Properties

Label 984.1.m.e.245.1
Level $984$
Weight $1$
Character 984.245
Analytic conductor $0.491$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
RM discriminant 328
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [984,1,Mod(245,984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("984.245"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 984 = 2^{3} \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 984.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.491079972431\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.23616.1

Embedding invariants

Embedding label 245.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 984.245
Dual form 984.1.m.e.245.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000 q^{4} +(0.707107 + 0.707107i) q^{6} +1.00000i q^{8} -1.00000i q^{9} +1.41421i q^{11} +(0.707107 - 0.707107i) q^{12} -1.41421 q^{13} +1.00000 q^{16} -1.00000 q^{18} +1.41421 q^{19} +1.41421 q^{22} +2.00000i q^{23} +(-0.707107 - 0.707107i) q^{24} -1.00000 q^{25} +1.41421i q^{26} +(0.707107 + 0.707107i) q^{27} +1.41421i q^{29} -1.00000i q^{32} +(-1.00000 - 1.00000i) q^{33} +1.00000i q^{36} -1.41421i q^{38} +(1.00000 - 1.00000i) q^{39} +1.00000i q^{41} -1.41421i q^{44} +2.00000 q^{46} +(-0.707107 + 0.707107i) q^{48} +1.00000 q^{49} +1.00000i q^{50} +1.41421 q^{52} -1.41421i q^{53} +(0.707107 - 0.707107i) q^{54} +(-1.00000 + 1.00000i) q^{57} +1.41421 q^{58} -1.00000 q^{64} +(-1.00000 + 1.00000i) q^{66} -1.41421 q^{67} +(-1.41421 - 1.41421i) q^{69} +1.00000 q^{72} +2.00000 q^{73} +(0.707107 - 0.707107i) q^{75} -1.41421 q^{76} +(-1.00000 - 1.00000i) q^{78} -1.00000 q^{81} +1.00000 q^{82} +(-1.00000 - 1.00000i) q^{87} -1.41421 q^{88} -2.00000i q^{92} +(0.707107 + 0.707107i) q^{96} -1.00000i q^{98} +1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{16} - 4 q^{18} - 4 q^{25} - 4 q^{33} + 4 q^{39} + 8 q^{46} + 4 q^{49} - 4 q^{57} - 4 q^{64} - 4 q^{66} + 4 q^{72} + 8 q^{73} - 4 q^{78} - 4 q^{81} + 4 q^{82} - 4 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/984\mathbb{Z}\right)^\times\).

\(n\) \(247\) \(329\) \(457\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(4\) −1.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 1.00000i 1.00000i
\(10\) 0 0
\(11\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 0.707107 0.707107i 0.707107 0.707107i
\(13\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −1.00000 −1.00000
\(19\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.41421 1.41421
\(23\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −0.707107 0.707107i −0.707107 0.707107i
\(25\) −1.00000 −1.00000
\(26\) 1.41421i 1.41421i
\(27\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000i 1.00000i
\(33\) −1.00000 1.00000i −1.00000 1.00000i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000i 1.00000i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.41421i 1.41421i
\(39\) 1.00000 1.00000i 1.00000 1.00000i
\(40\) 0 0
\(41\) 1.00000i 1.00000i
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 1.41421i 1.41421i
\(45\) 0 0
\(46\) 2.00000 2.00000
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(49\) 1.00000 1.00000
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 1.41421 1.41421
\(53\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(54\) 0.707107 0.707107i 0.707107 0.707107i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(58\) 1.41421 1.41421
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(67\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) −1.41421 1.41421i −1.41421 1.41421i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.00000 1.00000
\(73\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(74\) 0 0
\(75\) 0.707107 0.707107i 0.707107 0.707107i
\(76\) −1.41421 −1.41421
\(77\) 0 0
\(78\) −1.00000 1.00000i −1.00000 1.00000i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −1.00000 −1.00000
\(82\) 1.00000 1.00000
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.00000 1.00000i −1.00000 1.00000i
\(88\) −1.41421 −1.41421
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.00000i 2.00000i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 1.41421 1.41421
\(100\) 1.00000 1.00000
\(101\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(102\) 0 0
\(103\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(104\) 1.41421i 1.41421i
\(105\) 0 0
\(106\) −1.41421 −1.41421
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −0.707107 0.707107i −0.707107 0.707107i
\(109\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(115\) 0 0
\(116\) 1.41421i 1.41421i
