Properties

Label 985.2.b.a.789.33
Level $985$
Weight $2$
Character 985.789
Analytic conductor $7.865$
Analytic rank $0$
Dimension $98$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [985,2,Mod(789,985)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("985.789"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(985, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(98\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 789.33
Character \(\chi\) \(=\) 985.789
Dual form 985.2.b.a.789.66

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.18293i q^{2} -0.672647i q^{3} +0.600670 q^{4} +(1.81029 + 1.31258i) q^{5} -0.795696 q^{6} -3.32812i q^{7} -3.07642i q^{8} +2.54755 q^{9} +(1.55269 - 2.14145i) q^{10} -4.01450 q^{11} -0.404039i q^{12} -0.365360i q^{13} -3.93695 q^{14} +(0.882900 - 1.21769i) q^{15} -2.43785 q^{16} -5.21648i q^{17} -3.01358i q^{18} -2.16257 q^{19} +(1.08739 + 0.788425i) q^{20} -2.23865 q^{21} +4.74888i q^{22} +7.86503i q^{23} -2.06934 q^{24} +(1.55429 + 4.75228i) q^{25} -0.432196 q^{26} -3.73154i q^{27} -1.99911i q^{28} +7.24543 q^{29} +(-1.44044 - 1.04441i) q^{30} -3.93707 q^{31} -3.26902i q^{32} +2.70034i q^{33} -6.17075 q^{34} +(4.36841 - 6.02487i) q^{35} +1.53023 q^{36} -3.21046i q^{37} +2.55817i q^{38} -0.245758 q^{39} +(4.03803 - 5.56921i) q^{40} +4.57854 q^{41} +2.64818i q^{42} -8.31813i q^{43} -2.41139 q^{44} +(4.61179 + 3.34385i) q^{45} +9.30380 q^{46} +3.03063i q^{47} +1.63982i q^{48} -4.07641 q^{49} +(5.62163 - 1.83862i) q^{50} -3.50885 q^{51} -0.219461i q^{52} +4.72562i q^{53} -4.41416 q^{54} +(-7.26740 - 5.26933i) q^{55} -10.2387 q^{56} +1.45464i q^{57} -8.57085i q^{58} +5.78433 q^{59} +(0.530332 - 0.731428i) q^{60} -6.30248 q^{61} +4.65729i q^{62} -8.47855i q^{63} -8.74274 q^{64} +(0.479563 - 0.661407i) q^{65} +3.19432 q^{66} +11.0069i q^{67} -3.13339i q^{68} +5.29039 q^{69} +(-7.12701 - 5.16754i) q^{70} -9.14673 q^{71} -7.83731i q^{72} -1.79241i q^{73} -3.79776 q^{74} +(3.19661 - 1.04549i) q^{75} -1.29899 q^{76} +13.3607i q^{77} +0.290716i q^{78} +14.4163 q^{79} +(-4.41322 - 3.19987i) q^{80} +5.13263 q^{81} -5.41610i q^{82} +2.56116i q^{83} -1.34469 q^{84} +(6.84703 - 9.44334i) q^{85} -9.83978 q^{86} -4.87362i q^{87} +12.3503i q^{88} +13.7724 q^{89} +(3.95554 - 5.45544i) q^{90} -1.21596 q^{91} +4.72429i q^{92} +2.64826i q^{93} +3.58503 q^{94} +(-3.91487 - 2.83853i) q^{95} -2.19890 q^{96} +4.69428i q^{97} +4.82212i q^{98} -10.2271 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 98 q - 98 q^{4} - 2 q^{5} + 4 q^{6} - 102 q^{9} - 6 q^{10} - 4 q^{11} + 16 q^{14} - 2 q^{15} + 98 q^{16} - 8 q^{19} - 2 q^{20} + 20 q^{21} + 10 q^{25} - 4 q^{26} - 12 q^{29} - 10 q^{30} - 4 q^{31} + 24 q^{34}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/985\mathbb{Z}\right)^\times\).

\(n\) \(396\) \(592\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18293i 0.836460i −0.908341 0.418230i \(-0.862651\pi\)
0.908341 0.418230i \(-0.137349\pi\)
\(3\) 0.672647i 0.388353i −0.980967 0.194177i \(-0.937797\pi\)
0.980967 0.194177i \(-0.0622035\pi\)
\(4\) 0.600670 0.300335
\(5\) 1.81029 + 1.31258i 0.809586 + 0.587002i
\(6\) −0.795696 −0.324842
\(7\) 3.32812i 1.25791i −0.777441 0.628956i \(-0.783482\pi\)
0.777441 0.628956i \(-0.216518\pi\)
\(8\) 3.07642i 1.08768i
\(9\) 2.54755 0.849182
\(10\) 1.55269 2.14145i 0.491003 0.677186i
\(11\) −4.01450 −1.21042 −0.605208 0.796067i \(-0.706910\pi\)
−0.605208 + 0.796067i \(0.706910\pi\)
\(12\) 0.404039i 0.116636i
\(13\) 0.365360i 0.101333i −0.998716 0.0506663i \(-0.983865\pi\)
0.998716 0.0506663i \(-0.0161345\pi\)
\(14\) −3.93695 −1.05219
\(15\) 0.882900 1.21769i 0.227964 0.314405i
\(16\) −2.43785 −0.609464
\(17\) 5.21648i 1.26518i −0.774486 0.632591i \(-0.781991\pi\)
0.774486 0.632591i \(-0.218009\pi\)
\(18\) 3.01358i 0.710306i
\(19\) −2.16257 −0.496127 −0.248063 0.968744i \(-0.579794\pi\)
−0.248063 + 0.968744i \(0.579794\pi\)
\(20\) 1.08739 + 0.788425i 0.243147 + 0.176297i
\(21\) −2.23865 −0.488514
\(22\) 4.74888i 1.01246i
\(23\) 7.86503i 1.63997i 0.572384 + 0.819986i \(0.306019\pi\)
−0.572384 + 0.819986i \(0.693981\pi\)
\(24\) −2.06934 −0.422403
\(25\) 1.55429 + 4.75228i 0.310858 + 0.950456i
\(26\) −0.432196 −0.0847607
\(27\) 3.73154i 0.718136i
\(28\) 1.99911i 0.377795i
\(29\) 7.24543 1.34544 0.672721 0.739896i \(-0.265125\pi\)
0.672721 + 0.739896i \(0.265125\pi\)
\(30\) −1.44044 1.04441i −0.262987 0.190683i
\(31\) −3.93707 −0.707119 −0.353560 0.935412i \(-0.615029\pi\)
−0.353560 + 0.935412i \(0.615029\pi\)
\(32\) 3.26902i 0.577886i
\(33\) 2.70034i 0.470069i
\(34\) −6.17075 −1.05827
\(35\) 4.36841 6.02487i 0.738397 1.01839i
\(36\) 1.53023 0.255039
\(37\) 3.21046i 0.527797i −0.964551 0.263898i \(-0.914992\pi\)
0.964551 0.263898i \(-0.0850083\pi\)
\(38\) 2.55817i 0.414990i
\(39\) −0.245758 −0.0393529
\(40\) 4.03803 5.56921i 0.638469 0.880569i
\(41\) 4.57854 0.715048 0.357524 0.933904i \(-0.383621\pi\)
0.357524 + 0.933904i \(0.383621\pi\)
\(42\) 2.64818i 0.408623i
\(43\) 8.31813i 1.26850i −0.773127 0.634251i \(-0.781308\pi\)
0.773127 0.634251i \(-0.218692\pi\)
\(44\) −2.41139 −0.363530
\(45\) 4.61179 + 3.34385i 0.687486 + 0.498471i
\(46\) 9.30380 1.37177
\(47\) 3.03063i 0.442063i 0.975267 + 0.221031i \(0.0709423\pi\)
−0.975267 + 0.221031i \(0.929058\pi\)
\(48\) 1.63982i 0.236687i
\(49\) −4.07641 −0.582345
\(50\) 5.62163 1.83862i 0.795018 0.260021i
\(51\) −3.50885 −0.491338
\(52\) 0.219461i 0.0304338i
\(53\) 4.72562i 0.649113i 0.945866 + 0.324557i \(0.105215\pi\)
−0.945866 + 0.324557i \(0.894785\pi\)
\(54\) −4.41416 −0.600691
\(55\) −7.26740 5.26933i −0.979936 0.710516i
\(56\) −10.2387 −1.36820
\(57\) 1.45464i 0.192672i
\(58\) 8.57085i 1.12541i
\(59\) 5.78433 0.753055 0.376528 0.926405i \(-0.377118\pi\)
0.376528 + 0.926405i \(0.377118\pi\)
\(60\) 0.530332 0.731428i 0.0684656 0.0944269i
