Properties

Label 984.1.m.a
Level $984$
Weight $1$
Character orbit 984.m
Self dual yes
Analytic conductor $0.491$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -984
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [984,1,Mod(245,984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("984.245"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 984 = 2^{3} \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 984.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.491079972431\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.984.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.7746048.1
Stark unit: Root of $x^{6} - 34x^{5} + 251x^{4} - 724x^{3} + 251x^{2} - 34x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - q^{12} + q^{13} - q^{15} + q^{16} - q^{17} - q^{18} + q^{19} + q^{20} + q^{24} - q^{26} - q^{27} + q^{30} - q^{31}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/984\mathbb{Z}\right)^\times\).

\(n\) \(247\) \(329\) \(457\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
245.1
0
−1.00000 −1.00000 1.00000 1.00000 1.00000 0 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
984.m odd 2 1 CM by \(\Q(\sqrt{-246}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 984.1.m.a 1
3.b odd 2 1 984.1.m.c yes 1
4.b odd 2 1 3936.1.m.d 1
8.b even 2 1 984.1.m.d yes 1
8.d odd 2 1 3936.1.m.a 1
12.b even 2 1 3936.1.m.c 1
24.f even 2 1 3936.1.m.b 1
24.h odd 2 1 984.1.m.b yes 1
41.b even 2 1 984.1.m.b yes 1
123.b odd 2 1 984.1.m.d yes 1
164.d odd 2 1 3936.1.m.b 1
328.c odd 2 1 3936.1.m.c 1
328.g even 2 1 984.1.m.c yes 1
492.d even 2 1 3936.1.m.a 1
984.m odd 2 1 CM 984.1.m.a 1
984.p even 2 1 3936.1.m.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
984.1.m.a 1 1.a even 1 1 trivial
984.1.m.a 1 984.m odd 2 1 CM
984.1.m.b yes 1 24.h odd 2 1
984.1.m.b yes 1 41.b even 2 1
984.1.m.c yes 1 3.b odd 2 1
984.1.m.c yes 1 328.g even 2 1
984.1.m.d yes 1 8.b even 2 1
984.1.m.d yes 1 123.b odd 2 1
3936.1.m.a 1 8.d odd 2 1
3936.1.m.a 1 492.d even 2 1
3936.1.m.b 1 24.f even 2 1
3936.1.m.b 1 164.d odd 2 1
3936.1.m.c 1 12.b even 2 1
3936.1.m.c 1 328.c odd 2 1
3936.1.m.d 1 4.b odd 2 1
3936.1.m.d 1 984.p even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(984, [\chi])\):

\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 1 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T + 1 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less