Properties

Label 985.2.a.g.1.7
Level $985$
Weight $2$
Character 985.1
Self dual yes
Analytic conductor $7.865$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [985,2,Mod(1,985)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("985.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(985, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.369022\) of defining polynomial
Character \(\chi\) \(=\) 985.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.369022 q^{2} +3.16939 q^{3} -1.86382 q^{4} -1.00000 q^{5} -1.16957 q^{6} +3.62949 q^{7} +1.42584 q^{8} +7.04503 q^{9} +0.369022 q^{10} -3.32973 q^{11} -5.90718 q^{12} -2.49966 q^{13} -1.33936 q^{14} -3.16939 q^{15} +3.20148 q^{16} +3.99626 q^{17} -2.59977 q^{18} +0.544719 q^{19} +1.86382 q^{20} +11.5033 q^{21} +1.22874 q^{22} +8.11588 q^{23} +4.51903 q^{24} +1.00000 q^{25} +0.922428 q^{26} +12.8203 q^{27} -6.76472 q^{28} -3.01336 q^{29} +1.16957 q^{30} +0.641233 q^{31} -4.03309 q^{32} -10.5532 q^{33} -1.47471 q^{34} -3.62949 q^{35} -13.1307 q^{36} +2.21756 q^{37} -0.201013 q^{38} -7.92238 q^{39} -1.42584 q^{40} +7.30634 q^{41} -4.24496 q^{42} -12.1642 q^{43} +6.20603 q^{44} -7.04503 q^{45} -2.99494 q^{46} +5.63469 q^{47} +10.1467 q^{48} +6.17319 q^{49} -0.369022 q^{50} +12.6657 q^{51} +4.65891 q^{52} -11.4574 q^{53} -4.73097 q^{54} +3.32973 q^{55} +5.17505 q^{56} +1.72643 q^{57} +1.11200 q^{58} +12.0541 q^{59} +5.90718 q^{60} +5.18446 q^{61} -0.236629 q^{62} +25.5699 q^{63} -4.91466 q^{64} +2.49966 q^{65} +3.89437 q^{66} -7.98879 q^{67} -7.44832 q^{68} +25.7224 q^{69} +1.33936 q^{70} +6.47286 q^{71} +10.0451 q^{72} -10.1728 q^{73} -0.818327 q^{74} +3.16939 q^{75} -1.01526 q^{76} -12.0852 q^{77} +2.92353 q^{78} -10.1297 q^{79} -3.20148 q^{80} +19.4974 q^{81} -2.69620 q^{82} -1.50622 q^{83} -21.4400 q^{84} -3.99626 q^{85} +4.48884 q^{86} -9.55051 q^{87} -4.74765 q^{88} -1.60622 q^{89} +2.59977 q^{90} -9.07247 q^{91} -15.1266 q^{92} +2.03232 q^{93} -2.07932 q^{94} -0.544719 q^{95} -12.7824 q^{96} +9.03149 q^{97} -2.27804 q^{98} -23.4581 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 6 q^{2} + 5 q^{3} + 18 q^{4} - 17 q^{5} + 3 q^{6} + 7 q^{7} + 18 q^{8} + 22 q^{9} - 6 q^{10} + 7 q^{11} + 20 q^{12} + 3 q^{13} + 17 q^{14} - 5 q^{15} + 28 q^{16} + 6 q^{17} + 13 q^{18} - 23 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.369022 −0.260938 −0.130469 0.991452i \(-0.541648\pi\)
−0.130469 + 0.991452i \(0.541648\pi\)
\(3\) 3.16939 1.82985 0.914924 0.403626i \(-0.132250\pi\)
0.914924 + 0.403626i \(0.132250\pi\)
\(4\) −1.86382 −0.931911
\(5\) −1.00000 −0.447214
\(6\) −1.16957 −0.477477
\(7\) 3.62949 1.37182 0.685909 0.727687i \(-0.259405\pi\)
0.685909 + 0.727687i \(0.259405\pi\)
\(8\) 1.42584 0.504109
\(9\) 7.04503 2.34834
\(10\) 0.369022 0.116695
\(11\) −3.32973 −1.00395 −0.501976 0.864882i \(-0.667393\pi\)
−0.501976 + 0.864882i \(0.667393\pi\)
\(12\) −5.90718 −1.70526
\(13\) −2.49966 −0.693280 −0.346640 0.937998i \(-0.612677\pi\)
−0.346640 + 0.937998i \(0.612677\pi\)
\(14\) −1.33936 −0.357959
\(15\) −3.16939 −0.818333
\(16\) 3.20148 0.800370
\(17\) 3.99626 0.969236 0.484618 0.874726i \(-0.338959\pi\)
0.484618 + 0.874726i \(0.338959\pi\)
\(18\) −2.59977 −0.612772
\(19\) 0.544719 0.124967 0.0624835 0.998046i \(-0.480098\pi\)
0.0624835 + 0.998046i \(0.480098\pi\)
\(20\) 1.86382 0.416763
\(21\) 11.5033 2.51022
\(22\) 1.22874 0.261969
\(23\) 8.11588 1.69228 0.846139 0.532962i \(-0.178921\pi\)
0.846139 + 0.532962i \(0.178921\pi\)
\(24\) 4.51903 0.922443
\(25\) 1.00000 0.200000
\(26\) 0.922428 0.180903
\(27\) 12.8203 2.46726
\(28\) −6.76472 −1.27841
\(29\) −3.01336 −0.559567 −0.279783 0.960063i \(-0.590263\pi\)
−0.279783 + 0.960063i \(0.590263\pi\)
\(30\) 1.16957 0.213534
\(31\) 0.641233 0.115169 0.0575845 0.998341i \(-0.481660\pi\)
0.0575845 + 0.998341i \(0.481660\pi\)
\(32\) −4.03309 −0.712956
\(33\) −10.5532 −1.83708
\(34\) −1.47471 −0.252910
\(35\) −3.62949 −0.613496
\(36\) −13.1307 −2.18845
\(37\) 2.21756 0.364564 0.182282 0.983246i \(-0.441652\pi\)
0.182282 + 0.983246i \(0.441652\pi\)
\(38\) −0.201013 −0.0326086
\(39\) −7.92238 −1.26860
\(40\) −1.42584 −0.225444
\(41\) 7.30634 1.14106 0.570529 0.821277i \(-0.306738\pi\)
0.570529 + 0.821277i \(0.306738\pi\)
\(42\) −4.24496 −0.655011
\(43\) −12.1642 −1.85502 −0.927508 0.373803i \(-0.878054\pi\)
−0.927508 + 0.373803i \(0.878054\pi\)
\(44\) 6.20603 0.935594
\(45\) −7.04503 −1.05021
\(46\) −2.99494 −0.441580
\(47\) 5.63469 0.821904 0.410952 0.911657i \(-0.365196\pi\)
0.410952 + 0.911657i \(0.365196\pi\)
\(48\) 10.1467 1.46456
\(49\) 6.17319 0.881884
\(50\) −0.369022 −0.0521876
\(51\) 12.6657 1.77355
\(52\) 4.65891 0.646075
\(53\) −11.4574 −1.57379 −0.786895 0.617087i \(-0.788313\pi\)
−0.786895 + 0.617087i \(0.788313\pi\)
\(54\) −4.73097 −0.643803
\(55\) 3.32973 0.448981
\(56\) 5.17505 0.691546
\(57\) 1.72643 0.228671
\(58\) 1.11200 0.146012
\(59\) 12.0541 1.56931 0.784654 0.619935i \(-0.212841\pi\)
0.784654 + 0.619935i \(0.212841\pi\)
\(60\) 5.90718 0.762614
\(61\) 5.18446 0.663802 0.331901 0.943314i \(-0.392310\pi\)
0.331901 + 0.943314i \(0.392310\pi\)
\(62\) −0.236629 −0.0300519