\(61\) −6.30248 −0.806949 −0.403475 0.914991i \(-0.632198\pi\)
−0.403475 + 0.914991i \(0.632198\pi\)
\(62\) 4.65729i 0.591477i
\(63\) 8.47855i 1.06820i
\(64\) −8.74274 −1.09284
\(65\) 0.479563 0.661407i 0.0594824 0.0820375i
\(66\) 3.19432 0.393194
\(67\) 11.0069i 1.34470i 0.740232 + 0.672351i \(0.234715\pi\)
−0.740232 + 0.672351i \(0.765285\pi\)
\(68\) 3.13339i 0.379979i
\(69\) 5.29039 0.636888
\(70\) −7.12701 5.16754i −0.851841 0.617639i
\(71\) −9.14673 −1.08552 −0.542758 0.839889i \(-0.682620\pi\)
−0.542758 + 0.839889i \(0.682620\pi\)
\(72\) 7.83731i 0.923636i
\(73\) 1.79241i 0.209786i −0.994484 0.104893i \(-0.966550\pi\)
0.994484 0.104893i \(-0.0334499\pi\)
\(74\) −3.79776 −0.441481
\(75\) 3.19661 1.04549i 0.369113 0.120723i
\(76\) −1.29899 −0.149004
\(77\) 13.3607i 1.52260i
\(78\) 0.290716i 0.0329171i
\(79\) 14.4163 1.62196 0.810982 0.585071i \(-0.198933\pi\)
0.810982 + 0.585071i \(0.198933\pi\)
\(80\) −4.41322 3.19987i −0.493413 0.357756i
\(81\) 5.13263 0.570292
\(82\) 5.41610i 0.598108i
\(83\) 2.56116i 0.281124i 0.990072 + 0.140562i \(0.0448909\pi\)
−0.990072 + 0.140562i \(0.955109\pi\)
\(84\) −1.34469 −0.146718
\(85\) 6.84703 9.44334i 0.742664 1.02427i
\(86\) −9.83978 −1.06105
\(87\) 4.87362i 0.522507i
\(88\) 12.3503i 1.31654i
\(89\) 13.7724 1.45987 0.729937 0.683514i \(-0.239549\pi\)
0.729937 + 0.683514i \(0.239549\pi\)
\(90\) 3.95554 5.45544i 0.416951 0.575054i
\(91\) −1.21596 −0.127468
\(92\) 4.72429i 0.492541i
\(93\) 2.64826i 0.274612i
\(94\) 3.58503 0.369768
\(95\) −3.91487 2.83853i −0.401657 0.291227i
\(96\) −2.19890 −0.224424
\(97\) 4.69428i 0.476632i 0.971188 + 0.238316i \(0.0765954\pi\)
−0.971188 + 0.238316i \(0.923405\pi\)
\(98\) 4.82212i 0.487108i
\(99\) −10.2271 −1.02786
\(100\) 0.933617 + 2.85455i 0.0933617 + 0.285455i
\(101\) −10.7288 −1.06756 −0.533779 0.845624i \(-0.679229\pi\)
−0.533779 + 0.845624i \(0.679229\pi\)
\(102\) 4.15074i 0.410984i
\(103\) 5.27161i 0.519427i 0.965686 + 0.259713i \(0.0836281\pi\)
−0.965686 + 0.259713i \(0.916372\pi\)
\(104\) −1.12400 −0.110217
\(105\) −4.05261 2.93840i −0.395494 0.286759i
\(106\) 5.59009 0.542957
\(107\) 4.45979i 0.431144i −0.976488 0.215572i \(-0.930838\pi\)
0.976488 0.215572i \(-0.0691616\pi\)
\(108\) 2.24143i 0.215681i
\(109\) −10.2412 −0.980929 −0.490465 0.871461i \(-0.663173\pi\)
−0.490465 + 0.871461i \(0.663173\pi\)
\(110\) −6.23326 + 8.59684i −0.594318 + 0.819677i
\(111\) −2.15951 −0.204971
\(112\) 8.11348i 0.766652i
\(113\) 10.5620i 0.993593i −0.867867 0.496796i \(-0.834510\pi\)
0.867867 0.496796i \(-0.165490\pi\)
\(114\) 1.72075 0.161163
\(115\) −10.3234 + 14.2380i −0.962666 + 1.32770i
\(116\) 4.35211 0.404084
\(117\) 0.930772i 0.0860499i
\(118\) 6.84247i 0.629900i
\(119\) −17.3611 −1.59149
\(120\) −3.74611 2.71617i −0.341972 0.247951i
\(121\) 5.11618 0.465107
\(122\) 7.45541i 0.674981i
\(123\) 3.07974i 0.277691i
\(124\) −2.36488 −0.212373
\(125\) −3.42401 + 10.6431i −0.306253 + 0.951950i
\(126\) −10.0296 −0.893504
\(127\) 13.5115i 1.19895i 0.800392 + 0.599477i \(0.204625\pi\)
−0.800392 + 0.599477i \(0.795375\pi\)
\(128\) 3.80403i 0.336232i
\(129\) −5.59517 −0.492627
\(130\) −0.782400 0.567290i −0.0686211 0.0497547i
\(131\) 11.8689 1.03699 0.518495 0.855081i \(-0.326492\pi\)
0.518495 + 0.855081i \(0.326492\pi\)
\(132\) 1.62201i 0.141178i
\(133\) 7.19729i 0.624084i
\(134\) 13.0204 1.12479
\(135\) 4.89793 6.75517i 0.421547 0.581392i
\(136\) −16.0481 −1.37611
\(137\) 18.3633i 1.56888i 0.620205 + 0.784440i \(0.287050\pi\)
−0.620205 + 0.784440i \(0.712950\pi\)
\(138\) 6.25818i 0.532731i
\(139\) −11.5674 −0.981132 −0.490566 0.871404i \(-0.663210\pi\)
−0.490566 + 0.871404i \(0.663210\pi\)
\(140\) 2.62398 3.61896i 0.221766 0.305858i
\(141\) 2.03854 0.171676
\(142\) 10.8200i 0.907991i
\(143\) 1.46674i 0.122655i
\(144\) −6.21055 −0.517546
\(145\) 13.1163 + 9.51017i 1.08925 + 0.789777i
\(146\) −2.12030 −0.175477
\(147\) 2.74199i 0.226155i
\(148\) 1.92843i 0.158516i
\(149\) 16.3235 1.33727 0.668637 0.743589i \(-0.266878\pi\)
0.668637 + 0.743589i \(0.266878\pi\)
\(150\) −1.23674 3.78137i −0.100980 0.308748i
\(151\) −15.6126 −1.27054 −0.635269 0.772291i \(-0.719111\pi\)
−0.635269 + 0.772291i \(0.719111\pi\)
\(152\) 6.65296i 0.539626i
\(153\) 13.2892i 1.07437i
\(154\) 15.8049 1.27359
\(155\) −7.12724 5.16770i −0.572474 0.415080i
\(156\) −0.147620 −0.0118190
\(157\) 14.6540i 1.16951i −0.811208 0.584757i \(-0.801190\pi\)
0.811208 0.584757i \(-0.198810\pi\)
\(158\) 17.0535i 1.35671i
\(159\) 3.17867 0.252085
\(160\) 4.29083 5.91787i 0.339220 0.467848i
\(161\) 26.1758 2.06294
\(162\) 6.07155i 0.477026i
\(163\) 3.42042i 0.267908i 0.990988 + 0.133954i \(0.0427675\pi\)
−0.990988 + 0.133954i \(0.957233\pi\)
\(164\) 2.75019 0.214754
\(165\) −3.54440 + 4.88840i −0.275931 + 0.380561i
\(166\) 3.02968 0.235149
\(167\) 0.265125i 0.0205160i −0.999947 0.0102580i \(-0.996735\pi\)
0.999947 0.0102580i \(-0.00326527\pi\)
\(168\) 6.88703i 0.531346i
\(169\) 12.8665 0.989732
\(170\) −11.1708 8.09957i −0.856764 0.621209i
\(171\) −5.50924 −0.421302
\(172\) 4.99645i 0.380976i
\(173\) 11.3576i 0.863500i −0.901993 0.431750i \(-0.857896\pi\)
0.901993 0.431750i \(-0.142104\pi\)
\(174\) −5.76516 −0.437056
\(175\) 15.8162 5.17288i 1.19559 0.391033i
\(176\) 9.78676 0.737705
\(177\) 3.89081i 0.292451i
\(178\) 16.2918i 1.22113i
\(179\) 10.6177 0.793606 0.396803 0.917904i \(-0.370120\pi\)
0.396803 + 0.917904i \(0.370120\pi\)
\(180\) 2.77017 + 2.00855i 0.206476 + 0.149708i
\(181\) 18.6295 1.38472 0.692360 0.721552i \(-0.256571\pi\)
0.692360 + 0.721552i \(0.256571\pi\)
\(182\) 1.43840i 0.106622i
\(183\) 4.23934i 0.313381i
\(184\) 24.1961 1.78376
\(185\) 4.21397 5.81186i 0.309817 0.427297i
\(186\) 3.13272 0.229702
\(187\) 20.9415i 1.53140i
\(188\) 1.82041i 0.132767i
\(189\) −12.4190 −0.903352
