Properties

Label 985.2.b.a.789.37
Level $985$
Weight $2$
Character 985.789
Analytic conductor $7.865$
Analytic rank $0$
Dimension $98$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [985,2,Mod(789,985)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("985.789"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(985, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(98\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 789.37
Character \(\chi\) \(=\) 985.789
Dual form 985.2.b.a.789.62

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.870537i q^{2} -1.92866i q^{3} +1.24217 q^{4} +(2.23259 - 0.124596i) q^{5} -1.67897 q^{6} +4.43166i q^{7} -2.82242i q^{8} -0.719722 q^{9} +(-0.108466 - 1.94356i) q^{10} +1.70316 q^{11} -2.39571i q^{12} +0.123746i q^{13} +3.85792 q^{14} +(-0.240304 - 4.30591i) q^{15} +0.0273066 q^{16} +1.14261i q^{17} +0.626545i q^{18} -8.45775 q^{19} +(2.77325 - 0.154769i) q^{20} +8.54715 q^{21} -1.48266i q^{22} -4.49103i q^{23} -5.44349 q^{24} +(4.96895 - 0.556347i) q^{25} +0.107725 q^{26} -4.39788i q^{27} +5.50485i q^{28} +3.89888 q^{29} +(-3.74845 + 0.209193i) q^{30} +10.9216 q^{31} -5.66862i q^{32} -3.28481i q^{33} +0.994687 q^{34} +(0.552169 + 9.89409i) q^{35} -0.894014 q^{36} +3.64436i q^{37} +7.36279i q^{38} +0.238663 q^{39} +(-0.351664 - 6.30133i) q^{40} +0.728472 q^{41} -7.44061i q^{42} -5.84768i q^{43} +2.11560 q^{44} +(-1.60685 + 0.0896748i) q^{45} -3.90961 q^{46} -11.6020i q^{47} -0.0526651i q^{48} -12.6396 q^{49} +(-0.484320 - 4.32566i) q^{50} +2.20371 q^{51} +0.153713i q^{52} +12.1066i q^{53} -3.82851 q^{54} +(3.80246 - 0.212207i) q^{55} +12.5080 q^{56} +16.3121i q^{57} -3.39412i q^{58} +7.96100 q^{59} +(-0.298497 - 5.34865i) q^{60} -12.8875 q^{61} -9.50769i q^{62} -3.18956i q^{63} -4.88013 q^{64} +(0.0154183 + 0.276274i) q^{65} -2.85955 q^{66} +12.2474i q^{67} +1.41932i q^{68} -8.66166 q^{69} +(8.61317 - 0.480683i) q^{70} -10.6231 q^{71} +2.03136i q^{72} +6.59861i q^{73} +3.17255 q^{74} +(-1.07300 - 9.58341i) q^{75} -10.5059 q^{76} +7.54781i q^{77} -0.207765i q^{78} -9.80240 q^{79} +(0.0609646 - 0.00340231i) q^{80} -10.6412 q^{81} -0.634162i q^{82} -2.94971i q^{83} +10.6170 q^{84} +(0.142366 + 2.55099i) q^{85} -5.09062 q^{86} -7.51960i q^{87} -4.80703i q^{88} -10.4622 q^{89} +(0.0780653 + 1.39882i) q^{90} -0.548398 q^{91} -5.57860i q^{92} -21.0641i q^{93} -10.0999 q^{94} +(-18.8827 + 1.05381i) q^{95} -10.9328 q^{96} +3.31388i q^{97} +11.0032i q^{98} -1.22580 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 98 q - 98 q^{4} - 2 q^{5} + 4 q^{6} - 102 q^{9} - 6 q^{10} - 4 q^{11} + 16 q^{14} - 2 q^{15} + 98 q^{16} - 8 q^{19} - 2 q^{20} + 20 q^{21} + 10 q^{25} - 4 q^{26} - 12 q^{29} - 10 q^{30} - 4 q^{31} + 24 q^{34}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/985\mathbb{Z}\right)^\times\).

\(n\) \(396\) \(592\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.870537i 0.615563i −0.951457 0.307781i \(-0.900414\pi\)
0.951457 0.307781i \(-0.0995865\pi\)
\(3\) 1.92866i 1.11351i −0.830676 0.556756i \(-0.812046\pi\)
0.830676 0.556756i \(-0.187954\pi\)
\(4\) 1.24217 0.621083
\(5\) 2.23259 0.124596i 0.998446 0.0557212i
\(6\) −1.67897 −0.685436
\(7\) 4.43166i 1.67501i 0.546430 + 0.837505i \(0.315986\pi\)
−0.546430 + 0.837505i \(0.684014\pi\)
\(8\) 2.82242i 0.997878i
\(9\) −0.719722 −0.239907
\(10\) −0.108466 1.94356i −0.0342999 0.614606i
\(11\) 1.70316 0.513521 0.256761 0.966475i \(-0.417345\pi\)
0.256761 + 0.966475i \(0.417345\pi\)
\(12\) 2.39571i 0.691583i
\(13\) 0.123746i 0.0343209i 0.999853 + 0.0171604i \(0.00546261\pi\)
−0.999853 + 0.0171604i \(0.994537\pi\)
\(14\) 3.85792 1.03107
\(15\) −0.240304 4.30591i −0.0620462 1.11178i
\(16\) 0.0273066 0.00682665
\(17\) 1.14261i 0.277124i 0.990354 + 0.138562i \(0.0442481\pi\)
−0.990354 + 0.138562i \(0.955752\pi\)
\(18\) 0.626545i 0.147678i
\(19\) −8.45775 −1.94034 −0.970171 0.242422i \(-0.922058\pi\)
−0.970171 + 0.242422i \(0.922058\pi\)
\(20\) 2.77325 0.154769i 0.620118 0.0346075i
\(21\) 8.54715 1.86514
\(22\) 1.48266i 0.316104i
\(23\) 4.49103i 0.936445i −0.883611 0.468222i \(-0.844895\pi\)
0.883611 0.468222i \(-0.155105\pi\)
\(24\) −5.44349 −1.11115
\(25\) 4.96895 0.556347i 0.993790 0.111269i
\(26\) 0.107725 0.0211266
\(27\) 4.39788i 0.846372i
\(28\) 5.50485i 1.04032i
\(29\) 3.89888 0.724004 0.362002 0.932177i \(-0.382093\pi\)
0.362002 + 0.932177i \(0.382093\pi\)
\(30\) −3.74845 + 0.209193i −0.684371 + 0.0381933i
\(31\) 10.9216 1.96158 0.980792 0.195056i \(-0.0624888\pi\)
0.980792 + 0.195056i \(0.0624888\pi\)
\(32\) 5.66862i 1.00208i
\(33\) 3.28481i 0.571812i
\(34\) 0.994687 0.170587
\(35\) 0.552169 + 9.89409i 0.0933336 + 1.67241i
\(36\) −0.894014 −0.149002
\(37\) 3.64436i 0.599128i 0.954076 + 0.299564i \(0.0968413\pi\)
−0.954076 + 0.299564i \(0.903159\pi\)
\(38\) 7.36279i 1.19440i
\(39\) 0.238663 0.0382167
\(40\) −0.351664 6.30133i −0.0556030 0.996327i
\(41\) 0.728472 0.113768 0.0568841 0.998381i \(-0.481883\pi\)
0.0568841 + 0.998381i \(0.481883\pi\)
\(42\) 7.44061i 1.14811i
\(43\) 5.84768i 0.891763i −0.895092 0.445881i \(-0.852890\pi\)
0.895092 0.445881i \(-0.147110\pi\)
\(44\) 2.11560 0.318939
\(45\) −1.60685 + 0.0896748i −0.239535 + 0.0133679i
\(46\) −3.90961 −0.576440
\(47\) 11.6020i 1.69232i −0.532929 0.846160i \(-0.678909\pi\)
0.532929 0.846160i \(-0.321091\pi\)
\(48\) 0.0526651i 0.00760155i
\(49\) −12.6396 −1.80566
\(50\) −0.484320 4.32566i −0.0684932 0.611740i
\(51\) 2.20371 0.308581
\(52\) 0.153713i 0.0213161i
\(53\) 12.1066i 1.66297i 0.555547 + 0.831485i \(0.312509\pi\)
−0.555547 + 0.831485i \(0.687491\pi\)
\(54\) −3.82851 −0.520995
\(55\) 3.80246 0.212207i 0.512723 0.0286140i
\(56\) 12.5080 1.67145
\(57\) 16.3121i 2.16059i
\(58\) 3.39412i 0.445669i
\(59\) 7.96100 1.03643 0.518217 0.855249i \(-0.326596\pi\)
0.518217 + 0.855249i \(0.326596\pi\)
\(60\) −0.298497 5.34865i −0.0385358 0.690508i