\(117\) 1.41421i 1.41421i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) −0.707107 0.707107i −0.707107 0.707107i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(133\) 0 0
\(134\) 1.41421i 1.41421i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000i 2.00000i
\(144\) 1.00000i 1.00000i
\(145\) 0 0
\(146\) 2.00000i 2.00000i
\(147\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(148\) 0 0
\(149\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(150\) −0.707107 0.707107i −0.707107 0.707107i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.41421i 1.41421i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(157\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 1.00000i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 1.00000i 1.00000i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 1.41421i 1.41421i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(175\) 0 0
\(176\) 1.41421i 1.41421i
\(177\) 0 0
\(178\) 0 0
\(179\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.00000 −2.00000
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.707107 0.707107i 0.707107 0.707107i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 1.41421i 1.41421i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) 1.00000 1.00000i 1.00000 1.00000i
\(202\) −1.41421 −1.41421
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000i 2.00000i
\(207\) 2.00000 2.00000
\(208\) −1.41421 −1.41421
\(209\) 2.00000i 2.00000i
\(210\) 0 0
\(211\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(212\) 1.41421i 1.41421i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(217\) 0 0
\(218\) 1.41421i 1.41421i
\(219\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 0 0
\(227\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(228\) 1.00000 1.00000i 1.00000 1.00000i
\(229\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.41421 −1.41421
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 1.41421 1.41421
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 0.707107 0.707107i 0.707107 0.707107i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(247\) −2.00000 −2.00000
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −2.82843 −2.82843
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.41421 1.41421
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 1.00000 1.00000i 1.00000 1.00000i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.41421 1.41421
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421i 1.41421i
\(276\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −2.00000 −2.00000
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −2.00000 −2.00000
\(293\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(298\) −1.41421 −1.41421
\(299\) 2.82843i 2.82843i
\(300\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(301\) 0 0
\(302\) 0 0
\(303\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(304\) 1.41421 1.41421
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 1.41421 1.41421i 1.41421 1.41421i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 1.41421i 1.41421i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 1.00000 1.00000i 1.00000 1.00000i
\(319\) −2.00000 −2.00000
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 1.41421 1.41421
\(326\) 0 0
\(327\) 1.00000 1.00000i 1.00000 1.00000i
\(328\) −1.00000 −1.00000
\(329\) 0 0
\(330\) 0 0
\(331\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 1.00000i 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −1.41421 −1.41421
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −1.00000 1.00000i −1.00000 1.00000i
\(352\) 1.41421 1.41421
\(353\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 1.41421 1.41421
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 1.41421i 1.41421i
\(363\) 0.707107 0.707107i 0.707107 0.707107i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 2.00000i 2.00000i
\(369\) 1.00000 1.00000
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000i 2.00000i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −0.707107 0.707107i −0.707107 0.707107i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −1.41421 −1.41421
\(397\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −1.00000 1.00000i −1.00000 1.00000i
\(403\) 0 0
\(404\) 1.41421i 1.41421i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.00000 2.00000
\(413\) 0 0
\(414\) 2.00000i 2.00000i
\(415\) 0 0
\(416\) 1.41421i 1.41421i
\(417\) 0 0
\(418\) 2.00000 2.00000
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 1.41421i 1.41421i
\(423\) 0 0
\(424\) 1.41421 1.41421
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(430\) 0 0
\(431\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.41421 1.41421
\(437\) 2.82843i 2.82843i