\(190\) −3.35779 + 4.63103i −0.243600 + 0.335970i
\(191\) 5.78207 0.418376 0.209188 0.977875i \(-0.432918\pi\)
0.209188 + 0.977875i \(0.432918\pi\)
\(192\) 5.88078i 0.424409i
\(193\) 0.502765i 0.0361898i −0.999836 0.0180949i \(-0.994240\pi\)
0.999836 0.0180949i \(-0.00576011\pi\)
\(194\) 5.55302 0.398684
\(195\) −0.444894 0.322577i −0.0318595 0.0231002i
\(196\) −2.44858 −0.174899
\(197\) 1.00000i 0.0712470i
\(198\) 12.0980i 0.859766i
\(199\) −14.3755 −1.01905 −0.509527 0.860455i \(-0.670180\pi\)
−0.509527 + 0.860455i \(0.670180\pi\)
\(200\) 14.6200 4.78165i 1.03379 0.338114i
\(201\) 7.40374 0.522219
\(202\) 12.6915i 0.892970i
\(203\) 24.1137i 1.69245i
\(204\) −2.10766 −0.147566
\(205\) 8.28848 + 6.00968i 0.578892 + 0.419734i
\(206\) 6.23596 0.434480
\(207\) 20.0365i 1.39263i
\(208\) 0.890695i 0.0617586i
\(209\) 8.68162 0.600520
\(210\) −3.47593 + 4.79397i −0.239862 + 0.330815i
\(211\) −5.40187 −0.371880 −0.185940 0.982561i \(-0.559533\pi\)
−0.185940 + 0.982561i \(0.559533\pi\)
\(212\) 2.83854i 0.194952i
\(213\) 6.15252i 0.421564i
\(214\) −5.27563 −0.360634
\(215\) 10.9182 15.0582i 0.744613 1.02696i
\(216\) −11.4798 −0.781100
\(217\) 13.1031i 0.889494i
\(218\) 12.1147i 0.820508i
\(219\) −1.20566 −0.0814709
\(220\) −4.36531 3.16513i −0.294309 0.213393i
\(221\) −1.90589 −0.128204
\(222\) 2.55455i 0.171450i
\(223\) 16.1807i 1.08354i 0.840526 + 0.541771i \(0.182246\pi\)
−0.840526 + 0.541771i \(0.817754\pi\)
\(224\) −10.8797 −0.726930
\(225\) 3.95963 + 12.1067i 0.263975 + 0.807110i
\(226\) −12.4942 −0.831101
\(227\) 7.37366i 0.489407i 0.969598 + 0.244704i \(0.0786907\pi\)
−0.969598 + 0.244704i \(0.921309\pi\)
\(228\) 0.873762i 0.0578663i
\(229\) 19.8853 1.31405 0.657027 0.753867i \(-0.271814\pi\)
0.657027 + 0.753867i \(0.271814\pi\)
\(230\) 16.8426 + 12.2119i 1.11057 + 0.805231i
\(231\) 8.98707 0.591306
\(232\) 22.2900i 1.46341i
\(233\) 11.1333i 0.729369i 0.931131 + 0.364684i \(0.118823\pi\)
−0.931131 + 0.364684i \(0.881177\pi\)
\(234\) −1.10104 −0.0719772
\(235\) −3.97793 + 5.48631i −0.259491 + 0.357888i
\(236\) 3.47447 0.226169
\(237\) 9.69710i 0.629895i
\(238\) 20.5370i 1.33122i
\(239\) 5.92300 0.383127 0.191563 0.981480i \(-0.438644\pi\)
0.191563 + 0.981480i \(0.438644\pi\)
\(240\) −2.15238 + 2.96854i −0.138936 + 0.191619i
\(241\) 11.3665 0.732183 0.366091 0.930579i \(-0.380696\pi\)
0.366091 + 0.930579i \(0.380696\pi\)
\(242\) 6.05209i 0.389043i
\(243\) 14.6471i 0.939610i
\(244\) −3.78571 −0.242355
\(245\) −7.37948 5.35060i −0.471458 0.341837i
\(246\) −3.64313 −0.232277
\(247\) 0.790116i 0.0502739i
\(248\) 12.1121i 0.769118i
\(249\) 1.72276 0.109175
\(250\) 12.5901 + 4.05037i 0.796268 + 0.256168i
\(251\) 27.7984 1.75462 0.877311 0.479923i \(-0.159335\pi\)
0.877311 + 0.479923i \(0.159335\pi\)
\(252\) 5.09281i 0.320817i
\(253\) 31.5741i 1.98505i
\(254\) 15.9832 1.00288
\(255\) −6.35204 4.60563i −0.397780 0.288416i
\(256\) −12.9856 −0.811597
\(257\) 12.6874i 0.791418i 0.918376 + 0.395709i \(0.129501\pi\)
−0.918376 + 0.395709i \(0.870499\pi\)
\(258\) 6.61870i 0.412063i
\(259\) −10.6848 −0.663922
\(260\) 0.288059 0.397288i 0.0178647 0.0246387i
\(261\) 18.4581 1.14253
\(262\) 14.0401i 0.867401i
\(263\) 29.2878i 1.80596i 0.429678 + 0.902982i \(0.358627\pi\)
−0.429678 + 0.902982i \(0.641373\pi\)
\(264\) 8.30737 0.511283
\(265\) −6.20273 + 8.55473i −0.381031 + 0.525513i
\(266\) 8.51391 0.522021
\(267\) 9.26398i 0.566947i
\(268\) 6.61149i 0.403861i
\(269\) 6.77642 0.413166 0.206583 0.978429i \(-0.433766\pi\)
0.206583 + 0.978429i \(0.433766\pi\)
\(270\) −7.99091 5.79392i −0.486311 0.352607i
\(271\) −24.4544 −1.48550 −0.742748 0.669571i \(-0.766478\pi\)
−0.742748 + 0.669571i \(0.766478\pi\)
\(272\) 12.7170i 0.771083i
\(273\) 0.817915i 0.0495025i
\(274\) 21.7225 1.31230
\(275\) −6.23970 19.0780i −0.376268 1.15045i
\(276\) 3.17778 0.191280
\(277\) 1.64895i 0.0990758i −0.998772 0.0495379i \(-0.984225\pi\)
0.998772 0.0495379i \(-0.0157749\pi\)
\(278\) 13.6834i 0.820677i
\(279\) −10.0299 −0.600473
\(280\) −18.5350 13.4391i −1.10768 0.803138i
\(281\) −15.2800 −0.911530 −0.455765 0.890100i \(-0.650634\pi\)
−0.455765 + 0.890100i \(0.650634\pi\)
\(282\) 2.41146i 0.143600i
\(283\) 14.2874i 0.849300i −0.905358 0.424650i \(-0.860397\pi\)
0.905358 0.424650i \(-0.139603\pi\)
\(284\) −5.49417 −0.326019
\(285\) −1.90933 + 2.63333i −0.113099 + 0.155985i
\(286\) 1.73505 0.102596
\(287\) 15.2379i 0.899467i
\(288\) 8.32797i 0.490730i
\(289\) −10.2117 −0.600688
\(290\) 11.2499 15.5157i 0.660616 0.911115i
\(291\) 3.15760 0.185102
\(292\) 1.07665i 0.0630060i
\(293\) 9.81819i 0.573585i 0.957993 + 0.286792i \(0.0925890\pi\)
−0.957993 + 0.286792i \(0.907411\pi\)
\(294\) 3.24359 0.189170
\(295\) 10.4713 + 7.59236i 0.609663 + 0.442044i
\(296\) −9.87672 −0.574073
\(297\) 14.9803i 0.869243i
\(298\) 19.3096i 1.11858i
\(299\) 2.87357 0.166183
\(300\) 1.92011 0.627995i 0.110857 0.0362573i
\(301\) −27.6838 −1.59567
\(302\) 18.4687i 1.06275i
\(303\) 7.21672i 0.414590i
\(304\) 5.27202 0.302371
\(305\) −11.4093 8.27248i −0.653295 0.473681i
\(306\) −15.7203 −0.898668
\(307\) 18.4502i 1.05301i 0.850172 + 0.526505i \(0.176498\pi\)
−0.850172 + 0.526505i \(0.823502\pi\)
\(308\) 8.02540i 0.457290i
\(309\) 3.54593 0.201721
\(310\) −6.11305 + 8.43104i −0.347198 + 0.478851i
\(311\) 34.6643 1.96563 0.982815 0.184593i \(-0.0590967\pi\)
0.982815 + 0.184593i \(0.0590967\pi\)
\(312\) 0.756056i 0.0428032i
\(313\) 12.3956i 0.700641i 0.936630 + 0.350320i \(0.113927\pi\)
−0.936630 + 0.350320i \(0.886073\pi\)
\(314\) −17.3347 −0.978252
\(315\) 11.1287 15.3486i 0.627033 0.864797i
\(316\) 8.65946 0.487133
\(317\) 22.1635i 1.24482i 0.782690 + 0.622412i \(0.213847\pi\)
−0.782690 + 0.622412i \(0.786153\pi\)
\(318\) 3.76016i 0.210859i
\(319\) −29.0867 −1.62854
\(320\) −15.8269 11.4755i −0.884750 0.641500i