\(61\) −12.8875 −1.65008 −0.825038 0.565077i \(-0.808846\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(62\) 9.50769i 1.20748i
\(63\) 3.18956i 0.401847i
\(64\) −4.88013 −0.610016
\(65\) 0.0154183 + 0.276274i 0.00191240 + 0.0342676i
\(66\) −2.85955 −0.351986
\(67\) 12.2474i 1.49626i 0.663553 + 0.748129i \(0.269048\pi\)
−0.663553 + 0.748129i \(0.730952\pi\)
\(68\) 1.41932i 0.172117i
\(69\) −8.66166 −1.04274
\(70\) 8.61317 0.480683i 1.02947 0.0574527i
\(71\) −10.6231 −1.26073 −0.630367 0.776297i \(-0.717096\pi\)
−0.630367 + 0.776297i \(0.717096\pi\)
\(72\) 2.03136i 0.239398i
\(73\) 6.59861i 0.772309i 0.922434 + 0.386155i \(0.126197\pi\)
−0.922434 + 0.386155i \(0.873803\pi\)
\(74\) 3.17255 0.368801
\(75\) −1.07300 9.58341i −0.123900 1.10660i
\(76\) −10.5059 −1.20511
\(77\) 7.54781i 0.860153i
\(78\) 0.207765i 0.0235248i
\(79\) −9.80240 −1.10286 −0.551428 0.834222i \(-0.685917\pi\)
−0.551428 + 0.834222i \(0.685917\pi\)
\(80\) 0.0609646 0.00340231i 0.00681605 0.000380390i
\(81\) −10.6412 −1.18235
\(82\) 0.634162i 0.0700315i
\(83\) 2.94971i 0.323773i −0.986809 0.161887i \(-0.948242\pi\)
0.986809 0.161887i \(-0.0517579\pi\)
\(84\) 10.6170 1.15841
\(85\) 0.142366 + 2.55099i 0.0154417 + 0.276694i
\(86\) −5.09062 −0.548936
\(87\) 7.51960i 0.806186i
\(88\) 4.80703i 0.512431i
\(89\) −10.4622 −1.10899 −0.554496 0.832186i \(-0.687089\pi\)
−0.554496 + 0.832186i \(0.687089\pi\)
\(90\) 0.0780653 + 1.39882i 0.00822880 + 0.147449i
\(91\) −0.548398 −0.0574878
\(92\) 5.57860i 0.581610i
\(93\) 21.0641i 2.18425i
\(94\) −10.0999 −1.04173
\(95\) −18.8827 + 1.05381i −1.93733 + 0.108118i
\(96\) −10.9328 −1.11583
\(97\) 3.31388i 0.336474i 0.985747 + 0.168237i \(0.0538074\pi\)
−0.985747 + 0.168237i \(0.946193\pi\)
\(98\) 11.0032i 1.11149i
\(99\) −1.22580 −0.123198
\(100\) 6.17226 0.691075i 0.617226 0.0691075i
\(101\) 12.2480 1.21872 0.609362 0.792892i \(-0.291426\pi\)
0.609362 + 0.792892i \(0.291426\pi\)
\(102\) 1.91841i 0.189951i
\(103\) 1.25200i 0.123363i 0.998096 + 0.0616815i \(0.0196463\pi\)
−0.998096 + 0.0616815i \(0.980354\pi\)
\(104\) 0.349263 0.0342480
\(105\) 19.0823 1.06495i 1.86224 0.103928i
\(106\) 10.5392 1.02366
\(107\) 10.1858i 0.984702i 0.870397 + 0.492351i \(0.163862\pi\)
−0.870397 + 0.492351i \(0.836138\pi\)
\(108\) 5.46289i 0.525667i
\(109\) 0.528072 0.0505801 0.0252900 0.999680i \(-0.491949\pi\)
0.0252900 + 0.999680i \(0.491949\pi\)
\(110\) −0.184734 3.31018i −0.0176137 0.315613i
\(111\) 7.02872 0.667136
\(112\) 0.121014i 0.0114347i
\(113\) 3.75605i 0.353339i 0.984270 + 0.176670i \(0.0565324\pi\)
−0.984270 + 0.176670i \(0.943468\pi\)
\(114\) 14.2003 1.32998
\(115\) −0.559567 10.0266i −0.0521799 0.934990i
\(116\) 4.84305 0.449666
\(117\) 0.0890625i 0.00823383i
\(118\) 6.93034i 0.637990i
\(119\) −5.06367 −0.464186
\(120\) −12.1531 + 0.678240i −1.10942 + 0.0619145i
\(121\) −8.09926 −0.736296
\(122\) 11.2190i 1.01573i
\(123\) 1.40497i 0.126682i
\(124\) 13.5665 1.21831
\(125\) 11.0243 1.86121i 0.986046 0.166472i
\(126\) −2.77663 −0.247362
\(127\) 4.51202i 0.400377i −0.979757 0.200188i \(-0.935845\pi\)
0.979757 0.200188i \(-0.0641554\pi\)
\(128\) 7.08891i 0.626577i
\(129\) −11.2782 −0.992988
\(130\) 0.240507 0.0134222i 0.0210938 0.00117720i
\(131\) −6.74933 −0.589692 −0.294846 0.955545i \(-0.595268\pi\)
−0.294846 + 0.955545i \(0.595268\pi\)
\(132\) 4.08028i 0.355142i
\(133\) 37.4819i 3.25009i
\(134\) 10.6618 0.921041
\(135\) −0.547960 9.81867i −0.0471609 0.845057i
\(136\) 3.22494 0.276536
\(137\) 14.4330i 1.23309i 0.787319 + 0.616546i \(0.211468\pi\)
−0.787319 + 0.616546i \(0.788532\pi\)
\(138\) 7.54030i 0.641873i
\(139\) 7.31604 0.620538 0.310269 0.950649i \(-0.399581\pi\)
0.310269 + 0.950649i \(0.399581\pi\)
\(140\) 0.685885 + 12.2901i 0.0579679 + 1.03870i
\(141\) −22.3762 −1.88442
\(142\) 9.24784i 0.776061i
\(143\) 0.210758i 0.0176245i
\(144\) −0.0196532 −0.00163776
\(145\) 8.70461 0.485787i 0.722879 0.0403424i
\(146\) 5.74434 0.475405
\(147\) 24.3774i 2.01062i
\(148\) 4.52689i 0.372108i
\(149\) −4.10236 −0.336079 −0.168039 0.985780i \(-0.553744\pi\)
−0.168039 + 0.985780i \(0.553744\pi\)
\(150\) −8.34271 + 0.934088i −0.681179 + 0.0762680i
\(151\) −13.3414 −1.08570 −0.542852 0.839828i \(-0.682656\pi\)
−0.542852 + 0.839828i \(0.682656\pi\)
\(152\) 23.8714i 1.93622i
\(153\) 0.822364i 0.0664842i
\(154\) 6.57065 0.529478
\(155\) 24.3836 1.36080i 1.95854 0.109302i
\(156\) 0.296459 0.0237357
\(157\) 15.6461i 1.24870i −0.781145 0.624349i \(-0.785364\pi\)
0.781145 0.624349i \(-0.214636\pi\)
\(158\) 8.53335i 0.678877i
\(159\) 23.3495 1.85174
\(160\) −0.706290 12.6557i −0.0558371 1.00052i
\(161\) 19.9027 1.56855
\(162\) 9.26353i 0.727811i
\(163\) 10.1824i 0.797543i 0.917050 + 0.398772i \(0.130563\pi\)
−0.917050 + 0.398772i \(0.869437\pi\)
\(164\) 0.904883 0.0706595
\(165\) −0.409275 7.33364i −0.0318621 0.570923i
\(166\) −2.56783 −0.199303
\(167\) 11.4059i 0.882619i 0.897355 + 0.441309i \(0.145486\pi\)
−0.897355 + 0.441309i \(0.854514\pi\)
\(168\) 24.1237i 1.86118i
\(169\) 12.9847 0.998822
\(170\) 2.22073 0.123934i 0.170322 0.00950534i
\(171\) 6.08723 0.465502
\(172\) 7.26378i 0.553858i
\(173\) 24.8344i 1.88812i 0.329771 + 0.944061i \(0.393028\pi\)
−0.329771 + 0.944061i \(0.606972\pi\)
\(174\) −6.54609 −0.496258
\(175\) 2.46554 + 22.0207i 0.186377 + 1.66461i
\(176\) 0.0465075 0.00350563
\(177\) 15.3540i 1.15408i
\(178\) 9.10775i 0.682655i
\(179\) −21.0550 −1.57372 −0.786861 0.617130i \(-0.788295\pi\)
−0.786861 + 0.617130i \(0.788295\pi\)
\(180\) −1.99597 + 0.111391i −0.148771 + 0.00830259i
\(181\) −4.58253 −0.340617 −0.170308 0.985391i \(-0.554476\pi\)
−0.170308 + 0.985391i \(0.554476\pi\)
\(182\) 0.477401i 0.0353873i
\(183\) 24.8556i 1.83738i
\(184\) −12.6756 −0.934457
\(185\) 0.454074 + 8.13637i 0.0333842 + 0.598198i
\(186\) −18.3371 −1.34454
\(187\) 1.94605i 0.142309i
\(188\) 14.4116i 1.05107i
