0661750 + 0.203666i
\(965\) −7.59795e15 2.33841e16i −0.292278 0.899540i
\(966\) 0 0
\(967\) 2.66634e15 0.101407 0.0507036 0.998714i \(-0.483854\pi\)
0.0507036 + 0.998714i \(0.483854\pi\)
\(968\) 9.35424e15 + 2.69249e16i 0.353748 + 1.01822i
\(969\) 0 0
\(970\) 6.93174e15 5.03620e15i 0.259178 0.188304i
\(971\) −5.95153e14 1.83169e15i −0.0221270 0.0681000i 0.939383 0.342869i \(-0.111399\pi\)
−0.961510 + 0.274769i \(0.911399\pi\)
\(972\) 0 0
\(973\) −1.16765e16 8.48347e15i −0.429232 0.311855i
\(974\) 3.44800e16 + 2.50512e16i 1.26036 + 0.915702i
\(975\) 0 0
\(976\) −4.20444e15 1.29399e16i −0.151962 0.467690i
\(977\) −6.71235e15 + 4.87681e15i −0.241243 + 0.175273i −0.701837 0.712338i \(-0.747636\pi\)
0.460594 + 0.887611i \(0.347636\pi\)
\(978\) 0 0
\(979\) 1.70811e16 1.72652e14i 0.607030 0.00613573i
\(980\) −2.46967e15 −0.0872761
\(981\) 0 0
\(982\) −3.20225e15 9.85552e15i −0.111903 0.344403i
\(983\) 5.66368e15 1.74310e16i 0.196813 0.605729i −0.803137 0.595794i \(-0.796838\pi\)
0.999951 0.00993502i \(-0.00316247\pi\)
\(984\) 0 0
\(985\) 2.42114e16 + 1.75906e16i 0.831994 + 0.604479i
\(986\) −1.69993e16 + 5.23184e16i −0.580909 + 1.78785i
\(987\) 0 0
\(988\) −2.50143e15 + 1.81740e15i −0.0845328 + 0.0614167i
\(989\) 4.92302e15 0.165444
\(990\) 0 0
\(991\) −3.53602e15 −0.117520 −0.0587598 0.998272i \(-0.518715\pi\)
−0.0587598 + 0.998272i \(0.518715\pi\)
\(992\) 6.41347e15 4.65966e15i 0.211972 0.154007i
\(993\) 0 0
\(994\) 1.14068e15 3.51064e15i 0.0372853 0.114752i
\(995\) 4.05369e16 + 2.94518e16i 1.31772 + 0.957381i
\(996\) 0 0
\(997\) 8.95544e15 2.75620e16i 0.287915 0.886110i −0.697595 0.716492i \(-0.745747\pi\)
0.985510 0.169618i \(-0.0542534\pi\)
\(998\) −1.05201e16 3.23774e16i −0.336357 1.03520i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.12.f.a.91.7 40
3.2 odd 2 11.12.c.a.3.4 40
11.4 even 5 inner 99.12.f.a.37.7 40
33.2 even 10 121.12.a.h.1.8 20
33.20 odd 10 121.12.a.j.1.13 20
33.26 odd 10 11.12.c.a.4.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.12.c.a.3.4 40 3.2 odd 2
11.12.c.a.4.4 yes 40 33.26 odd 10
99.12.f.a.37.7 40 11.4 even 5 inner
99.12.f.a.91.7 40 1.1 even 1 trivial
121.12.a.h.1.8 20 33.2 even 10
121.12.a.j.1.13 20 33.20 odd 10