\(321\) −2.99986 −0.167436
\(322\) 30.9642i 1.72557i
\(323\) 11.2810i 0.627691i
\(324\) 3.08302 0.171279
\(325\) 1.73629 0.567876i 0.0963123 0.0315001i
\(326\) 4.04613 0.224095
\(327\) 6.88872i 0.380947i
\(328\) 14.0855i 0.777741i
\(329\) 10.0863 0.556076
\(330\) 5.78264 + 4.19279i 0.318324 + 0.230805i
\(331\) −27.4133 −1.50677 −0.753386 0.657578i \(-0.771581\pi\)
−0.753386 + 0.657578i \(0.771581\pi\)
\(332\) 1.53841i 0.0844314i
\(333\) 8.17880i 0.448195i
\(334\) −0.313624 −0.0171608
\(335\) −14.4473 + 19.9256i −0.789342 + 1.08865i
\(336\) 5.45751 0.297732
\(337\) 6.31336i 0.343910i 0.985105 + 0.171955i \(0.0550084\pi\)
−0.985105 + 0.171955i \(0.944992\pi\)
\(338\) 15.2202i 0.827871i
\(339\) −7.10453 −0.385865
\(340\) 4.11281 5.67233i 0.223048 0.307625i
\(341\) 15.8054 0.855908
\(342\) 6.51706i 0.352402i
\(343\) 9.73006i 0.525374i
\(344\) −25.5900 −1.37972
\(345\) 9.57714 + 6.94404i 0.515616 + 0.373854i
\(346\) −13.4352 −0.722283
\(347\) 14.9294i 0.801451i 0.916198 + 0.400726i \(0.131242\pi\)
−0.916198 + 0.400726i \(0.868758\pi\)
\(348\) 2.92744i 0.156927i
\(349\) −21.8095 −1.16743 −0.583717 0.811957i \(-0.698402\pi\)
−0.583717 + 0.811957i \(0.698402\pi\)
\(350\) −6.11917 18.7095i −0.327083 1.00006i
\(351\) −1.36336 −0.0727706
\(352\) 13.1235i 0.699483i
\(353\) 9.32850i 0.496506i 0.968695 + 0.248253i \(0.0798564\pi\)
−0.968695 + 0.248253i \(0.920144\pi\)
\(354\) −4.60257 −0.244624
\(355\) −16.5582 12.0058i −0.878819 0.637200i
\(356\) 8.27268 0.438451
\(357\) 11.6779i 0.618060i
\(358\) 12.5601i 0.663819i
\(359\) −14.1641 −0.747554 −0.373777 0.927519i \(-0.621937\pi\)
−0.373777 + 0.927519i \(0.621937\pi\)
\(360\) 10.2871 14.1878i 0.542176 0.747763i
\(361\) −14.3233 −0.753858
\(362\) 22.0374i 1.15826i
\(363\) 3.44138i 0.180626i
\(364\) −0.730393 −0.0382830
\(365\) 2.35267 3.24478i 0.123144 0.169839i
\(366\) 5.01486 0.262131
\(367\) 7.47147i 0.390008i −0.980802 0.195004i \(-0.937528\pi\)
0.980802 0.195004i \(-0.0624719\pi\)
\(368\) 19.1738i 0.999503i
\(369\) 11.6640 0.607205
\(370\) −6.87504 4.98485i −0.357416 0.259150i
\(371\) 15.7274 0.816528
\(372\) 1.59073i 0.0824756i
\(373\) 28.3484i 1.46782i −0.679245 0.733912i \(-0.737693\pi\)
0.679245 0.733912i \(-0.262307\pi\)
\(374\) 24.7724 1.28095
\(375\) 7.15907 + 2.30315i 0.369693 + 0.118934i
\(376\) 9.32348 0.480822
\(377\) 2.64719i 0.136337i
\(378\) 14.6909i 0.755617i
\(379\) 24.3013 1.24827 0.624136 0.781316i \(-0.285451\pi\)
0.624136 + 0.781316i \(0.285451\pi\)
\(380\) −2.35155 1.70502i −0.120632 0.0874658i
\(381\) 9.08849 0.465617
\(382\) 6.83981i 0.349955i
\(383\) 0.942323i 0.0481505i −0.999710 0.0240752i \(-0.992336\pi\)
0.999710 0.0240752i \(-0.00766412\pi\)
\(384\) 2.55877 0.130577
\(385\) −17.5370 + 24.1868i −0.893767 + 1.23267i
\(386\) −0.594738 −0.0302713
\(387\) 21.1908i 1.07719i
\(388\) 2.81972i 0.143149i
\(389\) −4.36844 −0.221489 −0.110744 0.993849i \(-0.535323\pi\)
−0.110744 + 0.993849i \(0.535323\pi\)
\(390\) −0.381586 + 0.526280i −0.0193224 + 0.0266492i
\(391\) 41.0278 2.07486
\(392\) 12.5407i 0.633403i
\(393\) 7.98358i 0.402718i
\(394\) −1.18293 −0.0595953
\(395\) 26.0977 + 18.9225i 1.31312 + 0.952095i
\(396\) −6.14312 −0.308703
\(397\) 17.5141i 0.879009i −0.898240 0.439504i \(-0.855154\pi\)
0.898240 0.439504i \(-0.144846\pi\)
\(398\) 17.0053i 0.852398i
\(399\) 4.84124 0.242365
\(400\) −3.78914 11.5854i −0.189457 0.579269i
\(401\) −35.5964 −1.77760 −0.888800 0.458294i \(-0.848461\pi\)
−0.888800 + 0.458294i \(0.848461\pi\)
\(402\) 8.75812i 0.436815i
\(403\) 1.43845i 0.0716543i
\(404\) −6.44449 −0.320625
\(405\) 9.29154 + 6.73696i 0.461700 + 0.334762i
\(406\) −28.5249 −1.41567
\(407\) 12.8884i 0.638853i
\(408\) 10.7947i 0.534417i
\(409\) −20.2533 −1.00146 −0.500730 0.865603i \(-0.666935\pi\)
−0.500730 + 0.865603i \(0.666935\pi\)
\(410\) 7.10904 9.80471i 0.351091 0.484220i
\(411\) 12.3520 0.609279
\(412\) 3.16650i 0.156002i
\(413\) 19.2510i 0.947278i
\(414\) 23.7019 1.16488
\(415\) −3.36172 + 4.63644i −0.165020 + 0.227594i
\(416\) −1.19437 −0.0585587
\(417\) 7.78076i 0.381025i
\(418\) 10.2698i 0.502311i
\(419\) 12.5680 0.613985 0.306992 0.951712i \(-0.400677\pi\)
0.306992 + 0.951712i \(0.400677\pi\)
\(420\) −2.43428 1.76501i −0.118781 0.0861237i
\(421\) −24.6205 −1.19993 −0.599964 0.800027i \(-0.704818\pi\)
−0.599964 + 0.800027i \(0.704818\pi\)
\(422\) 6.39005i 0.311063i
\(423\) 7.72067i 0.375392i
\(424\) 14.5380 0.706026
\(425\) 24.7902 8.10794i 1.20250 0.393293i
\(426\) 7.27802 0.352621
\(427\) 20.9754i 1.01507i
\(428\) 2.67886i 0.129488i
\(429\) 0.986596 0.0476333
\(430\) −17.8129 12.9155i −0.859012 0.622839i
\(431\) 25.8545 1.24537 0.622685 0.782473i \(-0.286042\pi\)
0.622685 + 0.782473i \(0.286042\pi\)
\(432\) 9.09696i 0.437678i
\(433\) 14.5312i 0.698326i 0.937062 + 0.349163i \(0.113534\pi\)
−0.937062 + 0.349163i \(0.886466\pi\)
\(434\) 15.5000 0.744026
\(435\) 6.39699 8.82266i 0.306712 0.423014i
\(436\) −6.15159 −0.294608
\(437\) 17.0087i 0.813634i
\(438\) 1.42621i 0.0681471i
\(439\) −14.7262 −0.702843 −0.351421 0.936217i \(-0.614302\pi\)
−0.351421 + 0.936217i \(0.614302\pi\)
\(440\) −16.2107 + 22.3576i −0.772813 + 1.06585i
\(441\) −10.3848 −0.494516
\(442\) 2.25455i 0.107238i
\(443\) 16.8930i 0.802611i −0.915944 0.401306i \(-0.868557\pi\)
0.915944 0.401306i \(-0.131443\pi\)
\(444\) −1.29715 −0.0615601
\(445\) 24.9321 + 18.0773i 1.18189 + 0.856948i
\(446\) 19.1407 0.906340
\(447\) 10.9800i 0.519335i
\(448\) 29.0969i 1.37470i
\(449\) −40.2353 −1.89882 −0.949412 0.314034i \(-0.898319\pi\)
−0.949412 + 0.314034i \(0.898319\pi\)
\(450\) 14.3214 4.68398i 0.675115 0.220805i
\(451\) −18.3805 −0.865505
\(452\) 6.34430i 0.298411i
\(453\) 10.5018i 0.493417i
\(454\) 8.72255 0.409369
\(455\) −2.20125 1.59604i −0.103196 0.0748237i
\(456\) 4.47509 0.209566