\(63\) 25.5699 3.22150
\(64\) −4.91466 −0.614333
\(65\) 2.49966 0.310044
\(66\) 3.89437 0.479364
\(67\) −7.98879 −0.975986 −0.487993 0.872848i \(-0.662271\pi\)
−0.487993 + 0.872848i \(0.662271\pi\)
\(68\) −7.44832 −0.903242
\(69\) 25.7224 3.09661
\(70\) 1.33936 0.160084
\(71\) 6.47286 0.768188 0.384094 0.923294i \(-0.374514\pi\)
0.384094 + 0.923294i \(0.374514\pi\)
\(72\) 10.0451 1.18382
\(73\) −10.1728 −1.19064 −0.595319 0.803489i \(-0.702974\pi\)
−0.595319 + 0.803489i \(0.702974\pi\)
\(74\) −0.818327 −0.0951286
\(75\) 3.16939 0.365970
\(76\) −1.01526 −0.116458
\(77\) −12.0852 −1.37724
\(78\) 2.92353 0.331025
\(79\) −10.1297 −1.13968 −0.569839 0.821757i \(-0.692994\pi\)
−0.569839 + 0.821757i \(0.692994\pi\)
\(80\) −3.20148 −0.357936
\(81\) 19.4974 2.16638
\(82\) −2.69620 −0.297745
\(83\) −1.50622 −0.165329 −0.0826645 0.996577i \(-0.526343\pi\)
−0.0826645 + 0.996577i \(0.526343\pi\)
\(84\) −21.4400 −2.33930
\(85\) −3.99626 −0.433455
\(86\) 4.48884 0.484044
\(87\) −9.55051 −1.02392
\(88\) −4.74765 −0.506101
\(89\) −1.60622 −0.170259 −0.0851296 0.996370i \(-0.527130\pi\)
−0.0851296 + 0.996370i \(0.527130\pi\)
\(90\) 2.59977 0.274040
\(91\) −9.07247 −0.951054
\(92\) −15.1266 −1.57705
\(93\) 2.03232 0.210742
\(94\) −2.07932 −0.214466
\(95\) −0.544719 −0.0558869
\(96\) −12.7824 −1.30460
\(97\) 9.03149 0.917009 0.458505 0.888692i \(-0.348385\pi\)
0.458505 + 0.888692i \(0.348385\pi\)
\(98\) −2.27804 −0.230117
\(99\) −23.4581 −2.35762
\(100\) −1.86382 −0.186382
\(101\) 18.2527 1.81622 0.908108 0.418736i \(-0.137527\pi\)
0.908108 + 0.418736i \(0.137527\pi\)
\(102\) −4.67393 −0.462788
\(103\) 12.0874 1.19101 0.595504 0.803353i \(-0.296953\pi\)
0.595504 + 0.803353i \(0.296953\pi\)
\(104\) −3.56410 −0.349489
\(105\) −11.5033 −1.12260
\(106\) 4.22802 0.410662
\(107\) 1.43376 0.138607 0.0693034 0.997596i \(-0.477922\pi\)
0.0693034 + 0.997596i \(0.477922\pi\)
\(108\) −23.8947 −2.29927
\(109\) −13.0840 −1.25322 −0.626610 0.779333i \(-0.715558\pi\)
−0.626610 + 0.779333i \(0.715558\pi\)
\(110\) −1.22874 −0.117156
\(111\) 7.02830 0.667097
\(112\) 11.6197 1.09796
\(113\) −9.16102 −0.861797 −0.430898 0.902400i \(-0.641803\pi\)
−0.430898 + 0.902400i \(0.641803\pi\)
\(114\) −0.637089 −0.0596688
\(115\) −8.11588 −0.756810
\(116\) 5.61637 0.521467
\(117\) −17.6102 −1.62806
\(118\) −4.44822 −0.409492
\(119\) 14.5044 1.32962
\(120\) −4.51903 −0.412529
\(121\) 0.0871140 0.00791945
\(122\) −1.91318 −0.173211
\(123\) 23.1566 2.08796
\(124\) −1.19515 −0.107327
\(125\) −1.00000 −0.0894427
\(126\) −9.43584 −0.840612
\(127\) 6.16467 0.547026 0.273513 0.961868i \(-0.411814\pi\)
0.273513 + 0.961868i \(0.411814\pi\)
\(128\) 9.87979 0.873259
\(129\) −38.5529 −3.39440
\(130\) −0.922428 −0.0809023
\(131\) −12.2174 −1.06744 −0.533721 0.845661i \(-0.679207\pi\)
−0.533721 + 0.845661i \(0.679207\pi\)
\(132\) 19.6693 1.71200
\(133\) 1.97705 0.171432
\(134\) 2.94804 0.254672
\(135\) −12.8203 −1.10339
\(136\) 5.69801 0.488601
\(137\) −20.5447 −1.75525 −0.877626 0.479347i \(-0.840874\pi\)
−0.877626 + 0.479347i \(0.840874\pi\)
\(138\) −9.49213 −0.808024
\(139\) −16.4704 −1.39700 −0.698500 0.715610i \(-0.746149\pi\)
−0.698500 + 0.715610i \(0.746149\pi\)
\(140\) 6.76472 0.571724
\(141\) 17.8585 1.50396
\(142\) −2.38863 −0.200449
\(143\) 8.32318 0.696019
\(144\) 22.5545 1.87954
\(145\) 3.01336 0.250246
\(146\) 3.75399 0.310683
\(147\) 19.5652 1.61371
\(148\) −4.13313 −0.339741
\(149\) −10.9722 −0.898880 −0.449440 0.893311i \(-0.648376\pi\)
−0.449440 + 0.893311i \(0.648376\pi\)
\(150\) −1.16957 −0.0954954
\(151\) −2.19462 −0.178596 −0.0892979 0.996005i \(-0.528462\pi\)
−0.0892979 + 0.996005i \(0.528462\pi\)
\(152\) 0.776679 0.0629970
\(153\) 28.1538 2.27610
\(154\) 4.45971 0.359374
\(155\) −0.641233 −0.0515051
\(156\) 14.7659 1.18222
\(157\) 10.5396 0.841148 0.420574 0.907258i \(-0.361829\pi\)
0.420574 + 0.907258i \(0.361829\pi\)
\(158\) 3.73807 0.297385
\(159\) −36.3129 −2.87980
\(160\) 4.03309 0.318844
\(161\) 29.4565 2.32150
\(162\) −7.19496 −0.565289
\(163\) −20.5710 −1.61125 −0.805624 0.592427i \(-0.798170\pi\)
−0.805624 + 0.592427i \(0.798170\pi\)
\(164\) −13.6177 −1.06337
\(165\) 10.5532 0.821567
\(166\) 0.555828 0.0431406
\(167\) −15.3918 −1.19105 −0.595527 0.803335i \(-0.703057\pi\)
−0.595527 + 0.803335i \(0.703057\pi\)
\(168\) 16.4018 1.26542
\(169\) −6.75172 −0.519363
\(170\) 1.47471 0.113105
\(171\) 3.83756 0.293466
\(172\) 22.6718 1.72871
\(173\) 14.0591 1.06889 0.534447 0.845202i \(-0.320520\pi\)
0.534447 + 0.845202i \(0.320520\pi\)
\(174\) 3.52435 0.267180
\(175\) 3.62949 0.274364
\(176\) −10.6601 −0.803533
\(177\) 38.2041 2.87159
\(178\) 0.592731 0.0444271
\(179\) −4.10194 −0.306593 −0.153297 0.988180i \(-0.548989\pi\)
−0.153297 + 0.988180i \(0.548989\pi\)
\(180\) 13.1307 0.978704
\(181\) −6.72689 −0.500006 −0.250003 0.968245i \(-0.580432\pi\)
−0.250003 + 0.968245i \(0.580432\pi\)
\(182\) 3.34794 0.248166
\(183\) 16.4316 1.21466
\(184\) 11.5719 0.853093
\(185\) −2.21756 −0.163038
\(186\) −0.749970 −0.0549905
\(187\) −13.3065 −0.973066
\(188\) −10.5021 −0.765941
\(189\) 46.5311 3.38464
\(190\) 0.201013 0.0145830