\(189\) 19.4899 1.41768
\(190\) 0.917377 + 16.4381i 0.0665535 + 1.19255i
\(191\) −12.9687 −0.938385 −0.469193 0.883096i \(-0.655455\pi\)
−0.469193 + 0.883096i \(0.655455\pi\)
\(192\) 9.41210i 0.679260i
\(193\) 4.21268i 0.303235i 0.988439 + 0.151618i \(0.0484482\pi\)
−0.988439 + 0.151618i \(0.951552\pi\)
\(194\) 2.88486 0.207121
\(195\) 0.532838 0.0297366i 0.0381573 0.00212948i
\(196\) −15.7005 −1.12146
\(197\) 1.00000i 0.0712470i
\(198\) 1.06710i 0.0758358i
\(199\) 9.85404 0.698534 0.349267 0.937023i \(-0.386431\pi\)
0.349267 + 0.937023i \(0.386431\pi\)
\(200\) −1.57025 14.0245i −0.111033 0.991681i
\(201\) 23.6211 1.66610
\(202\) 10.6623i 0.750200i
\(203\) 17.2785i 1.21271i
\(204\) 2.73737 0.191654
\(205\) 1.62638 0.0907651i 0.113592 0.00633931i
\(206\) 1.08991 0.0759376
\(207\) 3.23229i 0.224660i
\(208\) 0.00337907i 0.000234297i
\(209\) −14.4049 −0.996407
\(210\) −0.927074 16.6119i −0.0639742 1.14633i
\(211\) −9.42984 −0.649177 −0.324588 0.945855i \(-0.605226\pi\)
−0.324588 + 0.945855i \(0.605226\pi\)
\(212\) 15.0384i 1.03284i
\(213\) 20.4884i 1.40384i
\(214\) 8.86714 0.606145
\(215\) −0.728600 13.0555i −0.0496901 0.890377i
\(216\) −12.4127 −0.844576
\(217\) 48.4010i 3.28567i
\(218\) 0.459706i 0.0311352i
\(219\) 12.7265 0.859975
\(220\) 4.72328 0.263597i 0.318444 0.0177717i
\(221\) −0.141393 −0.00951115
\(222\) 6.11876i 0.410664i
\(223\) 22.5192i 1.50800i −0.656876 0.753999i \(-0.728123\pi\)
0.656876 0.753999i \(-0.271877\pi\)
\(224\) 25.1214 1.67849
\(225\) −3.57626 + 0.400415i −0.238418 + 0.0266943i
\(226\) 3.26978 0.217502
\(227\) 0.372248i 0.0247070i −0.999924 0.0123535i \(-0.996068\pi\)
0.999924 0.0123535i \(-0.00393234\pi\)
\(228\) 20.2624i 1.34191i
\(229\) −16.0618 −1.06139 −0.530696 0.847562i \(-0.678070\pi\)
−0.530696 + 0.847562i \(0.678070\pi\)
\(230\) −8.72857 + 0.487123i −0.575545 + 0.0321200i
\(231\) 14.5571 0.957790
\(232\) 11.0043i 0.722467i
\(233\) 3.23653i 0.212032i 0.994364 + 0.106016i \(0.0338095\pi\)
−0.994364 + 0.106016i \(0.966190\pi\)
\(234\) −0.0775322 −0.00506844
\(235\) −1.44556 25.9025i −0.0942981 1.68969i
\(236\) 9.88888 0.643711
\(237\) 18.9055i 1.22804i
\(238\) 4.40811i 0.285736i
\(239\) 23.8140 1.54040 0.770200 0.637802i \(-0.220156\pi\)
0.770200 + 0.637802i \(0.220156\pi\)
\(240\) −0.00656189 0.117580i −0.000423568 0.00758974i
\(241\) 22.1911 1.42945 0.714727 0.699403i \(-0.246551\pi\)
0.714727 + 0.699403i \(0.246551\pi\)
\(242\) 7.05070i 0.453236i
\(243\) 7.32954i 0.470190i
\(244\) −16.0084 −1.02483
\(245\) −28.2191 + 1.57485i −1.80285 + 0.100613i
\(246\) −1.22308 −0.0779808
\(247\) 1.04661i 0.0665942i
\(248\) 30.8255i 1.95742i
\(249\) −5.68899 −0.360525
\(250\) −1.62025 9.59709i −0.102474 0.606973i
\(251\) −2.15167 −0.135812 −0.0679062 0.997692i \(-0.521632\pi\)
−0.0679062 + 0.997692i \(0.521632\pi\)
\(252\) 3.96196i 0.249580i
\(253\) 7.64893i 0.480884i
\(254\) −3.92788 −0.246457
\(255\) 4.91999 0.274575i 0.308102 0.0171945i
\(256\) −15.9314 −0.995713
\(257\) 10.9521i 0.683176i −0.939850 0.341588i \(-0.889035\pi\)
0.939850 0.341588i \(-0.110965\pi\)
\(258\) 9.81806i 0.611246i
\(259\) −16.1505 −1.00355
\(260\) 0.0191520 + 0.343178i 0.00118776 + 0.0212830i
\(261\) −2.80611 −0.173694
\(262\) 5.87554i 0.362992i
\(263\) 8.66154i 0.534093i −0.963684 0.267047i \(-0.913952\pi\)
0.963684 0.267047i \(-0.0860478\pi\)
\(264\) −9.27112 −0.570598
\(265\) 1.50844 + 27.0291i 0.0926627 + 1.66039i
\(266\) −32.6294 −2.00063
\(267\) 20.1780i 1.23488i
\(268\) 15.2133i 0.929301i
\(269\) −10.4447 −0.636824 −0.318412 0.947952i \(-0.603150\pi\)
−0.318412 + 0.947952i \(0.603150\pi\)
\(270\) −8.54752 + 0.477019i −0.520185 + 0.0290305i
\(271\) 4.55775 0.276864 0.138432 0.990372i \(-0.455794\pi\)
0.138432 + 0.990372i \(0.455794\pi\)
\(272\) 0.0312009i 0.00189183i
\(273\) 1.05767i 0.0640133i
\(274\) 12.5644 0.759045
\(275\) 8.46291 0.947546i 0.510332 0.0571392i
\(276\) −10.7592 −0.647629
\(277\) 29.5789i 1.77722i 0.458660 + 0.888612i \(0.348329\pi\)
−0.458660 + 0.888612i \(0.651671\pi\)
\(278\) 6.36888i 0.381980i
\(279\) −7.86055 −0.470599
\(280\) 27.9253 1.55846i 1.66886 0.0931355i
\(281\) −5.02303 −0.299649 −0.149824 0.988713i \(-0.547871\pi\)
−0.149824 + 0.988713i \(0.547871\pi\)
\(282\) 19.4793i 1.15998i
\(283\) 7.53723i 0.448042i −0.974584 0.224021i \(-0.928082\pi\)
0.974584 0.224021i \(-0.0719184\pi\)
\(284\) −13.1957 −0.783021
\(285\) 2.03243 + 36.4183i 0.120391 + 2.15724i
\(286\) 0.183473 0.0108490
\(287\) 3.22834i 0.190563i
\(288\) 4.07983i 0.240406i
\(289\) 15.6944 0.923202
\(290\) −0.422895 7.57769i −0.0248333 0.444977i
\(291\) 6.39135 0.374668
\(292\) 8.19657i 0.479668i
\(293\) 5.84987i 0.341753i −0.985292 0.170877i \(-0.945340\pi\)
0.985292 0.170877i \(-0.0546599\pi\)
\(294\) 21.2215 1.23766
\(295\) 17.7737 0.991912i 1.03482 0.0577514i
\(296\) 10.2859 0.597857
\(297\) 7.49028i 0.434630i
\(298\) 3.57126i 0.206877i
\(299\) 0.555746 0.0321396
\(300\) −1.33285 11.9042i −0.0769519 0.687288i
\(301\) 25.9149 1.49371
\(302\) 11.6141i 0.668319i
\(303\) 23.6222i 1.35706i
\(304\) −0.230953 −0.0132460
\(305\) −28.7726 + 1.60574i −1.64751 + 0.0919443i
\(306\) −0.715898 −0.0409252
\(307\) 22.8530i 1.30429i −0.758094 0.652146i \(-0.773869\pi\)
0.758094 0.652146i \(-0.226131\pi\)
\(308\) 9.37563i 0.534226i
\(309\) 2.41467 0.137366
\(310\) −1.18462 21.2268i −0.0672822 1.20560i
\(311\) 0.848574 0.0481182 0.0240591 0.999711i \(-0.492341\pi\)
0.0240591 + 0.999711i \(0.492341\pi\)
\(312\) 0.673609i 0.0381356i
\(313\) 24.2552i 1.37099i −0.728078 0.685494i \(-0.759586\pi\)
0.728078 0.685494i \(-0.240414\pi\)
\(314\) −13.6205 −0.768652
\(315\) −0.397408 7.12100i −0.0223914 0.401223i
\(316\) −12.1762 −0.684965
\(317\) 9.50882i 0.534069i −0.963687 0.267034i \(-0.913956\pi\)
0.963687 0.267034i \(-0.0860437\pi\)
\(318\) 20.3266i 1.13986i
\(319\) 6.64040 0.371791
\(320\) −10.8953 + 0.608047i −0.609068 + 0.0339909i