\(457\) 23.9328i 1.11953i 0.828652 + 0.559764i \(0.189108\pi\)
−0.828652 + 0.559764i \(0.810892\pi\)
\(458\) 23.5229i 1.09915i
\(459\) −19.4655 −0.908573
\(460\) −6.20099 + 8.55233i −0.289122 + 0.398754i
\(461\) −36.4943 −1.69971 −0.849855 0.527017i \(-0.823310\pi\)
−0.849855 + 0.527017i \(0.823310\pi\)
\(462\) 10.6311i 0.494603i
\(463\) 22.8528i 1.06206i −0.847353 0.531030i \(-0.821805\pi\)
0.847353 0.531030i \(-0.178195\pi\)
\(464\) −17.6633 −0.819998
\(465\) −3.47604 + 4.79412i −0.161198 + 0.222322i
\(466\) 13.1700 0.610087
\(467\) 27.0948i 1.25380i −0.779101 0.626898i \(-0.784324\pi\)
0.779101 0.626898i \(-0.215676\pi\)
\(468\) 0.559087i 0.0258438i
\(469\) 36.6322 1.69152
\(470\) 6.48994 + 4.70562i 0.299359 + 0.217054i
\(471\) −9.85695 −0.454184
\(472\) 17.7950i 0.819081i
\(473\) 33.3931i 1.53542i
\(474\) −11.4710 −0.526881
\(475\) −3.36126 10.2771i −0.154225 0.471547i
\(476\) −10.4283 −0.477980
\(477\) 12.0387i 0.551215i
\(478\) 7.00651i 0.320470i
\(479\) 9.83837 0.449527 0.224763 0.974413i \(-0.427839\pi\)
0.224763 + 0.974413i \(0.427839\pi\)
\(480\) −3.98064 2.88622i −0.181690 0.131737i
\(481\) −1.17297 −0.0534830
\(482\) 13.4458i 0.612441i
\(483\) 17.6071i 0.801150i
\(484\) 3.07313 0.139688
\(485\) −6.16160 + 8.49801i −0.279784 + 0.385875i
\(486\) −17.3265 −0.785946
\(487\) 21.7301i 0.984685i 0.870402 + 0.492342i \(0.163859\pi\)
−0.870402 + 0.492342i \(0.836141\pi\)
\(488\) 19.3891i 0.877701i
\(489\) 2.30074 0.104043
\(490\) −6.32940 + 8.72943i −0.285933 + 0.394356i
\(491\) 9.92067 0.447714 0.223857 0.974622i \(-0.428135\pi\)
0.223857 + 0.974622i \(0.428135\pi\)
\(492\) 1.84991i 0.0834003i
\(493\) 37.7957i 1.70223i
\(494\) 0.934654 0.0420521
\(495\) −18.5140 13.4239i −0.832144 0.603357i
\(496\) 9.59801 0.430963
\(497\) 30.4414i 1.36549i
\(498\) 2.03791i 0.0913208i
\(499\) −5.40678 −0.242041 −0.121020 0.992650i \(-0.538617\pi\)
−0.121020 + 0.992650i \(0.538617\pi\)
\(500\) −2.05670 + 6.39301i −0.0919784 + 0.285904i
\(501\) −0.178335 −0.00796743
\(502\) 32.8837i 1.46767i
\(503\) 4.66981i 0.208216i −0.994566 0.104108i \(-0.966801\pi\)
0.994566 0.104108i \(-0.0331988\pi\)
\(504\) −26.0836 −1.16185
\(505\) −19.4223 14.0824i −0.864280 0.626658i
\(506\) −37.3501 −1.66041
\(507\) 8.65462i 0.384365i
\(508\) 8.11597i 0.360088i
\(509\) 21.1778 0.938690 0.469345 0.883015i \(-0.344490\pi\)
0.469345 + 0.883015i \(0.344490\pi\)
\(510\) −5.44815 + 7.51403i −0.241248 + 0.332727i
\(511\) −5.96536 −0.263892
\(512\) 22.9691i 1.01510i
\(513\) 8.06971i 0.356286i
\(514\) 15.0083 0.661989
\(515\) −6.91938 + 9.54313i −0.304904 + 0.420521i
\(516\) −3.36085 −0.147953
\(517\) 12.1664i 0.535080i
\(518\) 12.6394i 0.555344i
\(519\) −7.63964 −0.335343
\(520\) −2.03477 1.47534i −0.0892304 0.0646977i
\(521\) 12.2704 0.537577 0.268789 0.963199i \(-0.413377\pi\)
0.268789 + 0.963199i \(0.413377\pi\)
\(522\) 21.8346i 0.955676i
\(523\) 7.41074i 0.324049i −0.986787 0.162024i \(-0.948198\pi\)
0.986787 0.162024i \(-0.0518023\pi\)
\(524\) 7.12929 0.311445
\(525\) −3.47952 10.6387i −0.151859 0.464311i
\(526\) 34.6455 1.51062
\(527\) 20.5377i 0.894635i
\(528\) 6.58304i 0.286490i
\(529\) −38.8587 −1.68951
\(530\) 10.1197 + 7.33741i 0.439571 + 0.318717i
\(531\) 14.7358 0.639481
\(532\) 4.32320i 0.187434i
\(533\) 1.67282i 0.0724577i
\(534\) −10.9587 −0.474228
\(535\) 5.85381 8.07350i 0.253082 0.349048i
\(536\) 33.8617 1.46260
\(537\) 7.14198i 0.308199i
\(538\) 8.01605i 0.345596i
\(539\) 16.3647 0.704879
\(540\) 2.94204 4.05763i 0.126605 0.174613i
\(541\) −4.41764 −0.189929 −0.0949647 0.995481i \(-0.530274\pi\)
−0.0949647 + 0.995481i \(0.530274\pi\)
\(542\) 28.9279i 1.24256i
\(543\) 12.5311i 0.537760i
\(544\) −17.0528 −0.731132
\(545\) −18.5395 13.4424i −0.794147 0.575807i
\(546\) 0.967538 0.0414068
\(547\) 7.34172i 0.313909i −0.987606 0.156955i \(-0.949832\pi\)
0.987606 0.156955i \(-0.0501677\pi\)
\(548\) 11.0303i 0.471190i
\(549\) −16.0558 −0.685247
\(550\) −22.5680 + 7.38114i −0.962303 + 0.314733i
\(551\) −15.6687 −0.667510
\(552\) 16.2755i 0.692729i
\(553\) 47.9793i 2.04029i
\(554\) −1.95060 −0.0828729
\(555\) −3.90933 2.83452i −0.165942 0.120319i
\(556\) −6.94818 −0.294668
\(557\) 3.51847i 0.149082i 0.997218 + 0.0745412i \(0.0237492\pi\)
−0.997218 + 0.0745412i \(0.976251\pi\)
\(558\) 11.8647i 0.502271i
\(559\) −3.03911 −0.128541
\(560\) −10.6496 + 14.6878i −0.450026 + 0.620671i
\(561\) 14.0863 0.594723
\(562\) 18.0752i 0.762458i
\(563\) 26.4829i 1.11612i −0.829800 0.558060i \(-0.811546\pi\)
0.829800 0.558060i \(-0.188454\pi\)
\(564\) 1.22449 0.0515605
\(565\) 13.8635 19.1203i 0.583241 0.804399i
\(566\) −16.9011 −0.710405
\(567\) 17.0820i 0.717377i
\(568\) 28.1392i 1.18069i
\(569\) −32.0339 −1.34293 −0.671466 0.741036i \(-0.734335\pi\)
−0.671466 + 0.741036i \(0.734335\pi\)
\(570\) 3.11505 + 2.25861i 0.130475 + 0.0946028i
\(571\) −30.6558 −1.28290 −0.641452 0.767163i \(-0.721668\pi\)
−0.641452 + 0.767163i \(0.721668\pi\)
\(572\) 0.881025i 0.0368375i
\(573\) 3.88930i 0.162478i
\(574\) −18.0255 −0.752368
\(575\) −37.3768 + 12.2246i −1.55872 + 0.509799i
\(576\) −22.2725 −0.928022
\(577\) 27.1211i 1.12907i −0.825410 0.564533i \(-0.809056\pi\)
0.825410 0.564533i \(-0.190944\pi\)
\(578\) 12.0797i 0.502451i
\(579\) −0.338184 −0.0140544
\(580\) 7.87858 + 5.71248i 0.327140 + 0.237198i
\(581\) 8.52386 0.353629
\(582\) 3.73522i 0.154830i
\(583\) 18.9710i 0.785697i
\(584\) −5.51420 −0.228179
\(585\) 1.22171 1.68497i 0.0505114 0.0696647i
\(586\) 11.6143 0.479780
\(587\) 35.1593i 1.45118i −0.688128 0.725589i \(-0.741567\pi\)
0.688128 0.725589i \(-0.258433\pi\)
\(588\) 1.64703i 0.0679224i
\(589\) 8.51418 0.350821
\(590\) 8.98126 12.3868i 0.369752 0.509958i
\(591\) −0.672647 −0.0276690
\(592\) 7.82664i 0.321673i
\(593\) 40.0424i 1.64435i 0.569238 + 0.822173i \(0.307238\pi\)