\(191\) −18.9292 −1.36967 −0.684835 0.728698i \(-0.740126\pi\)
−0.684835 + 0.728698i \(0.740126\pi\)
\(192\) −15.5765 −1.12414
\(193\) −0.433778 −0.0312240 −0.0156120 0.999878i \(-0.504970\pi\)
−0.0156120 + 0.999878i \(0.504970\pi\)
\(194\) −3.33282 −0.239282
\(195\) 7.92238 0.567334
\(196\) −11.5057 −0.821838
\(197\) 1.00000 0.0712470
\(198\) 8.65654 0.615194
\(199\) 7.77869 0.551417 0.275708 0.961241i \(-0.411088\pi\)
0.275708 + 0.961241i \(0.411088\pi\)
\(200\) 1.42584 0.100822
\(201\) −25.3196 −1.78591
\(202\) −6.73566 −0.473920
\(203\) −10.9370 −0.767624
\(204\) −23.6066 −1.65280
\(205\) −7.30634 −0.510297
\(206\) −4.46052 −0.310779
\(207\) 57.1767 3.97405
\(208\) −8.00260 −0.554880
\(209\) −1.81377 −0.125461
\(210\) 4.24496 0.292930
\(211\) 1.45253 0.0999966 0.0499983 0.998749i \(-0.484078\pi\)
0.0499983 + 0.998749i \(0.484078\pi\)
\(212\) 21.3545 1.46663
\(213\) 20.5150 1.40567
\(214\) −0.529089 −0.0361678
\(215\) 12.1642 0.829588
\(216\) 18.2796 1.24377
\(217\) 2.32735 0.157991
\(218\) 4.82828 0.327012
\(219\) −32.2416 −2.17869
\(220\) −6.20603 −0.418410
\(221\) −9.98928 −0.671952
\(222\) −2.59360 −0.174071
\(223\) −22.2099 −1.48728 −0.743641 0.668579i \(-0.766903\pi\)
−0.743641 + 0.668579i \(0.766903\pi\)
\(224\) −14.6380 −0.978046
\(225\) 7.04503 0.469669
\(226\) 3.38062 0.224875
\(227\) −21.4704 −1.42504 −0.712520 0.701651i \(-0.752446\pi\)
−0.712520 + 0.701651i \(0.752446\pi\)
\(228\) −3.21775 −0.213101
\(229\) 20.4485 1.35127 0.675636 0.737235i \(-0.263869\pi\)
0.675636 + 0.737235i \(0.263869\pi\)
\(230\) 2.99494 0.197480
\(231\) −38.3028 −2.52014
\(232\) −4.29655 −0.282083
\(233\) 4.59751 0.301193 0.150596 0.988595i \(-0.451881\pi\)
0.150596 + 0.988595i \(0.451881\pi\)
\(234\) 6.49853 0.424822
\(235\) −5.63469 −0.367566
\(236\) −22.4667 −1.46246
\(237\) −32.1049 −2.08544
\(238\) −5.35244 −0.346947
\(239\) 5.11573 0.330909 0.165454 0.986217i \(-0.447091\pi\)
0.165454 + 0.986217i \(0.447091\pi\)
\(240\) −10.1467 −0.654969
\(241\) −15.1695 −0.977151 −0.488575 0.872522i \(-0.662483\pi\)
−0.488575 + 0.872522i \(0.662483\pi\)
\(242\) −0.0321470 −0.00206649
\(243\) 23.3339 1.49687
\(244\) −9.66291 −0.618604
\(245\) −6.17319 −0.394391
\(246\) −8.54531 −0.544829
\(247\) −1.36161 −0.0866371
\(248\) 0.914293 0.0580577
\(249\) −4.77380 −0.302527
\(250\) 0.369022 0.0233390
\(251\) 5.40983 0.341465 0.170733 0.985317i \(-0.445387\pi\)
0.170733 + 0.985317i \(0.445387\pi\)
\(252\) −47.6577 −3.00215
\(253\) −27.0237 −1.69897
\(254\) −2.27490 −0.142740
\(255\) −12.6657 −0.793158
\(256\) 6.18347 0.386467
\(257\) 29.8866 1.86427 0.932137 0.362106i \(-0.117942\pi\)
0.932137 + 0.362106i \(0.117942\pi\)
\(258\) 14.2269 0.885727
\(259\) 8.04860 0.500116
\(260\) −4.65891 −0.288934
\(261\) −21.2292 −1.31406
\(262\) 4.50850 0.278536
\(263\) −23.3117 −1.43746 −0.718731 0.695289i \(-0.755277\pi\)
−0.718731 + 0.695289i \(0.755277\pi\)
\(264\) −15.0472 −0.926088
\(265\) 11.4574 0.703821
\(266\) −0.729575 −0.0447331
\(267\) −5.09074 −0.311548
\(268\) 14.8897 0.909532
\(269\) 9.82140 0.598821 0.299411 0.954124i \(-0.403210\pi\)
0.299411 + 0.954124i \(0.403210\pi\)
\(270\) 4.73097 0.287917
\(271\) −8.43747 −0.512540 −0.256270 0.966605i \(-0.582494\pi\)
−0.256270 + 0.966605i \(0.582494\pi\)
\(272\) 12.7940 0.775748
\(273\) −28.7542 −1.74028
\(274\) 7.58144 0.458012
\(275\) −3.32973 −0.200790
\(276\) −47.9420 −2.88577
\(277\) 9.36468 0.562669 0.281334 0.959610i \(-0.409223\pi\)
0.281334 + 0.959610i \(0.409223\pi\)
\(278\) 6.07794 0.364531
\(279\) 4.51751 0.270456
\(280\) −5.17505 −0.309269
\(281\) 17.2537 1.02927 0.514636 0.857409i \(-0.327927\pi\)
0.514636 + 0.857409i \(0.327927\pi\)
\(282\) −6.59019 −0.392440
\(283\) 8.50540 0.505593 0.252797 0.967519i \(-0.418650\pi\)
0.252797 + 0.967519i \(0.418650\pi\)
\(284\) −12.0643 −0.715883
\(285\) −1.72643 −0.102265
\(286\) −3.07144 −0.181618
\(287\) 26.5183 1.56532
\(288\) −28.4132 −1.67427
\(289\) −1.02989 −0.0605817
\(290\) −1.11200 −0.0652986
\(291\) 28.6243 1.67799
\(292\) 18.9603 1.10957
\(293\) −9.44646 −0.551868 −0.275934 0.961177i \(-0.588987\pi\)
−0.275934 + 0.961177i \(0.588987\pi\)
\(294\) −7.22001 −0.421079
\(295\) −12.0541 −0.701815
\(296\) 3.16187 0.183780
\(297\) −42.6881 −2.47701
\(298\) 4.04899 0.234552
\(299\) −20.2869 −1.17322
\(300\) −5.90718 −0.341051
\(301\) −44.1497 −2.54474
\(302\) 0.809863 0.0466024
\(303\) 57.8501 3.32340
\(304\) 1.74391 0.100020
\(305\) −5.18446 −0.296861
\(306\) −10.3894 −0.593921
\(307\) 8.89433 0.507626 0.253813 0.967253i \(-0.418315\pi\)
0.253813 + 0.967253i \(0.418315\pi\)
\(308\) 22.5247 1.28346
\(309\) 38.3097 2.17936
\(310\) 0.236629 0.0134396
\(311\) −3.24151 −0.183809 −0.0919045 0.995768i \(-0.529295\pi\)
−0.0919045 + 0.995768i \(0.529295\pi\)
\(312\) −11.2960 −0.639511
\(313\) 8.12235 0.459102 0.229551 0.973297i \(-0.426274\pi\)
0.229551 + 0.973297i \(0.426274\pi\)
\(314\) −3.88933 −0.219488
\(315\) −25.5699 −1.44070
\(316\) 18.8799 1.06208
\(317\) −18.3808 −1.03237 −0.516185 0.856477i \(-0.672648\pi\)
−0.516185 + 0.856477i \(0.672648\pi\)
\(318\) 13.4002 0.751448
\(319\) 10.0337 0.561778
\(320\) 4.91466 0.274738