\(321\) 19.6450 1.09648
\(322\) 17.3260i 0.965543i
\(323\) 9.66394i 0.537716i
\(324\) −13.2181 −0.734338
\(325\) 0.0688455 + 0.614886i 0.00381886 + 0.0341078i
\(326\) 8.86411 0.490938
\(327\) 1.01847i 0.0563215i
\(328\) 2.05606i 0.113527i
\(329\) 51.4159 2.83465
\(330\) −6.38421 + 0.356289i −0.351439 + 0.0196131i
\(331\) 2.55412 0.140387 0.0701936 0.997533i \(-0.477638\pi\)
0.0701936 + 0.997533i \(0.477638\pi\)
\(332\) 3.66403i 0.201090i
\(333\) 2.62292i 0.143735i
\(334\) 9.92930 0.543307
\(335\) 1.52598 + 27.3435i 0.0833734 + 1.49393i
\(336\) 0.233394 0.0127327
\(337\) 7.54624i 0.411070i 0.978650 + 0.205535i \(0.0658934\pi\)
−0.978650 + 0.205535i \(0.934107\pi\)
\(338\) 11.3036i 0.614837i
\(339\) 7.24413 0.393447
\(340\) 0.176842 + 3.16875i 0.00959058 + 0.171850i
\(341\) 18.6013 1.00732
\(342\) 5.29916i 0.286546i
\(343\) 24.9927i 1.34948i
\(344\) −16.5046 −0.889870
\(345\) −19.3380 + 1.07921i −1.04112 + 0.0581029i
\(346\) 21.6192 1.16226
\(347\) 13.6684i 0.733756i 0.930269 + 0.366878i \(0.119573\pi\)
−0.930269 + 0.366878i \(0.880427\pi\)
\(348\) 9.34059i 0.500708i
\(349\) −30.5829 −1.63706 −0.818531 0.574462i \(-0.805211\pi\)
−0.818531 + 0.574462i \(0.805211\pi\)
\(350\) 19.1698 2.14634i 1.02467 0.114727i
\(351\) 0.544218 0.0290482
\(352\) 9.65455i 0.514589i
\(353\) 8.32483i 0.443086i −0.975151 0.221543i \(-0.928891\pi\)
0.975151 0.221543i \(-0.0711093\pi\)
\(354\) −13.3663 −0.710409
\(355\) −23.7172 + 1.32361i −1.25878 + 0.0702497i
\(356\) −12.9958 −0.688776
\(357\) 9.76609i 0.516876i
\(358\) 18.3291i 0.968725i
\(359\) −12.4077 −0.654855 −0.327428 0.944876i \(-0.606182\pi\)
−0.327428 + 0.944876i \(0.606182\pi\)
\(360\) 0.253100 + 4.53521i 0.0133396 + 0.239026i
\(361\) 52.5336 2.76493
\(362\) 3.98926i 0.209671i
\(363\) 15.6207i 0.819874i
\(364\) −0.681202 −0.0357047
\(365\) 0.822164 + 14.7320i 0.0430340 + 0.771109i
\(366\) 21.6377 1.13102
\(367\) 33.0594i 1.72569i −0.505472 0.862843i \(-0.668682\pi\)
0.505472 0.862843i \(-0.331318\pi\)
\(368\) 0.122635i 0.00639278i
\(369\) −0.524298 −0.0272938
\(370\) 7.08301 0.395288i 0.368228 0.0205500i
\(371\) −53.6523 −2.78549
\(372\) 26.1651i 1.35660i
\(373\) 24.6346i 1.27553i −0.770231 0.637765i \(-0.779859\pi\)
0.770231 0.637765i \(-0.220141\pi\)
\(374\) 1.69411 0.0876003
\(375\) −3.58964 21.2622i −0.185368 1.09797i
\(376\) −32.7457 −1.68873
\(377\) 0.482469i 0.0248484i
\(378\) 16.9667i 0.872671i
\(379\) −2.30362 −0.118329 −0.0591645 0.998248i \(-0.518844\pi\)
−0.0591645 + 0.998248i \(0.518844\pi\)
\(380\) −23.4555 + 1.30900i −1.20324 + 0.0671504i
\(381\) −8.70214 −0.445824
\(382\) 11.2898i 0.577635i
\(383\) 22.6666i 1.15821i −0.815253 0.579104i \(-0.803402\pi\)
0.815253 0.579104i \(-0.196598\pi\)
\(384\) −13.6721 −0.697700
\(385\) 0.940430 + 16.8512i 0.0479288 + 0.858816i
\(386\) 3.66729 0.186660
\(387\) 4.20870i 0.213940i
\(388\) 4.11639i 0.208978i
\(389\) 10.8248 0.548840 0.274420 0.961610i \(-0.411514\pi\)
0.274420 + 0.961610i \(0.411514\pi\)
\(390\) −0.0258868 0.463855i −0.00131083 0.0234882i
\(391\) 5.13151 0.259512
\(392\) 35.6743i 1.80182i
\(393\) 13.0172i 0.656629i
\(394\) −0.870537 −0.0438570
\(395\) −21.8848 + 1.22134i −1.10114 + 0.0614525i
\(396\) −1.52265 −0.0765159
\(397\) 14.2272i 0.714040i 0.934097 + 0.357020i \(0.116207\pi\)
−0.934097 + 0.357020i \(0.883793\pi\)
\(398\) 8.57830i 0.429991i
\(399\) −72.2897 −3.61901
\(400\) 0.135685 0.0151919i 0.00678426 0.000759597i
\(401\) 31.7277 1.58441 0.792203 0.610257i \(-0.208934\pi\)
0.792203 + 0.610257i \(0.208934\pi\)
\(402\) 20.5630i 1.02559i
\(403\) 1.35151i 0.0673233i
\(404\) 15.2141 0.756928
\(405\) −23.7574 + 1.32585i −1.18051 + 0.0658821i
\(406\) 15.0416 0.746500
\(407\) 6.20691i 0.307665i
\(408\) 6.21981i 0.307926i
\(409\) −23.4878 −1.16140 −0.580698 0.814119i \(-0.697220\pi\)
−0.580698 + 0.814119i \(0.697220\pi\)
\(410\) −0.0790144 1.41583i −0.00390224 0.0699227i
\(411\) 27.8362 1.37306
\(412\) 1.55519i 0.0766186i
\(413\) 35.2804i 1.73604i
\(414\) 2.81383 0.138292
\(415\) −0.367524 6.58551i −0.0180410 0.323270i
\(416\) 0.701467 0.0343923
\(417\) 14.1101i 0.690976i
\(418\) 12.5400i 0.613351i
\(419\) −18.4285 −0.900292 −0.450146 0.892955i \(-0.648628\pi\)
−0.450146 + 0.892955i \(0.648628\pi\)
\(420\) 23.7034 1.32284i 1.15661 0.0645479i
\(421\) −12.9360 −0.630460 −0.315230 0.949015i \(-0.602082\pi\)
−0.315230 + 0.949015i \(0.602082\pi\)
\(422\) 8.20902i 0.399609i
\(423\) 8.35019i 0.406000i
\(424\) 34.1700 1.65944
\(425\) 0.635689 + 5.67759i 0.0308355 + 0.275404i
\(426\) 17.8359 0.864153
\(427\) 57.1130i 2.76389i
\(428\) 12.6525i 0.611581i
\(429\) 0.406481 0.0196251
\(430\) −11.3653 + 0.634273i −0.548083 + 0.0305874i
\(431\) −17.2655 −0.831650 −0.415825 0.909445i \(-0.636507\pi\)
−0.415825 + 0.909445i \(0.636507\pi\)
\(432\) 0.120091i 0.00577789i
\(433\) 24.0953i 1.15795i 0.815347 + 0.578973i \(0.196546\pi\)
−0.815347 + 0.578973i \(0.803454\pi\)
\(434\) 42.1348 2.02254
\(435\) −0.936916 16.7882i −0.0449217 0.804934i
\(436\) 0.655953 0.0314144
\(437\) 37.9840i 1.81702i
\(438\) 11.0789i 0.529368i
\(439\) −0.725758 −0.0346386 −0.0173193 0.999850i \(-0.505513\pi\)
−0.0173193 + 0.999850i \(0.505513\pi\)
\(440\) −0.598939 10.7322i −0.0285533 0.511635i
\(441\) 9.09699 0.433190
\(442\) 0.123088i 0.00585471i
\(443\) 25.6666i 1.21945i −0.792611 0.609727i \(-0.791279\pi\)
0.792611 0.609727i \(-0.208721\pi\)
\(444\) 8.73083 0.414347
\(445\) −23.3579 + 1.30356i −1.10727 + 0.0617945i
\(446\) −19.6038 −0.928266
\(447\) 7.91205i 0.374227i
\(448\) 21.6271i 1.02178i
\(449\) 30.2263 1.42647 0.713235 0.700925i \(-0.247229\pi\)
0.713235 + 0.700925i \(0.247229\pi\)
\(450\) 0.348576 + 3.11327i 0.0164320 + 0.146761i
\(451\) 1.24070 0.0584224
\(452\) 4.66563i 0.219453i
\(453\) 25.7309i 1.20894i
\(454\) −0.324056 −0.0152087
\(455\) −1.22435 + 0.0683285i −0.0573985 + 0.00320329i
\(456\) 46.0397 2.15601