\(438\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000i 2.00000i
\(447\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.00000 1.00000
\(451\) −1.41421 −1.41421
\(452\) 0 0
\(453\) 0 0
\(454\) −1.41421 −1.41421
\(455\) 0 0
\(456\) −1.00000 1.00000i −1.00000 1.00000i
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 1.41421i 1.41421i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 1.41421i 1.41421i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 1.41421i 1.41421i
\(469\) 0 0
\(470\) 0 0
\(471\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.41421 −1.41421
\(476\) 0 0
\(477\) −1.41421 −1.41421
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) −0.707107 0.707107i −0.707107 0.707107i
\(487\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(493\) 0 0
\(494\) 2.00000i 2.00000i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.82843i 2.82843i
\(507\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(508\) 0 0
\(509\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 1.41421i 1.41421i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.00000 1.00000i −1.00000 1.00000i
\(529\) −3.00000 −3.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.41421i 1.41421i
\(534\) 0 0
\(535\) 0 0
\(536\) 1.41421i 1.41421i
\(537\) −1.00000 1.00000i −1.00000 1.00000i
\(538\) 0 0
\(539\) 1.41421i 1.41421i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −1.41421 −1.41421
\(551\) 2.00000i 2.00000i
\(552\) 1.41421 1.41421i 1.41421 1.41421i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(572\) 2.00000i 2.00000i
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000i 2.00000i
\(576\) 1.00000i 1.00000i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.00000i 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.00000 2.00000
\(584\) 2.00000i 2.00000i
\(585\) 0 0
\(586\) 1.41421 1.41421
\(587\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(588\) 0.707107 0.707107i 0.707107 0.707107i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(595\) 0 0
\(596\) 1.41421i 1.41421i
\(597\) 0 0
\(598\) −2.82843 −2.82843
\(599\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(600\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 1.41421i 1.41421i
\(604\) 0 0
\(605\) 0 0
\(606\) 1.00000 1.00000i 1.00000 1.00000i
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 1.41421i 1.41421i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −1.41421 1.41421i −1.41421 1.41421i
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(622\) 0 0
\(623\) 0 0
\(624\) 1.00000 1.00000i 1.00000 1.00000i
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) −1.41421 1.41421i −1.41421 1.41421i
\(628\) −1.41421 −1.41421
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(632\) 0 0
\(633\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(634\) 1.41421 1.41421
\(635\) 0 0
\(636\) −1.00000 1.00000i −1.00000 1.00000i
\(637\) −1.41421 −1.41421
\(638\) 2.00000i 2.00000i
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000i 1.00000i
\(649\) 0 0
\(650\) 1.41421i 1.41421i
\(651\) 0 0
\(652\) 0 0
\(653\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) −1.00000 1.00000i −1.00000 1.00000i
\(655\) 0 0
\(656\) 1.00000i 1.00000i
\(657\) 2.00000i 2.00000i
\(658\) 0 0
\(659\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.41421i 1.41421i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.82843 −2.82843
\(668\) 0 0
\(669\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −0.707107 0.707107i −0.707107 0.707107i
\(676\) −1.00000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(682\) 0 0
\(683\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(684\) 1.41421i 1.41421i
\(685\) 0 0
\(686\) 0 0
\(687\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(688\) 0 0
\(689\) 2.00000i 2.00000i
\(690\) 0 0
\(691\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.41421 1.41421
\(695\) 0 0
\(696\) 1.00000 1.00000i 1.00000 1.00000i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(703\) 0 0
\(704\) 1.41421i 1.41421i
\(705\) 0 0
\(706\) −2.00000 −2.00000
\(707\) 0 0
\(708\) 0 0
\(709\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.41421i 1.41421i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) −1.41421 −1.41421
\(725\) 1.41421i 1.41421i
\(726\) −0.707107 0.707107i −0.707107 0.707107i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 2.00000 2.00000
\(737\) 2.00000i 2.00000i
\(738\) 1.00000i 1.00000i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 1.41421 1.41421i 1.41421 1.41421i
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −2.00000 −2.00000