\(321\) 4.54415 0.253629
\(322\) −10.8701 −0.605767
\(323\) 2.17684 0.121123
\(324\) −36.3397 −2.01887
\(325\) −2.49966 −0.138656
\(326\) 7.59117 0.420436
\(327\) −41.4683 −2.29320
\(328\) 10.4176 0.575218
\(329\) 20.4510 1.12750
\(330\) −3.89437 −0.214378
\(331\) −27.4223 −1.50727 −0.753633 0.657296i \(-0.771700\pi\)
−0.753633 + 0.657296i \(0.771700\pi\)
\(332\) 2.80733 0.154072
\(333\) 15.6228 0.856122
\(334\) 5.67992 0.310791
\(335\) 7.98879 0.436474
\(336\) 36.8275 2.00910
\(337\) 28.3356 1.54354 0.771770 0.635901i \(-0.219372\pi\)
0.771770 + 0.635901i \(0.219372\pi\)
\(338\) 2.49153 0.135522
\(339\) −29.0349 −1.57696
\(340\) 7.44832 0.403942
\(341\) −2.13514 −0.115624
\(342\) −1.41614 −0.0765763
\(343\) −3.00089 −0.162033
\(344\) −17.3441 −0.935130
\(345\) −25.7224 −1.38485
\(346\) −5.18811 −0.278915
\(347\) 32.3894 1.73875 0.869377 0.494149i \(-0.164520\pi\)
0.869377 + 0.494149i \(0.164520\pi\)
\(348\) 17.8005 0.954205
\(349\) 14.1356 0.756664 0.378332 0.925670i \(-0.376498\pi\)
0.378332 + 0.925670i \(0.376498\pi\)
\(350\) −1.33936 −0.0715919
\(351\) −32.0463 −1.71050
\(352\) 13.4291 0.715773
\(353\) 9.86104 0.524850 0.262425 0.964952i \(-0.415478\pi\)
0.262425 + 0.964952i \(0.415478\pi\)
\(354\) −14.0981 −0.749308
\(355\) −6.47286 −0.343544
\(356\) 2.99371 0.158666
\(357\) 45.9701 2.43299
\(358\) 1.51371 0.0800018
\(359\) 24.4102 1.28832 0.644161 0.764890i \(-0.277207\pi\)
0.644161 + 0.764890i \(0.277207\pi\)
\(360\) −10.0451 −0.529421
\(361\) −18.7033 −0.984383
\(362\) 2.48237 0.130470
\(363\) 0.276098 0.0144914
\(364\) 16.9095 0.886298
\(365\) 10.1728 0.532470
\(366\) −6.06361 −0.316950
\(367\) −14.6178 −0.763043 −0.381521 0.924360i \(-0.624600\pi\)
−0.381521 + 0.924360i \(0.624600\pi\)
\(368\) 25.9828 1.35445
\(369\) 51.4734 2.67960
\(370\) 0.818327 0.0425428
\(371\) −41.5844 −2.15895
\(372\) −3.78788 −0.196393
\(373\) −11.2438 −0.582184 −0.291092 0.956695i \(-0.594018\pi\)
−0.291092 + 0.956695i \(0.594018\pi\)
\(374\) 4.91038 0.253910
\(375\) −3.16939 −0.163667
\(376\) 8.03414 0.414329
\(377\) 7.53236 0.387936
\(378\) −17.1710 −0.883180
\(379\) −32.9033 −1.69013 −0.845065 0.534664i \(-0.820438\pi\)
−0.845065 + 0.534664i \(0.820438\pi\)
\(380\) 1.01526 0.0520817
\(381\) 19.5382 1.00097
\(382\) 6.98529 0.357399
\(383\) −20.2629 −1.03539 −0.517694 0.855566i \(-0.673209\pi\)
−0.517694 + 0.855566i \(0.673209\pi\)
\(384\) 31.3129 1.59793
\(385\) 12.0852 0.615920
\(386\) 0.160074 0.00814753
\(387\) −85.6969 −4.35622
\(388\) −16.8331 −0.854571
\(389\) −0.422252 −0.0214091 −0.0107045 0.999943i \(-0.503407\pi\)
−0.0107045 + 0.999943i \(0.503407\pi\)
\(390\) −2.92353 −0.148039
\(391\) 32.4332 1.64022
\(392\) 8.80195 0.444566
\(393\) −38.7218 −1.95326
\(394\) −0.369022 −0.0185911
\(395\) 10.1297 0.509679
\(396\) 43.7217 2.19710
\(397\) −32.6880 −1.64056 −0.820282 0.571959i \(-0.806184\pi\)
−0.820282 + 0.571959i \(0.806184\pi\)
\(398\) −2.87051 −0.143886
\(399\) 6.26604 0.313694
\(400\) 3.20148 0.160074
\(401\) 36.7998 1.83770 0.918848 0.394612i \(-0.129121\pi\)
0.918848 + 0.394612i \(0.129121\pi\)
\(402\) 9.34348 0.466010
\(403\) −1.60286 −0.0798443
\(404\) −34.0199 −1.69255
\(405\) −19.4974 −0.968832
\(406\) 4.03598 0.200302
\(407\) −7.38387 −0.366005
\(408\) 18.0592 0.894065
\(409\) −20.3060 −1.00407 −0.502034 0.864848i \(-0.667415\pi\)
−0.502034 + 0.864848i \(0.667415\pi\)
\(410\) 2.69620 0.133156
\(411\) −65.1141 −3.21184
\(412\) −22.5288 −1.10991
\(413\) 43.7501 2.15280
\(414\) −21.0994 −1.03698
\(415\) 1.50622 0.0739374
\(416\) 10.0813 0.494278
\(417\) −52.2011 −2.55630
\(418\) 0.669320 0.0327375
\(419\) −16.7906 −0.820274 −0.410137 0.912024i \(-0.634519\pi\)
−0.410137 + 0.912024i \(0.634519\pi\)
\(420\) 21.4400 1.04617
\(421\) −3.86925 −0.188576 −0.0942880 0.995545i \(-0.530057\pi\)
−0.0942880 + 0.995545i \(0.530057\pi\)
\(422\) −0.536017 −0.0260929
\(423\) 39.6965 1.93011
\(424\) −16.3363 −0.793362
\(425\) 3.99626 0.193847
\(426\) −7.57050 −0.366792
\(427\) 18.8169 0.910615
\(428\) −2.67228 −0.129169
\(429\) 26.3794 1.27361
\(430\) −4.48884 −0.216471
\(431\) 10.2805 0.495193 0.247597 0.968863i \(-0.420359\pi\)
0.247597 + 0.968863i \(0.420359\pi\)
\(432\) 41.0439 1.97473
\(433\) 4.55826 0.219056 0.109528 0.993984i \(-0.465066\pi\)
0.109528 + 0.993984i \(0.465066\pi\)
\(434\) −0.858843 −0.0412258
\(435\) 9.55051 0.457912
\(436\) 24.3862 1.16789
\(437\) 4.42087 0.211479
\(438\) 11.8979 0.568502
\(439\) 30.1153 1.43733 0.718663 0.695359i \(-0.244755\pi\)
0.718663 + 0.695359i \(0.244755\pi\)
\(440\) 4.74765 0.226335
\(441\) 43.4903 2.07097
\(442\) 3.68626 0.175338
\(443\) 34.5931 1.64357 0.821783 0.569801i \(-0.192980\pi\)
0.821783 + 0.569801i \(0.192980\pi\)
\(444\) −13.0995 −0.621675
\(445\) 1.60622 0.0761422
\(446\) 8.19593 0.388088
\(447\) −34.7753 −1.64481
\(448\) −17.8377 −0.842753
\(449\) 20.4992 0.967416 0.483708 0.875230i \(-0.339290\pi\)
0.483708 + 0.875230i \(0.339290\pi\)
\(450\) −2.59977 −0.122554
\(451\) −24.3282 −1.14557
\(452\) 17.0745 0.803118
\(453\) −6.95561 −0.326803
\(454\) 7.92305 0.371847
\(455\) 9.07247 0.425324
\(456\) 2.46160 0.115275