\(457\) 6.05210i 0.283105i −0.989931 0.141553i \(-0.954791\pi\)
0.989931 0.141553i \(-0.0452095\pi\)
\(458\) 13.9824i 0.653354i
\(459\) 5.02507 0.234550
\(460\) −0.695074 12.4548i −0.0324080 0.580706i
\(461\) −6.19623 −0.288587 −0.144293 0.989535i \(-0.546091\pi\)
−0.144293 + 0.989535i \(0.546091\pi\)
\(462\) 12.6725i 0.589580i
\(463\) 17.4621i 0.811533i 0.913977 + 0.405767i \(0.132995\pi\)
−0.913977 + 0.405767i \(0.867005\pi\)
\(464\) 0.106465 0.00494252
\(465\) −2.62451 47.0276i −0.121709 2.18085i
\(466\) 2.81752 0.130519
\(467\) 26.8068i 1.24047i 0.784416 + 0.620236i \(0.212963\pi\)
−0.784416 + 0.620236i \(0.787037\pi\)
\(468\) 0.110630i 0.00511389i
\(469\) −54.2763 −2.50625
\(470\) −22.5490 + 1.25842i −1.04011 + 0.0580464i
\(471\) −30.1761 −1.39044
\(472\) 22.4693i 1.03423i
\(473\) 9.95952i 0.457939i
\(474\) 16.4579 0.755937
\(475\) −42.0262 + 4.70544i −1.92829 + 0.215901i
\(476\) −6.28992 −0.288298
\(477\) 8.71339i 0.398959i
\(478\) 20.7310i 0.948213i
\(479\) 17.4704 0.798244 0.399122 0.916898i \(-0.369315\pi\)
0.399122 + 0.916898i \(0.369315\pi\)
\(480\) −24.4086 + 1.36219i −1.11409 + 0.0621753i
\(481\) −0.450973 −0.0205626
\(482\) 19.3182i 0.879919i
\(483\) 38.3855i 1.74660i
\(484\) −10.0606 −0.457301
\(485\) 0.412898 + 7.39856i 0.0187487 + 0.335951i
\(486\) 6.38064 0.289432
\(487\) 13.3952i 0.606996i 0.952832 + 0.303498i \(0.0981546\pi\)
−0.952832 + 0.303498i \(0.901845\pi\)
\(488\) 36.3740i 1.64657i
\(489\) 19.6383 0.888074
\(490\) 1.37096 + 24.5657i 0.0619338 + 1.10977i
\(491\) 2.76836 0.124934 0.0624672 0.998047i \(-0.480103\pi\)
0.0624672 + 0.998047i \(0.480103\pi\)
\(492\) 1.74521i 0.0786802i
\(493\) 4.45491i 0.200639i
\(494\) −0.911113 −0.0409929
\(495\) −2.73671 + 0.152730i −0.123006 + 0.00686472i
\(496\) 0.298233 0.0133911
\(497\) 47.0781i 2.11174i
\(498\) 4.95247i 0.221926i
\(499\) 19.6857 0.881253 0.440627 0.897690i \(-0.354756\pi\)
0.440627 + 0.897690i \(0.354756\pi\)
\(500\) 13.6940 2.31193i 0.612416 0.103393i
\(501\) 21.9982 0.982806
\(502\) 1.87311i 0.0836010i
\(503\) 9.61308i 0.428626i −0.976765 0.214313i \(-0.931249\pi\)
0.976765 0.214313i \(-0.0687513\pi\)
\(504\) −9.00230 −0.400994
\(505\) 27.3448 1.52606i 1.21683 0.0679088i
\(506\) −6.65868 −0.296014
\(507\) 25.0430i 1.11220i
\(508\) 5.60467i 0.248667i
\(509\) 27.0505 1.19899 0.599496 0.800377i \(-0.295368\pi\)
0.599496 + 0.800377i \(0.295368\pi\)
\(510\) −0.239027 4.28303i −0.0105843 0.189656i
\(511\) −29.2428 −1.29363
\(512\) 0.308933i 0.0136530i
\(513\) 37.1962i 1.64225i
\(514\) −9.53425 −0.420538
\(515\) 0.155994 + 2.79520i 0.00687394 + 0.123171i
\(516\) −14.0094 −0.616728
\(517\) 19.7600i 0.869042i
\(518\) 14.0596i 0.617745i
\(519\) 47.8970 2.10244
\(520\) 0.779762 0.0435169i 0.0341948 0.00190834i
\(521\) −22.9932 −1.00735 −0.503676 0.863893i \(-0.668019\pi\)
−0.503676 + 0.863893i \(0.668019\pi\)
\(522\) 2.44282i 0.106919i
\(523\) 15.6933i 0.686219i −0.939295 0.343110i \(-0.888520\pi\)
0.939295 0.343110i \(-0.111480\pi\)
\(524\) −8.38379 −0.366248
\(525\) 42.4704 4.75518i 1.85356 0.207533i
\(526\) −7.54019 −0.328768
\(527\) 12.4792i 0.543603i
\(528\) 0.0896970i 0.00390356i
\(529\) 2.83064 0.123071
\(530\) 23.5299 1.31315i 1.02207 0.0570397i
\(531\) −5.72971 −0.248648
\(532\) 46.5587i 2.01858i
\(533\) 0.0901453i 0.00390463i
\(534\) 17.5657 0.760143
\(535\) 1.26912 + 22.7408i 0.0548688 + 0.983172i
\(536\) 34.5674 1.49308
\(537\) 40.6079i 1.75236i
\(538\) 9.09249i 0.392005i
\(539\) −21.5272 −0.927243
\(540\) −0.680657 12.1964i −0.0292908 0.524850i
\(541\) 27.6492 1.18873 0.594366 0.804194i \(-0.297403\pi\)
0.594366 + 0.804194i \(0.297403\pi\)
\(542\) 3.96769i 0.170427i
\(543\) 8.83814i 0.379281i
\(544\) 6.47704 0.277701
\(545\) 1.17897 0.0657959i 0.0505015 0.00281839i
\(546\) 0.920743 0.0394042
\(547\) 27.9155i 1.19358i 0.802397 + 0.596790i \(0.203558\pi\)
−0.802397 + 0.596790i \(0.796442\pi\)
\(548\) 17.9281i 0.765852i
\(549\) 9.27542 0.395865
\(550\) −0.824874 7.36727i −0.0351727 0.314142i
\(551\) −32.9758 −1.40481
\(552\) 24.4469i 1.04053i
\(553\) 43.4409i 1.84729i
\(554\) 25.7495 1.09399
\(555\) 15.6923 0.875753i 0.666100 0.0371737i
\(556\) 9.08773 0.385406
\(557\) 9.60825i 0.407115i −0.979063 0.203557i \(-0.934750\pi\)
0.979063 0.203557i \(-0.0652503\pi\)
\(558\) 6.84289i 0.289683i
\(559\) 0.723625 0.0306061
\(560\) 0.0150779 + 0.270174i 0.000637156 + 0.0114169i
\(561\) 3.75327 0.158463
\(562\) 4.37273i 0.184452i
\(563\) 22.1977i 0.935520i 0.883855 + 0.467760i \(0.154939\pi\)
−0.883855 + 0.467760i \(0.845061\pi\)
\(564\) −27.7950 −1.17038
\(565\) 0.467990 + 8.38573i 0.0196885 + 0.352790i
\(566\) −6.56144 −0.275798
\(567\) 47.1580i 1.98045i
\(568\) 29.9830i 1.25806i
\(569\) 12.3835 0.519145 0.259573 0.965724i \(-0.416418\pi\)
0.259573 + 0.965724i \(0.416418\pi\)
\(570\) 31.7035 1.76931i 1.32791 0.0741081i
\(571\) −27.9621 −1.17018 −0.585090 0.810969i \(-0.698941\pi\)
−0.585090 + 0.810969i \(0.698941\pi\)
\(572\) 0.261797i 0.0109463i
\(573\) 25.0123i 1.04490i
\(574\) 2.81039 0.117303
\(575\) −2.49857 22.3157i −0.104198 0.930630i
\(576\) 3.51234 0.146347
\(577\) 34.3719i 1.43092i −0.698654 0.715460i \(-0.746217\pi\)
0.698654 0.715460i \(-0.253783\pi\)
\(578\) 13.6626i 0.568289i
\(579\) 8.12481 0.337656
\(580\) 10.8126 0.603427i 0.448968 0.0250560i
\(581\) 13.0721 0.542323
\(582\) 5.56391i 0.230631i
\(583\) 20.6194i 0.853970i
\(584\) 18.6241 0.770670
\(585\) −0.0110969 0.198840i −0.000458799 0.00822104i
\(586\) −5.09253 −0.210370
\(587\) 47.0526i 1.94207i −0.238944 0.971033i \(-0.576801\pi\)
0.238944 0.971033i \(-0.423199\pi\)
\(588\) 30.2808i 1.24876i
\(589\) −92.3725 −3.80614
\(590\) −0.863496 15.4726i −0.0355496 0.636999i
\(591\) −1.92866 −0.0793344
\(592\) 0.0995150i 0.00409004i
\(593\) 10.0447i 0.412486i −0.978501 0.206243i \(-0.933876\pi\)
0.978501 0.206243i \(-0.0661238\pi\)
\(594\) −6.52056 −0.267542