−0.569238 + 0.822173i \(0.692762\pi\)
\(594\) 17.7206 0.727087
\(595\) −31.4286 22.7878i −1.28845 0.934207i
\(596\) 9.80505 0.401630
\(597\) 9.66966i 0.395753i
\(598\) 3.39924i 0.139005i
\(599\) −6.08575 −0.248657 −0.124329 0.992241i \(-0.539678\pi\)
−0.124329 + 0.992241i \(0.539678\pi\)
\(600\) −3.21637 9.83411i −0.131308 0.401476i
\(601\) 15.5884 0.635866 0.317933 0.948113i \(-0.397011\pi\)
0.317933 + 0.948113i \(0.397011\pi\)
\(602\) 32.7480i 1.33471i
\(603\) 28.0405i 1.14190i
\(604\) −9.37804 −0.381587
\(605\) 9.26176 + 6.71537i 0.376544 + 0.273018i
\(606\) 8.53689 0.346788
\(607\) 43.0843i 1.74874i 0.485263 + 0.874368i \(0.338724\pi\)
−0.485263 + 0.874368i \(0.661276\pi\)
\(608\) 7.06947i 0.286705i
\(609\) −16.2200 −0.657268
\(610\) −9.78578 + 13.4964i −0.396215 + 0.546455i
\(611\) 1.10727 0.0447954
\(612\) 7.98244i 0.322671i
\(613\) 9.83189i 0.397106i −0.980090 0.198553i \(-0.936376\pi\)
0.980090 0.198553i \(-0.0636243\pi\)
\(614\) 21.8254 0.880801
\(615\) 4.04239 5.57522i 0.163005 0.224815i
\(616\) 41.1032 1.65610
\(617\) 40.8672i 1.64525i −0.568583 0.822626i \(-0.692508\pi\)
0.568583 0.822626i \(-0.307492\pi\)
\(618\) 4.19460i 0.168732i
\(619\) 35.8404 1.44055 0.720274 0.693689i \(-0.244016\pi\)
0.720274 + 0.693689i \(0.244016\pi\)
\(620\) −4.28112 3.10409i −0.171934 0.124663i
\(621\) 29.3487 1.17772
\(622\) 41.0055i 1.64417i
\(623\) 45.8363i 1.83639i
\(624\) 0.599124 0.0239841
\(625\) −20.1684 + 14.7729i −0.806734 + 0.590915i
\(626\) 14.6632 0.586058
\(627\) 5.83966i 0.233214i
\(628\) 8.80220i 0.351246i
\(629\) −16.7473 −0.667759
\(630\) −18.1564 13.1645i −0.723368 0.524488i
\(631\) −5.16698 −0.205694 −0.102847 0.994697i \(-0.532795\pi\)
−0.102847 + 0.994697i \(0.532795\pi\)
\(632\) 44.3507i 1.76417i
\(633\) 3.63355i 0.144421i
\(634\) 26.2179 1.04125
\(635\) −17.7349 + 24.4598i −0.703788 + 0.970656i
\(636\) 1.90933 0.0757100
\(637\) 1.48936i 0.0590105i
\(638\) 34.4077i 1.36221i
\(639\) −23.3017 −0.921801
\(640\) −4.99308 + 6.88640i −0.197369 + 0.272209i
\(641\) 23.3893 0.923822 0.461911 0.886926i \(-0.347164\pi\)
0.461911 + 0.886926i \(0.347164\pi\)
\(642\) 3.54864i 0.140053i
\(643\) 48.9826i 1.93168i −0.259130 0.965842i \(-0.583436\pi\)
0.259130 0.965842i \(-0.416564\pi\)
\(644\) 15.7230 0.619574
\(645\) −10.1289 7.34408i −0.398824 0.289173i
\(646\) 13.3447 0.525038
\(647\) 44.2948i 1.74141i −0.491809 0.870703i \(-0.663664\pi\)
0.491809 0.870703i \(-0.336336\pi\)
\(648\) 15.7901i 0.620294i
\(649\) −23.2212 −0.911510
\(650\) −0.671759 2.05392i −0.0263486 0.0805613i
\(651\) 8.81374 0.345438
\(652\) 2.05455i 0.0804623i
\(653\) 20.8680i 0.816629i 0.912841 + 0.408315i \(0.133883\pi\)
−0.912841 + 0.408315i \(0.866117\pi\)
\(654\) 8.14889 0.318647
\(655\) 21.4861 + 15.5788i 0.839533 + 0.608715i
\(656\) −11.1618 −0.435796
\(657\) 4.56624i 0.178146i
\(658\) 11.9314i 0.465135i
\(659\) 16.4987 0.642697 0.321349 0.946961i \(-0.395864\pi\)
0.321349 + 0.946961i \(0.395864\pi\)
\(660\) −2.12902 + 2.93631i −0.0828718 + 0.114296i
\(661\) −35.2710 −1.37188 −0.685941 0.727658i \(-0.740609\pi\)
−0.685941 + 0.727658i \(0.740609\pi\)
\(662\) 32.4281i 1.26035i
\(663\) 1.28199i 0.0497886i
\(664\) 7.87920 0.305772
\(665\) −9.44699 + 13.0292i −0.366338 + 0.505250i
\(666\) −9.67496 −0.374897
\(667\) 56.9855i 2.20649i
\(668\) 0.159252i 0.00616166i
\(669\) 10.8839 0.420797
\(670\) 23.5706 + 17.0902i 0.910613 + 0.660253i
\(671\) 25.3013 0.976745
\(672\) 7.31820i 0.282306i
\(673\) 41.8981i 1.61505i 0.589830 + 0.807527i \(0.299195\pi\)
−0.589830 + 0.807527i \(0.700805\pi\)
\(674\) 7.46828 0.287667
\(675\) 17.7333 5.79991i 0.682556 0.223238i
\(676\) 7.72853 0.297251
\(677\) 16.8927i 0.649240i −0.945845 0.324620i \(-0.894764\pi\)
0.945845 0.324620i \(-0.105236\pi\)
\(678\) 8.40418i 0.322760i
\(679\) 15.6232 0.599562
\(680\) −29.0517 21.0643i −1.11408 0.807780i
\(681\) 4.95987 0.190063
\(682\) 18.6967i 0.715933i
\(683\) 34.9194i 1.33615i −0.744093 0.668077i \(-0.767118\pi\)
0.744093 0.668077i \(-0.232882\pi\)
\(684\) −3.30923 −0.126532
\(685\) −24.1032 + 33.2428i −0.920935 + 1.27014i
\(686\) −11.5100 −0.439454
\(687\) 13.3758i 0.510317i
\(688\) 20.2784i 0.773106i
\(689\) 1.72655 0.0657764
\(690\) 8.21433 11.3291i 0.312714 0.431292i
\(691\) 37.2958 1.41880 0.709399 0.704807i \(-0.248966\pi\)
0.709399 + 0.704807i \(0.248966\pi\)
\(692\) 6.82215i 0.259339i
\(693\) 34.0371i 1.29296i
\(694\) 17.6605 0.670382
\(695\) −20.9403 15.1830i −0.794310 0.575926i
\(696\) −14.9933 −0.568319
\(697\) 23.8839i 0.904666i
\(698\) 25.7991i 0.976512i
\(699\) 7.48880 0.283253
\(700\) 9.50031 3.10719i 0.359078 0.117441i
\(701\) 5.44329 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(702\) 1.61276i 0.0608697i
\(703\) 6.94284i 0.261854i
\(704\) 35.0977 1.32279
\(705\) 3.69035 + 2.67574i 0.138987 + 0.100774i
\(706\) 11.0350 0.415307
\(707\) 35.7069i 1.34290i
\(708\) 2.33709i 0.0878334i
\(709\) 8.83117 0.331661 0.165831 0.986154i \(-0.446969\pi\)
0.165831 + 0.986154i \(0.446969\pi\)
\(710\) −14.2020 + 19.5873i −0.532992 + 0.735097i
\(711\) 36.7263 1.37734
\(712\) 42.3697i 1.58787i
\(713\) 30.9652i 1.15966i
\(714\) 13.8142 0.516982
\(715\) −1.92520 + 2.65522i −0.0719985 + 0.0992995i
\(716\) 6.37775 0.238348
\(717\) 3.98409i 0.148788i
\(718\) 16.7552i 0.625299i
\(719\) −7.51607 −0.280302 −0.140151 0.990130i \(-0.544759\pi\)
−0.140151 + 0.990130i \(0.544759\pi\)
\(720\) −11.2429 8.15181i −0.418998 0.303800i
\(721\) 17.5446 0.653394
\(722\) 16.9435i 0.630572i
\(723\) 7.64567i 0.284345i
\(724\) 11.1902 0.415880
\(725\) 11.2615 + 34.4323i 0.418242 + 1.27878i
\(726\) −4.07092 −0.151086
\(727\) 9.35179i 0.346839i −0.984848 0.173419i \(-0.944518\pi\)
0.984848 0.173419i \(-0.0554816\pi\)
\(728\) 3.74081i 0.138644i
\(729\) 5.54556 0.205391
\(730\) −3.83835 2.78305i −0.142064 0.103005i