\(457\) −32.9485 −1.54127 −0.770633 0.637279i \(-0.780060\pi\)
−0.770633 + 0.637279i \(0.780060\pi\)
\(458\) −7.54593 −0.352598
\(459\) 51.2332 2.39136
\(460\) 15.1266 0.705280
\(461\) 7.00086 0.326063 0.163031 0.986621i \(-0.447873\pi\)
0.163031 + 0.986621i \(0.447873\pi\)
\(462\) 14.1346 0.657600
\(463\) 27.4431 1.27539 0.637694 0.770290i \(-0.279889\pi\)
0.637694 + 0.770290i \(0.279889\pi\)
\(464\) −9.64721 −0.447861
\(465\) −2.03232 −0.0942465
\(466\) −1.69658 −0.0785926
\(467\) 28.8035 1.33287 0.666434 0.745564i \(-0.267820\pi\)
0.666434 + 0.745564i \(0.267820\pi\)
\(468\) 32.8222 1.51721
\(469\) −28.9952 −1.33887
\(470\) 2.07932 0.0959120
\(471\) 33.4040 1.53917
\(472\) 17.1871 0.791102
\(473\) 40.5034 1.86235
\(474\) 11.8474 0.544169
\(475\) 0.544719 0.0249934
\(476\) −27.0336 −1.23908
\(477\) −80.7175 −3.69580
\(478\) −1.88782 −0.0863467
\(479\) 11.8621 0.541991 0.270996 0.962581i \(-0.412647\pi\)
0.270996 + 0.962581i \(0.412647\pi\)
\(480\) 12.7824 0.583435
\(481\) −5.54313 −0.252745
\(482\) 5.59786 0.254976
\(483\) 93.3592 4.24799
\(484\) −0.162365 −0.00738023
\(485\) −9.03149 −0.410099
\(486\) −8.61074 −0.390591
\(487\) 27.2745 1.23592 0.617962 0.786208i \(-0.287959\pi\)
0.617962 + 0.786208i \(0.287959\pi\)
\(488\) 7.39218 0.334628
\(489\) −65.1976 −2.94834
\(490\) 2.27804 0.102911
\(491\) 9.40640 0.424505 0.212252 0.977215i \(-0.431920\pi\)
0.212252 + 0.977215i \(0.431920\pi\)
\(492\) −43.1599 −1.94580
\(493\) −12.0422 −0.542352
\(494\) 0.502464 0.0226069
\(495\) 23.4581 1.05436
\(496\) 2.05290 0.0921778
\(497\) 23.4932 1.05381
\(498\) 1.76164 0.0789408
\(499\) 22.0773 0.988314 0.494157 0.869373i \(-0.335477\pi\)
0.494157 + 0.869373i \(0.335477\pi\)
\(500\) 1.86382 0.0833527
\(501\) −48.7826 −2.17945
\(502\) −1.99634 −0.0891012
\(503\) 8.84249 0.394267 0.197133 0.980377i \(-0.436837\pi\)
0.197133 + 0.980377i \(0.436837\pi\)
\(504\) 36.4584 1.62399
\(505\) −18.2527 −0.812236
\(506\) 9.97235 0.443325
\(507\) −21.3988 −0.950356
\(508\) −11.4899 −0.509780
\(509\) −6.64300 −0.294446 −0.147223 0.989103i \(-0.547033\pi\)
−0.147223 + 0.989103i \(0.547033\pi\)
\(510\) 4.67393 0.206965
\(511\) −36.9221 −1.63334
\(512\) −22.0414 −0.974103
\(513\) 6.98345 0.308327
\(514\) −11.0288 −0.486460
\(515\) −12.0874 −0.532635
\(516\) 71.8559 3.16328
\(517\) −18.7620 −0.825152
\(518\) −2.97011 −0.130499
\(519\) 44.5588 1.95591
\(520\) 3.56410 0.156296
\(521\) 23.3371 1.02242 0.511208 0.859457i \(-0.329198\pi\)
0.511208 + 0.859457i \(0.329198\pi\)
\(522\) 7.83405 0.342887
\(523\) −2.26374 −0.0989864 −0.0494932 0.998774i \(-0.515761\pi\)
−0.0494932 + 0.998774i \(0.515761\pi\)
\(524\) 22.7711 0.994761
\(525\) 11.5033 0.502044
\(526\) 8.60253 0.375088
\(527\) 2.56254 0.111626
\(528\) −33.7859 −1.47034
\(529\) 42.8676 1.86381
\(530\) −4.22802 −0.183653
\(531\) 84.9214 3.68527
\(532\) −3.68487 −0.159759
\(533\) −18.2633 −0.791073
\(534\) 1.87860 0.0812948
\(535\) −1.43376 −0.0619869
\(536\) −11.3907 −0.492003
\(537\) −13.0006 −0.561019
\(538\) −3.62431 −0.156255
\(539\) −20.5551 −0.885370
\(540\) 23.8947 1.02827
\(541\) 11.5584 0.496934 0.248467 0.968640i \(-0.420073\pi\)
0.248467 + 0.968640i \(0.420073\pi\)
\(542\) 3.11361 0.133741
\(543\) −21.3201 −0.914934
\(544\) −16.1173 −0.691022
\(545\) 13.0840 0.560457
\(546\) 10.6109 0.454106
\(547\) 14.0004 0.598612 0.299306 0.954157i \(-0.403245\pi\)
0.299306 + 0.954157i \(0.403245\pi\)
\(548\) 38.2917 1.63574
\(549\) 36.5247 1.55883
\(550\) 1.22874 0.0523938
\(551\) −1.64143 −0.0699274
\(552\) 36.6759 1.56103
\(553\) −36.7655 −1.56343
\(554\) −3.45577 −0.146822
\(555\) −7.02830 −0.298335
\(556\) 30.6979 1.30188
\(557\) 13.3440 0.565405 0.282702 0.959208i \(-0.408769\pi\)
0.282702 + 0.959208i \(0.408769\pi\)
\(558\) −1.66706 −0.0705723
\(559\) 30.4062 1.28605
\(560\) −11.6197 −0.491024
\(561\) −42.1734 −1.78056
\(562\) −6.36701 −0.268576
\(563\) 3.87985 0.163516 0.0817581 0.996652i \(-0.473946\pi\)
0.0817581 + 0.996652i \(0.473946\pi\)
\(564\) −33.2851 −1.40156
\(565\) 9.16102 0.385407
\(566\) −3.13868 −0.131928
\(567\) 70.7655 2.97187
\(568\) 9.22924 0.387250
\(569\) −44.6070 −1.87002 −0.935012 0.354617i \(-0.884611\pi\)
−0.935012 + 0.354617i \(0.884611\pi\)
\(570\) 0.637089 0.0266847
\(571\) −14.4771 −0.605848 −0.302924 0.953015i \(-0.597963\pi\)
−0.302924 + 0.953015i \(0.597963\pi\)
\(572\) −15.5129 −0.648628
\(573\) −59.9940 −2.50629
\(574\) −9.78583 −0.408453
\(575\) 8.11588 0.338456
\(576\) −34.6240 −1.44267
\(577\) 36.9803 1.53951 0.769754 0.638340i \(-0.220379\pi\)
0.769754 + 0.638340i \(0.220379\pi\)
\(578\) 0.380052 0.0158081
\(579\) −1.37481 −0.0571352
\(580\) −5.61637 −0.233207
\(581\) −5.46681 −0.226801
\(582\) −10.5630 −0.437851
\(583\) 38.1500 1.58001
\(584\) −14.5048 −0.600211
\(585\) 17.6102 0.728090
\(586\) 3.48595 0.144003
\(587\) 2.84496 0.117424 0.0587121 0.998275i \(-0.481301\pi\)
0.0587121 + 0.998275i \(0.481301\pi\)
\(588\) −36.4662 −1.50384
\(589\) 0.349292 0.0143923
\(590\) 4.44822 0.183130
\(591\) 3.16939 0.130371
\(592\) 7.09947 0.291786
\(593\) −23.8491 −0.979365 −0.489683 0.871901i \(-0.662887\pi\)
−0.489683 + 0.871901i \(0.662887\pi\)