\(595\) −11.3051 + 0.630916i −0.463465 + 0.0258650i
\(596\) −5.09581 −0.208733
\(597\) 19.0051i 0.777826i
\(598\) 0.483797i 0.0197839i
\(599\) 29.0212 1.18577 0.592886 0.805286i \(-0.297988\pi\)
0.592886 + 0.805286i \(0.297988\pi\)
\(600\) −27.0484 + 3.02847i −1.10425 + 0.123637i
\(601\) −0.756067 −0.0308406 −0.0154203 0.999881i \(-0.504909\pi\)
−0.0154203 + 0.999881i \(0.504909\pi\)
\(602\) 22.5599i 0.919472i
\(603\) 8.81473i 0.358964i
\(604\) −16.5722 −0.674313
\(605\) −18.0823 + 1.00914i −0.735152 + 0.0410273i
\(606\) −20.5640 −0.835357
\(607\) 0.980632i 0.0398026i 0.999802 + 0.0199013i \(0.00633520\pi\)
−0.999802 + 0.0199013i \(0.993665\pi\)
\(608\) 47.9438i 1.94438i
\(609\) 33.3243 1.35037
\(610\) 1.39785 + 25.0476i 0.0565975 + 1.01415i
\(611\) 1.43569 0.0580819
\(612\) 1.02151i 0.0412922i
\(613\) 32.3831i 1.30794i −0.756520 0.653971i \(-0.773102\pi\)
0.756520 0.653971i \(-0.226898\pi\)
\(614\) −19.8944 −0.802873
\(615\) −0.175055 3.13674i −0.00705889 0.126485i
\(616\) 21.3031 0.858327
\(617\) 4.27331i 0.172037i −0.996294 0.0860185i \(-0.972586\pi\)
0.996294 0.0860185i \(-0.0274144\pi\)
\(618\) 2.10206i 0.0845574i
\(619\) 23.6528 0.950687 0.475343 0.879800i \(-0.342324\pi\)
0.475343 + 0.879800i \(0.342324\pi\)
\(620\) 30.2885 1.69034i 1.21641 0.0678855i
\(621\) −19.7510 −0.792580
\(622\) 0.738715i 0.0296198i
\(623\) 46.3650i 1.85757i
\(624\) 0.00651708 0.000260892
\(625\) 24.3810 5.52892i 0.975238 0.221157i
\(626\) −21.1151 −0.843929
\(627\) 27.7821i 1.10951i
\(628\) 19.4351i 0.775545i
\(629\) −4.16409 −0.166033
\(630\) −6.19909 + 0.345958i −0.246978 + 0.0137833i
\(631\) −2.75054 −0.109497 −0.0547487 0.998500i \(-0.517436\pi\)
−0.0547487 + 0.998500i \(0.517436\pi\)
\(632\) 27.6665i 1.10052i
\(633\) 18.1869i 0.722866i
\(634\) −8.27778 −0.328753
\(635\) −0.562182 10.0735i −0.0223095 0.399755i
\(636\) 29.0039 1.15008
\(637\) 1.56409i 0.0619717i
\(638\) 5.78072i 0.228861i
\(639\) 7.64571 0.302460
\(640\) −0.883253 15.8267i −0.0349136 0.625603i
\(641\) −11.3606 −0.448719 −0.224359 0.974506i \(-0.572029\pi\)
−0.224359 + 0.974506i \(0.572029\pi\)
\(642\) 17.1017i 0.674950i
\(643\) 33.8558i 1.33514i −0.744545 0.667572i \(-0.767334\pi\)
0.744545 0.667572i \(-0.232666\pi\)
\(644\) 24.7225 0.974202
\(645\) −25.1796 + 1.40522i −0.991445 + 0.0553305i
\(646\) −8.41282 −0.330998
\(647\) 37.0829i 1.45788i 0.684579 + 0.728939i \(0.259986\pi\)
−0.684579 + 0.728939i \(0.740014\pi\)
\(648\) 30.0339i 1.17984i
\(649\) 13.5588 0.532231
\(650\) 0.535281 0.0599325i 0.0209955 0.00235075i
\(651\) 93.3489 3.65863
\(652\) 12.6482i 0.495340i
\(653\) 28.2327i 1.10483i −0.833569 0.552415i \(-0.813706\pi\)
0.833569 0.552415i \(-0.186294\pi\)
\(654\) −0.886615 −0.0346694
\(655\) −15.0685 + 0.840943i −0.588776 + 0.0328584i
\(656\) 0.0198921 0.000776656
\(657\) 4.74917i 0.185283i
\(658\) 44.7594i 1.74490i
\(659\) −32.3003 −1.25824 −0.629120 0.777308i \(-0.716585\pi\)
−0.629120 + 0.777308i \(0.716585\pi\)
\(660\) −0.508388 9.10960i −0.0197890 0.354591i
\(661\) −11.4499 −0.445350 −0.222675 0.974893i \(-0.571479\pi\)
−0.222675 + 0.974893i \(0.571479\pi\)
\(662\) 2.22346i 0.0864171i
\(663\) 0.272700i 0.0105908i
\(664\) −8.32534 −0.323086
\(665\) −4.67011 83.6818i −0.181099 3.24504i
\(666\) −2.28335 −0.0884781
\(667\) 17.5100i 0.677989i
\(668\) 14.1681i 0.548179i
\(669\) −43.4318 −1.67917
\(670\) 23.8035 1.32842i 0.919610 0.0513215i
\(671\) −21.9495 −0.847349
\(672\) 48.4506i 1.86902i
\(673\) 15.0187i 0.578928i 0.957189 + 0.289464i \(0.0934771\pi\)
−0.957189 + 0.289464i \(0.906523\pi\)
\(674\) 6.56928 0.253039
\(675\) −2.44674 21.8528i −0.0941752 0.841116i
\(676\) 16.1291 0.620351
\(677\) 3.69635i 0.142062i 0.997474 + 0.0710312i \(0.0226290\pi\)
−0.997474 + 0.0710312i \(0.977371\pi\)
\(678\) 6.30628i 0.242191i
\(679\) −14.6860 −0.563597
\(680\) 7.19998 0.401816i 0.276107 0.0154089i
\(681\) −0.717939 −0.0275115
\(682\) 16.1931i 0.620065i
\(683\) 9.96233i 0.381198i 0.981668 + 0.190599i \(0.0610430\pi\)
−0.981668 + 0.190599i \(0.938957\pi\)
\(684\) 7.56135 0.289116
\(685\) 1.79830 + 32.2229i 0.0687094 + 1.23118i
\(686\) −21.7571 −0.830690
\(687\) 30.9777i 1.18187i
\(688\) 0.159680i 0.00608775i
\(689\) −1.49814 −0.0570746
\(690\) 0.939494 + 16.8344i 0.0357659 + 0.640876i
\(691\) −24.9722 −0.949986 −0.474993 0.879990i \(-0.657549\pi\)
−0.474993 + 0.879990i \(0.657549\pi\)
\(692\) 30.8484i 1.17268i
\(693\) 5.43233i 0.206357i
\(694\) 11.8988 0.451673
\(695\) 16.3337 0.911552i 0.619574 0.0345772i
\(696\) −21.2235 −0.804475
\(697\) 0.832362i 0.0315280i
\(698\) 26.6235i 1.00771i
\(699\) 6.24217 0.236100
\(700\) 3.06261 + 27.3533i 0.115756 + 1.03386i
\(701\) 26.1263 0.986777 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(702\) 0.473762i 0.0178810i
\(703\) 30.8231i 1.16251i
\(704\) −8.31163 −0.313256
\(705\) −49.9570 + 2.78800i −1.88149 + 0.105002i
\(706\) −7.24707 −0.272747
\(707\) 54.2790i 2.04137i
\(708\) 19.0723i 0.716780i
\(709\) −0.447942 −0.0168228 −0.00841142 0.999965i \(-0.502677\pi\)
−0.00841142 + 0.999965i \(0.502677\pi\)
\(710\) 1.15225 + 20.6467i 0.0432431 + 0.774855i
\(711\) 7.05500 0.264583
\(712\) 29.5288i 1.10664i
\(713\) 49.0494i 1.83692i
\(714\) 8.50174 0.318170
\(715\) 0.0262597 + 0.470538i 0.000982059 + 0.0175971i
\(716\) −26.1538 −0.977412
\(717\) 45.9291i 1.71525i
\(718\) 10.8014i 0.403104i
\(719\) 22.7145 0.847107 0.423553 0.905871i \(-0.360783\pi\)
0.423553 + 0.905871i \(0.360783\pi\)
\(720\) −0.0438776 + 0.00244872i −0.00163522 + 9.12583e-5i
\(721\) −5.54842 −0.206634
\(722\) 45.7324i 1.70199i
\(723\) 42.7990i 1.59171i
\(724\) −5.69226 −0.211551
\(725\) 19.3733 2.16913i 0.719508 0.0805594i
\(726\) 13.5984 0.504684
\(727\) 25.7370i 0.954534i 0.878758 + 0.477267i \(0.158373\pi\)
−0.878758 + 0.477267i \(0.841627\pi\)
\(728\) 1.54781i 0.0573658i
\(729\) −17.7873 −0.658790
\(730\) 12.8248 0.715724i 0.474666 0.0264901i