\(731\) −43.3914 −1.60489
\(732\) 2.54645i 0.0941194i
\(733\) 8.95136i 0.330626i 0.986241 + 0.165313i \(0.0528634\pi\)
−0.986241 + 0.165313i \(0.947137\pi\)
\(734\) −8.83825 −0.326226
\(735\) −3.59907 + 4.96379i −0.132754 + 0.183092i
\(736\) 25.7109 0.947717
\(737\) 44.1870i 1.62765i
\(738\) 13.7978i 0.507903i
\(739\) −39.4888 −1.45262 −0.726309 0.687368i \(-0.758766\pi\)
−0.726309 + 0.687368i \(0.758766\pi\)
\(740\) 2.53121 3.49101i 0.0930490 0.128332i
\(741\) 0.531469 0.0195240
\(742\) 18.6045i 0.682993i
\(743\) 12.2083i 0.447879i 0.974603 + 0.223939i \(0.0718917\pi\)
−0.974603 + 0.223939i \(0.928108\pi\)
\(744\) 8.14716 0.298689
\(745\) 29.5503 + 21.4258i 1.08264 + 0.784982i
\(746\) −33.5342 −1.22778
\(747\) 6.52467i 0.238725i
\(748\) 12.5790i 0.459932i
\(749\) −14.8427 −0.542341
\(750\) 2.72447 8.46870i 0.0994837 0.309233i
\(751\) 31.3797 1.14506 0.572531 0.819883i \(-0.305962\pi\)
0.572531 + 0.819883i \(0.305962\pi\)
\(752\) 7.38823i 0.269421i
\(753\) 18.6985i 0.681413i
\(754\) −3.13145 −0.114041
\(755\) −28.2634 20.4927i −1.02861 0.745807i
\(756\) −7.45974 −0.271308
\(757\) 28.2134i 1.02544i 0.858557 + 0.512718i \(0.171361\pi\)
−0.858557 + 0.512718i \(0.828639\pi\)
\(758\) 28.7468i 1.04413i
\(759\) −21.2383 −0.770900
\(760\) −8.73251 + 12.0438i −0.316761 + 0.436874i
\(761\) 35.6534 1.29243 0.646217 0.763154i \(-0.276350\pi\)
0.646217 + 0.763154i \(0.276350\pi\)
\(762\) 10.7511i 0.389470i
\(763\) 34.0840i 1.23392i
\(764\) 3.47312 0.125653
\(765\) 17.4431 24.0573i 0.630657 0.869795i
\(766\) −1.11470 −0.0402759
\(767\) 2.11336i 0.0763091i
\(768\) 8.73470i 0.315186i
\(769\) −45.2644 −1.63228 −0.816139 0.577856i \(-0.803890\pi\)
−0.816139 + 0.577856i \(0.803890\pi\)
\(770\) 28.6114 + 20.7451i 1.03108 + 0.747600i
\(771\) 8.53414 0.307350
\(772\) 0.301996i 0.0108691i
\(773\) 24.4364i 0.878915i 0.898263 + 0.439457i \(0.144829\pi\)
−0.898263 + 0.439457i \(0.855171\pi\)
\(774\) −25.0673 −0.901026
\(775\) −6.11936 18.7101i −0.219814 0.672086i
\(776\) 14.4416 0.518422
\(777\) 7.18711i 0.257836i
\(778\) 5.16757i 0.185266i
\(779\) −9.90139 −0.354754
\(780\) −0.267235 0.193762i −0.00956853 0.00693780i
\(781\) 36.7195 1.31393
\(782\) 48.5331i 1.73554i
\(783\) 27.0366i 0.966210i
\(784\) 9.93770 0.354918
\(785\) 19.2344 26.5279i 0.686507 0.946822i
\(786\) −9.44404 −0.336858
\(787\) 8.26001i 0.294437i −0.989104 0.147219i \(-0.952968\pi\)
0.989104 0.147219i \(-0.0470321\pi\)
\(788\) 0.600670i 0.0213980i
\(789\) 19.7004 0.701352
\(790\) 22.3841 30.8718i 0.796389 1.09837i
\(791\) −35.1518 −1.24985
\(792\) 31.4629i 1.11798i
\(793\) 2.30267i 0.0817703i
\(794\) −20.7180 −0.735256
\(795\) 5.75432 + 4.17225i 0.204085 + 0.147974i
\(796\) −8.63495 −0.306058
\(797\) 6.32888i 0.224180i −0.993698 0.112090i \(-0.964245\pi\)
0.993698 0.112090i \(-0.0357546\pi\)
\(798\) 5.72686i 0.202729i
\(799\) 15.8092 0.559290
\(800\) 15.5353 5.08101i 0.549255 0.179641i
\(801\) 35.0859 1.23970
\(802\) 42.1082i 1.48689i
\(803\) 7.19562i 0.253928i
\(804\) 4.44720 0.156841
\(805\) 47.3858 + 34.3577i 1.67013 + 1.21095i
\(806\) 1.70159 0.0599359
\(807\) 4.55814i 0.160454i
\(808\) 33.0064i 1.16116i
\(809\) −0.743242 −0.0261310 −0.0130655 0.999915i \(-0.504159\pi\)
−0.0130655 + 0.999915i \(0.504159\pi\)
\(810\) 7.96937 10.9913i 0.280015 0.386194i
\(811\) −35.0526 −1.23086 −0.615431 0.788191i \(-0.711018\pi\)
−0.615431 + 0.788191i \(0.711018\pi\)
\(812\) 14.4844i 0.508302i
\(813\) 16.4492i 0.576897i
\(814\) 15.2461 0.534375
\(815\) −4.48957 + 6.19196i −0.157263 + 0.216895i
\(816\) 8.55407 0.299452
\(817\) 17.9885i 0.629338i
\(818\) 23.9583i 0.837681i
\(819\) −3.09772 −0.108243
\(820\) 4.97864 + 3.60983i 0.173862 + 0.126061i
\(821\) −29.8090 −1.04034 −0.520171 0.854062i \(-0.674132\pi\)
−0.520171 + 0.854062i \(0.674132\pi\)
\(822\) 14.6116i 0.509638i
\(823\) 20.0698i 0.699591i −0.936826 0.349795i \(-0.886251\pi\)
0.936826 0.349795i \(-0.113749\pi\)
\(824\) 16.2177 0.564969
\(825\) −12.8328 + 4.19712i −0.446780 + 0.146125i
\(826\) −22.7726 −0.792360
\(827\) 18.9685i 0.659598i −0.944051 0.329799i \(-0.893019\pi\)
0.944051 0.329799i \(-0.106981\pi\)
\(828\) 12.0353i 0.418257i
\(829\) −20.7884 −0.722011 −0.361005 0.932564i \(-0.617566\pi\)
−0.361005 + 0.932564i \(0.617566\pi\)
\(830\) 5.48460 + 3.97668i 0.190373 + 0.138033i
\(831\) −1.10916 −0.0384764
\(832\) 3.19425i 0.110741i
\(833\) 21.2645i 0.736772i
\(834\) 9.20412 0.318712
\(835\) 0.347996 0.479952i 0.0120429 0.0166094i
\(836\) 5.21479 0.180357
\(837\) 14.6914i 0.507807i
\(838\) 14.8670i 0.513573i
\(839\) −52.9766 −1.82896 −0.914478 0.404636i \(-0.867398\pi\)
−0.914478 + 0.404636i \(0.867398\pi\)
\(840\) −9.03975 + 12.4675i −0.311901 + 0.430170i
\(841\) 23.4962 0.810215
\(842\) 29.1243i 1.00369i
\(843\) 10.2781i 0.353996i
\(844\) −3.24474 −0.111689
\(845\) 23.2921 + 16.8883i 0.801273 + 0.580974i
\(846\) 9.13303 0.314000
\(847\) 17.0273i 0.585064i
\(848\) 11.5204i 0.395611i
\(849\) −9.61040 −0.329828
\(850\) −9.59114 29.3251i −0.328974 1.00584i
\(851\) 25.2504 0.865572
\(852\) 3.69564i 0.126610i
\(853\) 23.3978i 0.801126i 0.916269 + 0.400563i \(0.131185\pi\)
−0.916269 + 0.400563i \(0.868815\pi\)
\(854\) 24.8125 0.849067
\(855\) −9.97331 7.23129i −0.341080 0.247305i
\(856\) −13.7202 −0.468946
\(857\) 24.1325i 0.824349i −0.911105 0.412175i \(-0.864769\pi\)
0.911105 0.412175i \(-0.135231\pi\)
\(858\) 1.16708i 0.0398434i
\(859\) −4.08951 −0.139532 −0.0697661 0.997563i \(-0.522225\pi\)
−0.0697661 + 0.997563i \(0.522225\pi\)
\(860\) 6.55822 9.04502i 0.223633 0.308433i
\(861\) −10.2498 −0.349311
\(862\) 30.5842i 1.04170i
\(863\) 44.4527i 1.51319i 0.653885 + 0.756594i \(0.273138\pi\)
−0.653885 + 0.756594i \(0.726862\pi\)
\(864\) −12.1985 −0.415001
\(865\) 14.9077 20.5605i 0.506876 0.699077i
\(866\) 17.1895 0.584122
\(867\) 6.86887i 0.233279i