\(594\) 15.7528 0.646347
\(595\) −14.5044 −0.594622
\(596\) 20.4503 0.837676
\(597\) 24.6537 1.00901
\(598\) 7.48632 0.306138
\(599\) 25.3852 1.03721 0.518606 0.855013i \(-0.326451\pi\)
0.518606 + 0.855013i \(0.326451\pi\)
\(600\) 4.51903 0.184489
\(601\) −10.2857 −0.419561 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(602\) 16.2922 0.664020
\(603\) −56.2813 −2.29195
\(604\) 4.09038 0.166435
\(605\) −0.0871140 −0.00354169
\(606\) −21.3479 −0.867201
\(607\) 27.0073 1.09619 0.548096 0.836415i \(-0.315353\pi\)
0.548096 + 0.836415i \(0.315353\pi\)
\(608\) −2.19690 −0.0890960
\(609\) −34.6635 −1.40463
\(610\) 1.91318 0.0774623
\(611\) −14.0848 −0.569809
\(612\) −52.4737 −2.12112
\(613\) −2.25781 −0.0911919 −0.0455959 0.998960i \(-0.514519\pi\)
−0.0455959 + 0.998960i \(0.514519\pi\)
\(614\) −3.28220 −0.132459
\(615\) −23.1566 −0.933766
\(616\) −17.2315 −0.694279
\(617\) −15.0149 −0.604477 −0.302239 0.953232i \(-0.597734\pi\)
−0.302239 + 0.953232i \(0.597734\pi\)
\(618\) −14.1371 −0.568678
\(619\) −26.9543 −1.08338 −0.541692 0.840577i \(-0.682216\pi\)
−0.541692 + 0.840577i \(0.682216\pi\)
\(620\) 1.19515 0.0479982
\(621\) 104.048 4.17530
\(622\) 1.19619 0.0479627
\(623\) −5.82976 −0.233565
\(624\) −25.3634 −1.01535
\(625\) 1.00000 0.0400000
\(626\) −2.99732 −0.119797
\(627\) −5.74853 −0.229574
\(628\) −19.6439 −0.783876
\(629\) 8.86194 0.353349
\(630\) 9.43584 0.375933
\(631\) 5.72444 0.227887 0.113943 0.993487i \(-0.463652\pi\)
0.113943 + 0.993487i \(0.463652\pi\)
\(632\) −14.4432 −0.574522
\(633\) 4.60365 0.182979
\(634\) 6.78293 0.269384
\(635\) −6.16467 −0.244638
\(636\) 67.6807 2.68372
\(637\) −15.4309 −0.611393
\(638\) −3.70265 −0.146589
\(639\) 45.6015 1.80397
\(640\) −9.87979 −0.390533
\(641\) −20.4206 −0.806564 −0.403282 0.915076i \(-0.632131\pi\)
−0.403282 + 0.915076i \(0.632131\pi\)
\(642\) −1.67689 −0.0661815
\(643\) 32.5966 1.28549 0.642743 0.766082i \(-0.277796\pi\)
0.642743 + 0.766082i \(0.277796\pi\)
\(644\) −54.9017 −2.16343
\(645\) 38.5529 1.51802
\(646\) −0.803301 −0.0316055
\(647\) 24.6732 0.970004 0.485002 0.874513i \(-0.338819\pi\)
0.485002 + 0.874513i \(0.338819\pi\)
\(648\) 27.8001 1.09209
\(649\) −40.1368 −1.57551
\(650\) 0.922428 0.0361806
\(651\) 7.37628 0.289099
\(652\) 38.3408 1.50154
\(653\) 18.9700 0.742352 0.371176 0.928562i \(-0.378955\pi\)
0.371176 + 0.928562i \(0.378955\pi\)
\(654\) 15.3027 0.598383
\(655\) 12.2174 0.477374
\(656\) 23.3911 0.913269
\(657\) −71.6678 −2.79603
\(658\) −7.54688 −0.294208
\(659\) −6.15252 −0.239668 −0.119834 0.992794i \(-0.538236\pi\)
−0.119834 + 0.992794i \(0.538236\pi\)
\(660\) −19.6693 −0.765628
\(661\) 46.7725 1.81924 0.909619 0.415443i \(-0.136374\pi\)
0.909619 + 0.415443i \(0.136374\pi\)
\(662\) 10.1194 0.393303
\(663\) −31.6599 −1.22957
\(664\) −2.14762 −0.0833439
\(665\) −1.97705 −0.0766667
\(666\) −5.76514 −0.223395
\(667\) −24.4561 −0.946943
\(668\) 28.6876 1.10996
\(669\) −70.3917 −2.72150
\(670\) −2.94804 −0.113893
\(671\) −17.2629 −0.666425
\(672\) −46.3937 −1.78968
\(673\) −50.3018 −1.93899 −0.969496 0.245106i \(-0.921177\pi\)
−0.969496 + 0.245106i \(0.921177\pi\)
\(674\) −10.4565 −0.402768
\(675\) 12.8203 0.493453
\(676\) 12.5840 0.484001
\(677\) 11.6359 0.447204 0.223602 0.974681i \(-0.428219\pi\)
0.223602 + 0.974681i \(0.428219\pi\)
\(678\) 10.7145 0.411488
\(679\) 32.7797 1.25797
\(680\) −5.69801 −0.218509
\(681\) −68.0481 −2.60761
\(682\) 0.787912 0.0301707
\(683\) −18.6346 −0.713033 −0.356517 0.934289i \(-0.616036\pi\)
−0.356517 + 0.934289i \(0.616036\pi\)
\(684\) −7.15253 −0.273484
\(685\) 20.5447 0.784972
\(686\) 1.10740 0.0422806
\(687\) 64.8092 2.47262
\(688\) −38.9433 −1.48470
\(689\) 28.6395 1.09108
\(690\) 9.49213 0.361359
\(691\) −10.8788 −0.413851 −0.206925 0.978357i \(-0.566346\pi\)
−0.206925 + 0.978357i \(0.566346\pi\)
\(692\) −26.2037 −0.996114
\(693\) −85.1408 −3.23423
\(694\) −11.9524 −0.453707
\(695\) 16.4704 0.624758
\(696\) −13.6175 −0.516168
\(697\) 29.1980 1.10595
\(698\) −5.21636 −0.197442
\(699\) 14.5713 0.551137
\(700\) −6.76472 −0.255683
\(701\) −8.56606 −0.323536 −0.161768 0.986829i \(-0.551720\pi\)
−0.161768 + 0.986829i \(0.551720\pi\)
\(702\) 11.8258 0.446335
\(703\) 1.20794 0.0455585
\(704\) 16.3645 0.616761
\(705\) −17.8585 −0.672591
\(706\) −3.63894 −0.136953
\(707\) 66.2481 2.49152
\(708\) −71.2056 −2.67607
\(709\) −38.2856 −1.43785 −0.718923 0.695089i \(-0.755365\pi\)
−0.718923 + 0.695089i \(0.755365\pi\)
\(710\) 2.38863 0.0896436
\(711\) −71.3639 −2.67635
\(712\) −2.29021 −0.0858292
\(713\) 5.20418 0.194898
\(714\) −16.9640 −0.634860
\(715\) −8.32318 −0.311269
\(716\) 7.64529 0.285718
\(717\) 16.2137 0.605513
\(718\) −9.00791 −0.336172
\(719\) 39.1245 1.45910 0.729549 0.683928i \(-0.239730\pi\)
0.729549 + 0.683928i \(0.239730\pi\)
\(720\) −22.5545 −0.840558
\(721\) 43.8711 1.63384
\(722\) 6.90192 0.256863
\(723\) −48.0779 −1.78804
\(724\) 12.5377 0.465961
\(725\) −3.01336 −0.111913
\(726\) −0.101886 −0.00378136
\(727\) −19.8848 −0.737487 −0.368744 0.929531i \(-0.620212\pi\)
−0.368744 + 0.929531i \(0.620212\pi\)
\(728\) −12.9359 −0.479435
\(729\) 15.4622 0.572675