\(731\) 6.68164 0.247129
\(732\) 30.8748i 1.14116i
\(733\) 11.8624i 0.438147i 0.975708 + 0.219074i \(0.0703035\pi\)
−0.975708 + 0.219074i \(0.929696\pi\)
\(734\) −28.7794 −1.06227
\(735\) 3.03734 + 54.4249i 0.112034 + 2.00749i
\(736\) −25.4580 −0.938393
\(737\) 20.8593i 0.768361i
\(738\) 0.456420i 0.0168011i
\(739\) 38.0649 1.40024 0.700120 0.714026i \(-0.253130\pi\)
0.700120 + 0.714026i \(0.253130\pi\)
\(740\) 0.564035 + 10.1067i 0.0207343 + 0.371530i
\(741\) −2.01855 −0.0741534
\(742\) 46.7063i 1.71464i
\(743\) 8.55413i 0.313821i 0.987613 + 0.156910i \(0.0501534\pi\)
−0.987613 + 0.156910i \(0.949847\pi\)
\(744\) −59.4519 −2.17961
\(745\) −9.15891 + 0.511140i −0.335556 + 0.0187267i
\(746\) −21.4453 −0.785169
\(747\) 2.12297i 0.0776756i
\(748\) 2.41732i 0.0883859i
\(749\) −45.1401 −1.64938
\(750\) −18.5095 + 3.12491i −0.675871 + 0.114106i
\(751\) −29.4966 −1.07635 −0.538174 0.842834i \(-0.680886\pi\)
−0.538174 + 0.842834i \(0.680886\pi\)
\(752\) 0.316810i 0.0115529i
\(753\) 4.14984i 0.151229i
\(754\) 0.420007 0.0152958
\(755\) −29.7858 + 1.66229i −1.08402 + 0.0604968i
\(756\) 24.2097 0.880497
\(757\) 24.3569i 0.885265i −0.896703 0.442633i \(-0.854045\pi\)
0.896703 0.442633i \(-0.145955\pi\)
\(758\) 2.00539i 0.0728389i
\(759\) −14.7522 −0.535470
\(760\) 2.97429 + 53.2951i 0.107889 + 1.93322i
\(761\) 23.6562 0.857537 0.428768 0.903414i \(-0.358948\pi\)
0.428768 + 0.903414i \(0.358948\pi\)
\(762\) 7.57553i 0.274433i
\(763\) 2.34023i 0.0847221i
\(764\) −16.1093 −0.582815
\(765\) −0.102464 1.83601i −0.00370458 0.0663809i
\(766\) −19.7321 −0.712950
\(767\) 0.985139i 0.0355713i
\(768\) 30.7263i 1.10874i
\(769\) −4.60006 −0.165883 −0.0829413 0.996554i \(-0.526431\pi\)
−0.0829413 + 0.996554i \(0.526431\pi\)
\(770\) 14.6696 0.818679i 0.528655 0.0295032i
\(771\) −21.1229 −0.760724
\(772\) 5.23284i 0.188334i
\(773\) 9.80949i 0.352823i 0.984317 + 0.176411i \(0.0564489\pi\)
−0.984317 + 0.176411i \(0.943551\pi\)
\(774\) 3.66383 0.131694
\(775\) 54.2691 6.07622i 1.94940 0.218264i
\(776\) 9.35319 0.335760
\(777\) 31.1489i 1.11746i
\(778\) 9.42340i 0.337845i
\(779\) −6.16124 −0.220749
\(780\) 0.661873 0.0369378i 0.0236988 0.00132258i
\(781\) −18.0929 −0.647414
\(782\) 4.46717i 0.159746i
\(783\) 17.1468i 0.612776i
\(784\) −0.345144 −0.0123266
\(785\) −1.94945 34.9315i −0.0695790 1.24676i
\(786\) 11.3319 0.404196
\(787\) 14.8242i 0.528426i 0.964464 + 0.264213i \(0.0851122\pi\)
−0.964464 + 0.264213i \(0.914888\pi\)
\(788\) 1.24217i 0.0442503i
\(789\) −16.7051 −0.594719
\(790\) 1.06323 + 19.0515i 0.0378279 + 0.677822i
\(791\) −16.6455 −0.591846
\(792\) 3.45973i 0.122936i
\(793\) 1.59477i 0.0566321i
\(794\) 12.3853 0.439536
\(795\) 52.1299 2.90926i 1.84886 0.103181i
\(796\) 12.2403 0.433848
\(797\) 8.53761i 0.302418i −0.988502 0.151209i \(-0.951683\pi\)
0.988502 0.151209i \(-0.0483166\pi\)
\(798\) 62.9309i 2.22773i
\(799\) 13.2566 0.468983
\(800\) −3.15372 28.1671i −0.111501 0.995857i
\(801\) 7.52989 0.266056
\(802\) 27.6201i 0.975301i
\(803\) 11.2385i 0.396597i
\(804\) 29.3413 1.03479
\(805\) 44.4347 2.47981i 1.56612 0.0874017i
\(806\) 1.17654 0.0414417
\(807\) 20.1442i 0.709111i
\(808\) 34.5691i 1.21614i
\(809\) −17.6854 −0.621786 −0.310893 0.950445i \(-0.600628\pi\)
−0.310893 + 0.950445i \(0.600628\pi\)
\(810\) 1.15420 + 20.6817i 0.0405546 + 0.726681i
\(811\) −45.0258 −1.58107 −0.790534 0.612418i \(-0.790197\pi\)
−0.790534 + 0.612418i \(0.790197\pi\)
\(812\) 21.4628i 0.753195i
\(813\) 8.79035i 0.308291i
\(814\) 5.40334 0.189387
\(815\) 1.26869 + 22.7331i 0.0444401 + 0.796304i
\(816\) 0.0601759 0.00210658
\(817\) 49.4582i 1.73032i
\(818\) 20.4470i 0.714911i
\(819\) 0.394695 0.0137917
\(820\) 2.02024 0.112745i 0.0705497 0.00393724i
\(821\) 10.8106 0.377291 0.188646 0.982045i \(-0.439590\pi\)
0.188646 + 0.982045i \(0.439590\pi\)
\(822\) 24.2325i 0.845205i
\(823\) 16.3476i 0.569841i 0.958551 + 0.284921i \(0.0919672\pi\)
−0.958551 + 0.284921i \(0.908033\pi\)
\(824\) 3.53367 0.123101
\(825\) −1.82749 16.3221i −0.0636251 0.568261i
\(826\) 30.7129 1.06864
\(827\) 27.1543i 0.944248i −0.881532 0.472124i \(-0.843487\pi\)
0.881532 0.472124i \(-0.156513\pi\)
\(828\) 4.01505i 0.139532i
\(829\) −14.3838 −0.499572 −0.249786 0.968301i \(-0.580360\pi\)
−0.249786 + 0.968301i \(0.580360\pi\)
\(830\) −5.73293 + 0.319943i −0.198993 + 0.0111054i
\(831\) 57.0476 1.97896
\(832\) 0.603895i 0.0209363i
\(833\) 14.4422i 0.500391i
\(834\) −12.2834 −0.425339
\(835\) 1.42114 + 25.4648i 0.0491806 + 0.881247i
\(836\) −17.8933 −0.618851
\(837\) 48.0320i 1.66023i
\(838\) 16.0427i 0.554186i
\(839\) 49.7122 1.71626 0.858128 0.513435i \(-0.171627\pi\)
0.858128 + 0.513435i \(0.171627\pi\)
\(840\) −3.00573 53.8584i −0.103707 1.85829i
\(841\) −13.7987 −0.475819
\(842\) 11.2612i 0.388088i
\(843\) 9.68770i 0.333662i
\(844\) −11.7134 −0.403192
\(845\) 28.9895 1.61785i 0.997270 0.0556556i
\(846\) 7.26915 0.249918
\(847\) 35.8931i 1.23330i
\(848\) 0.330590i 0.0113525i
\(849\) −14.5367 −0.498900
\(850\) 4.94255 0.553391i 0.169528 0.0189811i
\(851\) 16.3669 0.561051
\(852\) 25.4500i 0.871903i
\(853\) 0.189159i 0.00647668i 0.999995 + 0.00323834i \(0.00103080\pi\)
−0.999995 + 0.00323834i \(0.998969\pi\)
\(854\) −49.7190 −1.70135
\(855\) 13.5903 0.758448i 0.464779 0.0259384i
\(856\) 28.7487 0.982612
\(857\) 12.1359i 0.414554i 0.978282 + 0.207277i \(0.0664601\pi\)
−0.978282 + 0.207277i \(0.933540\pi\)
\(858\) 0.353857i 0.0120805i
\(859\) 8.97076 0.306078 0.153039 0.988220i \(-0.451094\pi\)
0.153039 + 0.988220i \(0.451094\pi\)
\(860\) −0.905042 16.2171i −0.0308617 0.552998i
\(861\) 6.22636 0.212194
\(862\) 15.0303i 0.511933i
\(863\) 48.5734i 1.65346i 0.562600 + 0.826729i \(0.309801\pi\)
−0.562600 + 0.826729i \(0.690199\pi\)
\(864\) −24.9299 −0.848132
\(865\) 3.09427 + 55.4451i 0.105208 + 1.88519i
\(866\) 20.9758 0.712788
\(867\) 30.2692i 1.02800i