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 2.00000 2.00000i 2.00000 2.00000i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(769\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.41421i 1.41421i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 1.41421i 1.41421i
\(793\) 0 0
\(794\) 1.41421i 1.41421i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000i 1.00000i
\(801\) 0 0
\(802\) 0 0
\(803\) 2.82843i 2.82843i
\(804\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.41421 1.41421
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 2.00000i 2.00000i
\(825\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(826\) 0 0
\(827\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(828\) −2.00000 −2.00000
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.41421 1.41421
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000i 2.00000i
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −1.00000 −1.00000
\(842\) 1.41421i 1.41421i
\(843\) 0 0
\(844\) −1.41421 −1.41421
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.41421i 1.41421i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 1.41421 1.41421i 1.41421 1.41421i
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.00000 2.00000
\(863\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(864\) 0.707107 0.707107i 0.707107 0.707107i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.707107 0.707107i 0.707107 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.00000 2.00000
\(872\) 1.41421i 1.41421i
\(873\) 0 0
\(874\) 2.82843 2.82843
\(875\) 0 0
\(876\) 1.41421 1.41421i 1.41421 1.41421i
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −1.00000 1.00000i −1.00000 1.00000i
\(880\) 0 0
\(881\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(882\) −1.00000 −1.00000
\(883\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.41421i 1.41421i
\(892\) −2.00000 −2.00000
\(893\) 0 0
\(894\) 1.00000 1.00000i 1.00000 1.00000i
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 + 2.00000i 2.00000 + 2.00000i
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000i 1.00000i
\(901\) 0 0
\(902\) 1.41421i 1.41421i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.41421i 1.41421i
\(909\) −1.41421 −1.41421
\(910\) 0 0
\(911\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(912\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.41421 −1.41421
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.00000i 2.00000i
\(928\) 1.41421 1.41421
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 1.41421 1.41421
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −1.41421 −1.41421
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(943\) −2.00000 −2.00000
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −2.82843 −2.82843
\(950\) 1.41421i 1.41421i
\(951\) −1.00000 1.00000i −1.00000 1.00000i
\(952\) 0 0
\(953\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(954\) 1.41421i 1.41421i
\(955\) 0 0
\(956\) 0 0
\(957\) 1.41421 1.41421i 1.41421 1.41421i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(972\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(973\) 0 0
\(974\) 2.00000i 2.00000i
\(975\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.41421i 1.41421i
\(982\) 0 0
\(983\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0.707107 0.707107i 0.707107 0.707107i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 2.00000 2.00000
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 1.41421i 1.41421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 984.1.m.e.245.1 4
3.2 odd 2 inner 984.1.m.e.245.3 yes 4
4.3 odd 2 3936.1.m.e.2705.3 4
8.3 odd 2 3936.1.m.e.2705.2 4
8.5 even 2 inner 984.1.m.e.245.2 yes 4
12.11 even 2 3936.1.m.e.2705.4 4
24.5 odd 2 inner 984.1.m.e.245.4 yes 4
24.11 even 2 3936.1.m.e.2705.1 4
41.40 even 2 inner 984.1.m.e.245.2 yes 4
123.122 odd 2 inner 984.1.m.e.245.4 yes 4
164.163 odd 2 3936.1.m.e.2705.2 4
328.163 odd 2 3936.1.m.e.2705.3 4
328.245 even 2 RM 984.1.m.e.245.1 4
492.491 even 2 3936.1.m.e.2705.1 4
984.245 odd 2 inner 984.1.m.e.245.3 yes 4
984.491 even 2 3936.1.m.e.2705.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
984.1.m.e.245.1 4 1.1 even 1 trivial
984.1.m.e.245.1 4 328.245 even 2 RM
984.1.m.e.245.2 yes 4 8.5 even 2 inner
984.1.m.e.245.2 yes 4 41.40 even 2 inner
984.1.m.e.245.3 yes 4 3.2 odd 2 inner
984.1.m.e.245.3 yes 4 984.245 odd 2 inner
984.1.m.e.245.4 yes 4 24.5 odd 2 inner
984.1.m.e.245.4 yes 4 123.122 odd 2 inner
3936.1.m.e.2705.1 4 24.11 even 2
3936.1.m.e.2705.1 4 492.491 even 2
3936.1.m.e.2705.2 4 8.3 odd 2
3936.1.m.e.2705.2 4 164.163 odd 2
3936.1.m.e.2705.3 4 4.3 odd 2
3936.1.m.e.2705.3 4 328.163 odd 2
3936.1.m.e.2705.4 4 12.11 even 2
3936.1.m.e.2705.4 4 984.491 even 2