\(868\) 7.87062i 0.267146i
\(869\) −57.8743 −1.96325
\(870\) −10.4366 7.56721i −0.353834 0.256552i
\(871\) 4.02147 0.136262
\(872\) 31.5062i 1.06694i
\(873\) 11.9589i 0.404747i
\(874\) −20.1201 −0.680572
\(875\) 35.4217 + 11.3955i 1.19747 + 0.385239i
\(876\) −0.724203 −0.0244686
\(877\) 14.4263i 0.487142i 0.969883 + 0.243571i \(0.0783189\pi\)
−0.969883 + 0.243571i \(0.921681\pi\)
\(878\) 17.4201i 0.587900i
\(879\) 6.60418 0.222753
\(880\) 17.7169 + 12.8459i 0.597235 + 0.433034i
\(881\) −15.8712 −0.534715 −0.267357 0.963597i \(-0.586150\pi\)
−0.267357 + 0.963597i \(0.586150\pi\)
\(882\) 12.2846i 0.413643i
\(883\) 4.89293i 0.164660i 0.996605 + 0.0823301i \(0.0262362\pi\)
−0.996605 + 0.0823301i \(0.973764\pi\)
\(884\) −1.14481 −0.0385043
\(885\) 5.10698 7.04349i 0.171669 0.236764i
\(886\) −19.9833 −0.671352
\(887\) 26.0584i 0.874955i −0.899229 0.437477i \(-0.855872\pi\)
0.899229 0.437477i \(-0.144128\pi\)
\(888\) 6.64355i 0.222943i
\(889\) 44.9680 1.50818
\(890\) 21.3843 29.4930i 0.716803 0.988606i
\(891\) −20.6049 −0.690290
\(892\) 9.71929i 0.325426i
\(893\) 6.55394i 0.219319i
\(894\) −12.9886 −0.434402
\(895\) 19.2211 + 13.9366i 0.642492 + 0.465848i
\(896\) 12.6603 0.422951
\(897\) 1.93290i 0.0645376i
\(898\) 47.5957i 1.58829i
\(899\) −28.5258 −0.951388
\(900\) 2.37843 + 7.27211i 0.0792811 + 0.242404i
\(901\) 24.6511 0.821247
\(902\) 21.7429i 0.723960i
\(903\) 18.6214i 0.619682i
\(904\) −32.4932 −1.08071
\(905\) 33.7248 + 24.4526i 1.12105 + 0.812833i
\(906\) 12.4229 0.412723
\(907\) 57.2778i 1.90188i −0.309376 0.950940i \(-0.600120\pi\)
0.309376 0.950940i \(-0.399880\pi\)
\(908\) 4.42914i 0.146986i
\(909\) −27.3322 −0.906551
\(910\) −1.88801 + 2.60393i −0.0625870 + 0.0863193i
\(911\) −29.9179 −0.991225 −0.495613 0.868544i \(-0.665056\pi\)
−0.495613 + 0.868544i \(0.665056\pi\)
\(912\) 3.54621i 0.117427i
\(913\) 10.2818i 0.340277i
\(914\) 28.3109 0.936441
\(915\) −5.56446 + 7.67444i −0.183955 + 0.253709i
\(916\) 11.9445 0.394657
\(917\) 39.5012i 1.30444i
\(918\) 23.0264i 0.759985i
\(919\) 41.7005 1.37557 0.687786 0.725913i \(-0.258583\pi\)
0.687786 + 0.725913i \(0.258583\pi\)
\(920\) 43.8020 + 31.7592i 1.44411 + 1.04707i
\(921\) 12.4105 0.408940
\(922\) 43.1703i 1.42174i
\(923\) 3.34185i 0.109998i
\(924\) 5.39826 0.177590
\(925\) 15.2570 4.98999i 0.501647 0.164070i
\(926\) −27.0333 −0.888371
\(927\) 13.4297i 0.441088i
\(928\) 23.6854i 0.777512i
\(929\) 28.6930 0.941387 0.470694 0.882297i \(-0.344004\pi\)
0.470694 + 0.882297i \(0.344004\pi\)
\(930\) 5.67112 + 4.11192i 0.185963 + 0.134835i
\(931\) 8.81551 0.288917
\(932\) 6.68746i 0.219055i
\(933\) 23.3168i 0.763359i
\(934\) −32.0513 −1.04875
\(935\) −27.4874 + 37.9103i −0.898933 + 1.23980i
\(936\) −2.86344 −0.0935945
\(937\) 38.1640i 1.24676i −0.781917 0.623382i \(-0.785758\pi\)
0.781917 0.623382i \(-0.214242\pi\)
\(938\) 43.3334i 1.41489i
\(939\) 8.33787 0.272096
\(940\) −2.38942 + 3.29547i −0.0779344 + 0.107486i
\(941\) −51.7782 −1.68792 −0.843961 0.536404i \(-0.819782\pi\)
−0.843961 + 0.536404i \(0.819782\pi\)
\(942\) 11.6601i 0.379907i
\(943\) 36.0103i 1.17266i
\(944\) −14.1013 −0.458960
\(945\) −22.4820 16.3009i −0.731341 0.530269i
\(946\) 39.5018 1.28431
\(947\) 1.35453i 0.0440164i 0.999758 + 0.0220082i \(0.00700599\pi\)
−0.999758 + 0.0220082i \(0.992994\pi\)
\(948\) 5.82476i 0.189179i
\(949\) −0.654875 −0.0212581
\(950\) −12.1571 + 3.97614i −0.394430 + 0.129003i
\(951\) 14.9082 0.483431
\(952\) 53.4100i 1.73103i
\(953\) 23.2905i 0.754452i 0.926121 + 0.377226i \(0.123122\pi\)
−0.926121 + 0.377226i \(0.876878\pi\)
\(954\) 14.2410 0.461069
\(955\) 10.4672 + 7.58941i 0.338711 + 0.245587i
\(956\) 3.55777 0.115066
\(957\) 19.5651i 0.632450i
\(958\) 11.6381i 0.376011i
\(959\) 61.1152 1.97351
\(960\) −7.71896 + 10.6459i −0.249129 + 0.343595i
\(961\) −15.4995 −0.499982
\(962\) 1.38755i 0.0447364i
\(963\) 11.3615i 0.366120i
\(964\) 6.82754 0.219900
\(965\) 0.659917 0.910151i 0.0212435 0.0292988i
\(966\) −20.8280 −0.670130
\(967\) 6.69207i 0.215203i −0.994194 0.107601i \(-0.965683\pi\)
0.994194 0.107601i \(-0.0343170\pi\)
\(968\) 15.7395i 0.505887i
\(969\) 7.58813 0.243766
\(970\) 10.0526 + 7.28876i 0.322769 + 0.234028i
\(971\) −41.7616 −1.34019 −0.670097 0.742274i \(-0.733748\pi\)
−0.670097 + 0.742274i \(0.733748\pi\)
\(972\) 8.79806i 0.282198i
\(973\) 38.4976i 1.23418i
\(974\) 25.7052 0.823649
\(975\) −0.381980 1.16791i −0.0122332 0.0374032i
\(976\) 15.3645 0.491806
\(977\) 18.8391i 0.602715i 0.953511 + 0.301357i \(0.0974397\pi\)
−0.953511 + 0.301357i \(0.902560\pi\)
\(978\) 2.72162i 0.0870278i
\(979\) −55.2893 −1.76705
\(980\) −4.43264 3.21395i −0.141595 0.102666i
\(981\) −26.0899 −0.832987
\(982\) 11.7355i 0.374494i
\(983\) 41.7654i 1.33211i −0.745903 0.666055i \(-0.767982\pi\)
0.745903 0.666055i \(-0.232018\pi\)
\(984\) −9.47457 −0.302038
\(985\) 1.31258 1.81029i 0.0418221 0.0576806i
\(986\) −44.7097 −1.42385
\(987\) 6.78453i 0.215954i
\(988\) 0.474599i 0.0150990i
\(989\) 65.4223 2.08031
\(990\) −15.8795 + 21.9008i −0.504684 + 0.696055i
\(991\) −31.3931 −0.997235 −0.498617 0.866822i \(-0.666159\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(992\) 12.8704i 0.408634i
\(993\) 18.4395i 0.585160i
\(994\) 36.0102 1.14217
\(995\) −26.0239 18.8690i −0.825012 0.598187i
\(996\) 1.03481 0.0327892
\(997\) 12.4169i 0.393247i −0.980479 0.196623i \(-0.937002\pi\)
0.980479 0.196623i \(-0.0629976\pi\)
\(998\) 6.39586i 0.202457i
\(999\) −11.9800 −0.379029
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.b.a.789.33 98
5.2 odd 4 4925.2.a.r.1.34 49
5.3 odd 4 4925.2.a.s.1.16 49
5.4 even 2 inner 985.2.b.a.789.66 yes 98
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.33 98 1.1 even 1 trivial
985.2.b.a.789.66 yes 98 5.4 even 2 inner
4925.2.a.r.1.34 49 5.2 odd 4
4925.2.a.s.1.16 49 5.3 odd 4