\(730\) −3.75399 −0.138942
\(731\) −48.6111 −1.79795
\(732\) −30.6255 −1.13195
\(733\) 41.0835 1.51745 0.758726 0.651410i \(-0.225822\pi\)
0.758726 + 0.651410i \(0.225822\pi\)
\(734\) 5.39429 0.199107
\(735\) −19.5652 −0.721675
\(736\) −32.7321 −1.20652
\(737\) 26.6005 0.979843
\(738\) −18.9948 −0.699209
\(739\) 30.8980 1.13660 0.568300 0.822821i \(-0.307601\pi\)
0.568300 + 0.822821i \(0.307601\pi\)
\(740\) 4.13313 0.151937
\(741\) −4.31547 −0.158533
\(742\) 15.3456 0.563353
\(743\) 25.5831 0.938551 0.469276 0.883052i \(-0.344515\pi\)
0.469276 + 0.883052i \(0.344515\pi\)
\(744\) 2.89775 0.106237
\(745\) 10.9722 0.401991
\(746\) 4.14922 0.151914
\(747\) −10.6114 −0.388250
\(748\) 24.8009 0.906812
\(749\) 5.20382 0.190143
\(750\) 1.16957 0.0427068
\(751\) 6.05935 0.221109 0.110554 0.993870i \(-0.464737\pi\)
0.110554 + 0.993870i \(0.464737\pi\)
\(752\) 18.0393 0.657827
\(753\) 17.1458 0.624829
\(754\) −2.77961 −0.101227
\(755\) 2.19462 0.0798704
\(756\) −86.7257 −3.15418
\(757\) 1.09916 0.0399497 0.0199749 0.999800i \(-0.493641\pi\)
0.0199749 + 0.999800i \(0.493641\pi\)
\(758\) 12.1420 0.441019
\(759\) −85.6487 −3.10885
\(760\) −0.776679 −0.0281731
\(761\) −38.0673 −1.37994 −0.689970 0.723838i \(-0.742376\pi\)
−0.689970 + 0.723838i \(0.742376\pi\)
\(762\) −7.21004 −0.261192
\(763\) −47.4882 −1.71919
\(764\) 35.2807 1.27641
\(765\) −28.1538 −1.01790
\(766\) 7.47747 0.270172
\(767\) −30.1310 −1.08797
\(768\) 19.5978 0.707175
\(769\) −22.0829 −0.796328 −0.398164 0.917314i \(-0.630353\pi\)
−0.398164 + 0.917314i \(0.630353\pi\)
\(770\) −4.45971 −0.160717
\(771\) 94.7222 3.41134
\(772\) 0.808485 0.0290980
\(773\) 0.552136 0.0198590 0.00992948 0.999951i \(-0.496839\pi\)
0.00992948 + 0.999951i \(0.496839\pi\)
\(774\) 31.6240 1.13670
\(775\) 0.641233 0.0230338
\(776\) 12.8774 0.462273
\(777\) 25.5091 0.915135
\(778\) 0.155820 0.00558643
\(779\) 3.97990 0.142595
\(780\) −14.7659 −0.528705
\(781\) −21.5529 −0.771223
\(782\) −11.9686 −0.427995
\(783\) −38.6321 −1.38060
\(784\) 19.7634 0.705834
\(785\) −10.5396 −0.376173
\(786\) 14.2892 0.509679
\(787\) 23.2969 0.830446 0.415223 0.909720i \(-0.363704\pi\)
0.415223 + 0.909720i \(0.363704\pi\)
\(788\) −1.86382 −0.0663959
\(789\) −73.8839 −2.63034
\(790\) −3.73807 −0.132995
\(791\) −33.2498 −1.18223
\(792\) −33.4473 −1.18850
\(793\) −12.9594 −0.460200
\(794\) 12.0626 0.428086
\(795\) 36.3129 1.28788
\(796\) −14.4981 −0.513871
\(797\) 36.6840 1.29941 0.649707 0.760185i \(-0.274892\pi\)
0.649707 + 0.760185i \(0.274892\pi\)
\(798\) −2.31231 −0.0818548
\(799\) 22.5177 0.796618
\(800\) −4.03309 −0.142591
\(801\) −11.3159 −0.399827
\(802\) −13.5799 −0.479525
\(803\) 33.8728 1.19534
\(804\) 47.1912 1.66431
\(805\) −29.4565 −1.03821
\(806\) 0.591492 0.0208344
\(807\) 31.1279 1.09575
\(808\) 26.0254 0.915571
\(809\) 27.4076 0.963601 0.481800 0.876281i \(-0.339983\pi\)
0.481800 + 0.876281i \(0.339983\pi\)
\(810\) 7.19496 0.252805
\(811\) −13.9367 −0.489385 −0.244693 0.969601i \(-0.578687\pi\)
−0.244693 + 0.969601i \(0.578687\pi\)
\(812\) 20.3845 0.715357
\(813\) −26.7416 −0.937870
\(814\) 2.72481 0.0955045
\(815\) 20.5710 0.720572
\(816\) 40.5490 1.41950
\(817\) −6.62604 −0.231816
\(818\) 7.49337 0.262000
\(819\) −63.9159 −2.23340
\(820\) 13.6177 0.475551
\(821\) 31.5126 1.09980 0.549899 0.835231i \(-0.314666\pi\)
0.549899 + 0.835231i \(0.314666\pi\)
\(822\) 24.0285 0.838092
\(823\) 18.7233 0.652653 0.326326 0.945257i \(-0.394189\pi\)
0.326326 + 0.945257i \(0.394189\pi\)
\(824\) 17.2346 0.600397
\(825\) −10.5532 −0.367416
\(826\) −16.1448 −0.561748
\(827\) −49.5562 −1.72324 −0.861620 0.507554i \(-0.830550\pi\)
−0.861620 + 0.507554i \(0.830550\pi\)
\(828\) −106.567 −3.70346
\(829\) 16.6379 0.577858 0.288929 0.957351i \(-0.406701\pi\)
0.288929 + 0.957351i \(0.406701\pi\)
\(830\) −0.555828 −0.0192931
\(831\) 29.6803 1.02960
\(832\) 12.2850 0.425905
\(833\) 24.6697 0.854754
\(834\) 19.2634 0.667035
\(835\) 15.3918 0.532656
\(836\) 3.38054 0.116918
\(837\) 8.22079 0.284152
\(838\) 6.19610 0.214041
\(839\) 10.7175 0.370009 0.185004 0.982738i \(-0.440770\pi\)
0.185004 + 0.982738i \(0.440770\pi\)
\(840\) −16.4018 −0.565915
\(841\) −19.9197 −0.686885
\(842\) 1.42784 0.0492066
\(843\) 54.6838 1.88341
\(844\) −2.70727 −0.0931880
\(845\) 6.75172 0.232266
\(846\) −14.6489 −0.503639
\(847\) 0.316179 0.0108641
\(848\) −36.6805 −1.25962
\(849\) 26.9569 0.925159
\(850\) −1.47471 −0.0505821
\(851\) 17.9974 0.616944
\(852\) −38.2364 −1.30996
\(853\) −28.8204 −0.986791 −0.493395 0.869805i \(-0.664244\pi\)
−0.493395 + 0.869805i \(0.664244\pi\)
\(854\) −6.94386 −0.237614
\(855\) −3.83756 −0.131242
\(856\) 2.04431 0.0698730
\(857\) −10.7662 −0.367766 −0.183883 0.982948i \(-0.558867\pi\)
−0.183883 + 0.982948i \(0.558867\pi\)
\(858\) −9.73458 −0.332333
\(859\) −35.9060 −1.22510 −0.612549 0.790433i \(-0.709856\pi\)
−0.612549 + 0.790433i \(0.709856\pi\)
\(860\) −22.6718 −0.773103
\(861\) 84.0468 2.86431
\(862\) −3.79372 −0.129215
\(863\) 28.0912 0.956236 0.478118 0.878296i \(-0.341319\pi\)
0.478118 + 0.878296i \(0.341319\pi\)
\(864\) −51.7053 −1.75905
\(865\) −14.0591 −0.478024