\(868\) 60.1220i 2.04067i
\(869\) −16.6950 −0.566340
\(870\) −14.6148 + 0.815620i −0.495487 + 0.0276521i
\(871\) −1.51556 −0.0513529
\(872\) 1.49044i 0.0504728i
\(873\) 2.38508i 0.0807226i
\(874\) 33.0665 1.11849
\(875\) 8.24825 + 48.8561i 0.278842 + 1.65164i
\(876\) 15.8084 0.534116
\(877\) 33.1053i 1.11789i −0.829206 0.558944i \(-0.811207\pi\)
0.829206 0.558944i \(-0.188793\pi\)
\(878\) 0.631799i 0.0213222i
\(879\) −11.2824 −0.380546
\(880\) 0.103832 0.00579466i 0.00350018 0.000195338i
\(881\) 34.8931 1.17558 0.587790 0.809014i \(-0.299998\pi\)
0.587790 + 0.809014i \(0.299998\pi\)
\(882\) 7.91927i 0.266656i
\(883\) 15.7765i 0.530921i 0.964122 + 0.265461i \(0.0855240\pi\)
−0.964122 + 0.265461i \(0.914476\pi\)
\(884\) −0.175634 −0.00590721
\(885\) −1.91306 34.2793i −0.0643068 1.15229i
\(886\) −22.3437 −0.750651
\(887\) 52.7863i 1.77239i −0.463311 0.886196i \(-0.653339\pi\)
0.463311 0.886196i \(-0.346661\pi\)
\(888\) 19.8380i 0.665720i
\(889\) 19.9957 0.670635
\(890\) 1.13479 + 20.3339i 0.0380384 + 0.681594i
\(891\) −18.1236 −0.607163
\(892\) 27.9726i 0.936591i
\(893\) 98.1265i 3.28368i
\(894\) 6.88773 0.230360
\(895\) −47.0072 + 2.62338i −1.57128 + 0.0876898i
\(896\) 31.4156 1.04952
\(897\) 1.07184i 0.0357878i
\(898\) 26.3131i 0.878081i
\(899\) 42.5821 1.42019
\(900\) −4.44231 + 0.497382i −0.148077 + 0.0165794i
\(901\) −13.8332 −0.460850
\(902\) 1.08008i 0.0359627i
\(903\) 49.9810i 1.66326i
\(904\) 10.6012 0.352589
\(905\) −10.2309 + 0.570967i −0.340088 + 0.0189796i
\(906\) 22.3997 0.744181
\(907\) 26.3884i 0.876212i 0.898923 + 0.438106i \(0.144351\pi\)
−0.898923 + 0.438106i \(0.855649\pi\)
\(908\) 0.462394i 0.0153451i
\(909\) −8.81517 −0.292381
\(910\) 0.0594825 + 1.06584i 0.00197183 + 0.0353323i
\(911\) 54.8309 1.81663 0.908314 0.418289i \(-0.137370\pi\)
0.908314 + 0.418289i \(0.137370\pi\)
\(912\) 0.445429i 0.0147496i
\(913\) 5.02383i 0.166264i
\(914\) −5.26858 −0.174269
\(915\) 3.09692 + 55.4924i 0.102381 + 1.83452i
\(916\) −19.9514 −0.659213
\(917\) 29.9107i 0.987740i
\(918\) 4.37451i 0.144380i
\(919\) 0.151198 0.00498757 0.00249378 0.999997i \(-0.499206\pi\)
0.00249378 + 0.999997i \(0.499206\pi\)
\(920\) −28.2995 + 1.57933i −0.933006 + 0.0520691i
\(921\) −44.0757 −1.45234
\(922\) 5.39404i 0.177643i
\(923\) 1.31457i 0.0432695i
\(924\) 18.0824 0.594867
\(925\) 2.02753 + 18.1086i 0.0666646 + 0.595408i
\(926\) 15.2014 0.499549
\(927\) 0.901090i 0.0295957i
\(928\) 22.1013i 0.725510i
\(929\) 53.5301 1.75627 0.878134 0.478416i \(-0.158789\pi\)
0.878134 + 0.478416i \(0.158789\pi\)
\(930\) −40.9393 + 2.28474i −1.34245 + 0.0749194i
\(931\) 106.903 3.50359
\(932\) 4.02031i 0.131690i
\(933\) 1.63661i 0.0535802i
\(934\) 23.3363 0.763587
\(935\) 0.242471 + 4.34474i 0.00792965 + 0.142088i
\(936\) −0.251372 −0.00821636
\(937\) 35.9511i 1.17447i 0.809416 + 0.587236i \(0.199784\pi\)
−0.809416 + 0.587236i \(0.800216\pi\)
\(938\) 47.2495i 1.54275i
\(939\) −46.7801 −1.52661
\(940\) −1.79563 32.1751i −0.0585670 1.04944i
\(941\) 11.7311 0.382423 0.191211 0.981549i \(-0.438758\pi\)
0.191211 + 0.981549i \(0.438758\pi\)
\(942\) 26.2694i 0.855903i
\(943\) 3.27159i 0.106538i
\(944\) 0.217388 0.00707537
\(945\) 43.5130 2.42837i 1.41548 0.0789949i
\(946\) −8.67012 −0.281890
\(947\) 41.2862i 1.34162i 0.741629 + 0.670810i \(0.234053\pi\)
−0.741629 + 0.670810i \(0.765947\pi\)
\(948\) 23.4837i 0.762716i
\(949\) −0.816550 −0.0265063
\(950\) 4.09626 + 36.5853i 0.132900 + 1.18698i
\(951\) −18.3393 −0.594691
\(952\) 14.2918i 0.463201i
\(953\) 25.0112i 0.810192i 0.914274 + 0.405096i \(0.132762\pi\)
−0.914274 + 0.405096i \(0.867238\pi\)
\(954\) −7.58533 −0.245584
\(955\) −28.9539 + 1.61586i −0.936927 + 0.0522880i
\(956\) 29.5809 0.956716
\(957\) 12.8071i 0.413994i
\(958\) 15.2086i 0.491369i
\(959\) −63.9619 −2.06544
\(960\) 1.17271 + 21.0134i 0.0378492 + 0.678205i
\(961\) 88.2822 2.84781
\(962\) 0.392589i 0.0126576i
\(963\) 7.33097i 0.236237i
\(964\) 27.5650 0.887810
\(965\) 0.524885 + 9.40520i 0.0168966 + 0.302764i
\(966\) −33.4160 −1.07514
\(967\) 9.45167i 0.303945i 0.988385 + 0.151973i \(0.0485625\pi\)
−0.988385 + 0.151973i \(0.951437\pi\)
\(968\) 22.8595i 0.734733i
\(969\) −18.6384 −0.598753
\(970\) 6.44072 0.359443i 0.206799 0.0115410i
\(971\) −19.0888 −0.612589 −0.306295 0.951937i \(-0.599089\pi\)
−0.306295 + 0.951937i \(0.599089\pi\)
\(972\) 9.10451i 0.292027i
\(973\) 32.4222i 1.03941i
\(974\) 11.6610 0.373644
\(975\) 1.18591 0.132779i 0.0379794 0.00425234i
\(976\) −0.351914 −0.0112645
\(977\) 6.91399i 0.221198i 0.993865 + 0.110599i \(0.0352770\pi\)
−0.993865 + 0.110599i \(0.964723\pi\)
\(978\) 17.0958i 0.546665i
\(979\) −17.8188 −0.569491
\(980\) −35.0528 + 1.95622i −1.11972 + 0.0624892i
\(981\) −0.380065 −0.0121345
\(982\) 2.40996i 0.0769050i
\(983\) 37.4654i 1.19496i 0.801883 + 0.597481i \(0.203832\pi\)
−0.801883 + 0.597481i \(0.796168\pi\)
\(984\) −3.96543 −0.126413
\(985\) −0.124596 2.23259i −0.00396997 0.0711364i
\(986\) 3.87816 0.123506
\(987\) 99.1637i 3.15642i
\(988\) 1.30006i 0.0413605i
\(989\) −26.2621 −0.835086
\(990\) 0.132957 + 2.38241i 0.00422566 + 0.0757180i
\(991\) −29.5473 −0.938601 −0.469300 0.883039i \(-0.655494\pi\)
−0.469300 + 0.883039i \(0.655494\pi\)
\(992\) 61.9106i 1.96566i
\(993\) 4.92603i 0.156323i
\(994\) −40.9832 −1.29991
\(995\) 22.0001 1.22778i 0.697449 0.0389232i
\(996\) −7.06667 −0.223916
\(997\) 10.9241i 0.345970i −0.984924 0.172985i \(-0.944659\pi\)
0.984924 0.172985i \(-0.0553411\pi\)
\(998\) 17.1371i 0.542466i
\(999\) 16.0274 0.507085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.b.a.789.37 98
5.2 odd 4 4925.2.a.r.1.32 49
5.3 odd 4 4925.2.a.s.1.18 49
5.4 even 2 inner 985.2.b.a.789.62 yes 98
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.37 98 1.1 even 1 trivial
985.2.b.a.789.62 yes 98 5.4 even 2 inner
4925.2.a.r.1.32 49 5.2 odd 4
4925.2.a.s.1.18 49 5.3 odd 4