\(866\) −1.68210 −0.0571600
\(867\) −3.26412 −0.110855
\(868\) −4.33777 −0.147233
\(869\) 33.7291 1.14418
\(870\) −3.52435 −0.119487
\(871\) 19.9692 0.676631
\(872\) −18.6556 −0.631759
\(873\) 63.6272 2.15345
\(874\) −1.63140 −0.0551829
\(875\) −3.62949 −0.122699
\(876\) 60.0927 2.03034
\(877\) −35.1007 −1.18527 −0.592633 0.805473i \(-0.701911\pi\)
−0.592633 + 0.805473i \(0.701911\pi\)
\(878\) −11.1132 −0.375053
\(879\) −29.9395 −1.00983
\(880\) 10.6601 0.359351
\(881\) −30.2865 −1.02038 −0.510189 0.860062i \(-0.670425\pi\)
−0.510189 + 0.860062i \(0.670425\pi\)
\(882\) −16.0489 −0.540394
\(883\) −30.4056 −1.02323 −0.511616 0.859214i \(-0.670953\pi\)
−0.511616 + 0.859214i \(0.670953\pi\)
\(884\) 18.6182 0.626199
\(885\) −38.2041 −1.28422
\(886\) −12.7656 −0.428869
\(887\) −42.2061 −1.41714 −0.708572 0.705639i \(-0.750660\pi\)
−0.708572 + 0.705639i \(0.750660\pi\)
\(888\) 10.0212 0.336290
\(889\) 22.3746 0.750420
\(890\) −0.592731 −0.0198684
\(891\) −64.9210 −2.17494
\(892\) 41.3952 1.38602
\(893\) 3.06932 0.102711
\(894\) 12.8328 0.429194
\(895\) 4.10194 0.137113
\(896\) 35.8586 1.19795
\(897\) −64.2971 −2.14682
\(898\) −7.56464 −0.252435
\(899\) −1.93227 −0.0644447
\(900\) −13.1307 −0.437690
\(901\) −45.7866 −1.52537
\(902\) 8.97762 0.298922
\(903\) −139.927 −4.65650
\(904\) −13.0621 −0.434439
\(905\) 6.72689 0.223609
\(906\) 2.56677 0.0852753
\(907\) −21.4748 −0.713061 −0.356530 0.934284i \(-0.616040\pi\)
−0.356530 + 0.934284i \(0.616040\pi\)
\(908\) 40.0170 1.32801
\(909\) 128.591 4.26510
\(910\) −3.34794 −0.110983
\(911\) 29.1475 0.965698 0.482849 0.875704i \(-0.339602\pi\)
0.482849 + 0.875704i \(0.339602\pi\)
\(912\) 5.52712 0.183021
\(913\) 5.01531 0.165982
\(914\) 12.1587 0.402175
\(915\) −16.4316 −0.543211
\(916\) −38.1123 −1.25927
\(917\) −44.3430 −1.46434
\(918\) −18.9062 −0.623997
\(919\) 21.6813 0.715199 0.357600 0.933875i \(-0.383595\pi\)
0.357600 + 0.933875i \(0.383595\pi\)
\(920\) −11.5719 −0.381515
\(921\) 28.1896 0.928879
\(922\) −2.58347 −0.0850821
\(923\) −16.1799 −0.532569
\(924\) 71.3896 2.34855
\(925\) 2.21756 0.0729128
\(926\) −10.1271 −0.332797
\(927\) 85.1561 2.79689
\(928\) 12.1531 0.398946
\(929\) −19.1445 −0.628111 −0.314056 0.949405i \(-0.601688\pi\)
−0.314056 + 0.949405i \(0.601688\pi\)
\(930\) 0.749970 0.0245925
\(931\) 3.36265 0.110206
\(932\) −8.56894 −0.280685
\(933\) −10.2736 −0.336343
\(934\) −10.6291 −0.347796
\(935\) 13.3065 0.435168
\(936\) −25.1092 −0.820719
\(937\) 24.8331 0.811261 0.405631 0.914037i \(-0.367052\pi\)
0.405631 + 0.914037i \(0.367052\pi\)
\(938\) 10.6999 0.349363
\(939\) 25.7429 0.840087
\(940\) 10.5021 0.342539
\(941\) −14.9389 −0.486994 −0.243497 0.969902i \(-0.578295\pi\)
−0.243497 + 0.969902i \(0.578295\pi\)
\(942\) −12.3268 −0.401629
\(943\) 59.2974 1.93099
\(944\) 38.5909 1.25603
\(945\) −46.5311 −1.51366
\(946\) −14.9466 −0.485957
\(947\) −50.7152 −1.64802 −0.824011 0.566574i \(-0.808268\pi\)
−0.824011 + 0.566574i \(0.808268\pi\)
\(948\) 59.8378 1.94344
\(949\) 25.4285 0.825445
\(950\) −0.201013 −0.00652173
\(951\) −58.2560 −1.88908
\(952\) 20.6809 0.670271
\(953\) −52.6966 −1.70701 −0.853505 0.521085i \(-0.825528\pi\)
−0.853505 + 0.521085i \(0.825528\pi\)
\(954\) 29.7865 0.964375
\(955\) 18.9292 0.612535
\(956\) −9.53481 −0.308378
\(957\) 31.8006 1.02797
\(958\) −4.37736 −0.141426
\(959\) −74.5667 −2.40789
\(960\) 15.5765 0.502729
\(961\) −30.5888 −0.986736
\(962\) 2.04554 0.0659507
\(963\) 10.1009 0.325497
\(964\) 28.2732 0.910618
\(965\) 0.433778 0.0139638
\(966\) −34.4516 −1.10846
\(967\) −47.7016 −1.53398 −0.766990 0.641659i \(-0.778246\pi\)
−0.766990 + 0.641659i \(0.778246\pi\)
\(968\) 0.124210 0.00399227
\(969\) 6.89925 0.221636
\(970\) 3.33282 0.107010
\(971\) 35.9972 1.15520 0.577602 0.816318i \(-0.303988\pi\)
0.577602 + 0.816318i \(0.303988\pi\)
\(972\) −43.4903 −1.39495
\(973\) −59.7791 −1.91643
\(974\) −10.0649 −0.322499
\(975\) −7.92238 −0.253719
\(976\) 16.5979 0.531287
\(977\) −23.9826 −0.767270 −0.383635 0.923485i \(-0.625328\pi\)
−0.383635 + 0.923485i \(0.625328\pi\)
\(978\) 24.0594 0.769334
\(979\) 5.34829 0.170932
\(980\) 11.5057 0.367537
\(981\) −92.1771 −2.94299
\(982\) −3.47117 −0.110769
\(983\) −23.0414 −0.734905 −0.367453 0.930042i \(-0.619770\pi\)
−0.367453 + 0.930042i \(0.619770\pi\)
\(984\) 33.0176 1.05256
\(985\) −1.00000 −0.0318626
\(986\) 4.44383 0.141520
\(987\) 64.8173 2.06316
\(988\) 2.53780 0.0807381
\(989\) −98.7229 −3.13920
\(990\) −8.65654 −0.275123
\(991\) 44.7215 1.42062 0.710312 0.703887i \(-0.248554\pi\)
0.710312 + 0.703887i \(0.248554\pi\)
\(992\) −2.58615 −0.0821104
\(993\) −86.9119 −2.75807
\(994\) −8.66950 −0.274980
\(995\) −7.77869 −0.246601
\(996\) 8.89751 0.281928
\(997\) 61.0998 1.93505 0.967524 0.252777i \(-0.0813440\pi\)
0.967524 + 0.252777i \(0.0813440\pi\)
\(998\) −8.14699 −0.257889
\(999\) 28.4297 0.899476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.a.g.1.7 17
3.2 odd 2 8865.2.a.z.1.11 17
5.4 even 2 4925.2.a.l.1.11 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.g.1.7 17 1.1 even 1 trivial
4925.2.a.l.1.11 17 5.4 even 2
8865.2.a.z.1.11 17 3.2 odd 2