Properties

Label 980.4.i.c.961.1
Level $980$
Weight $4$
Character 980.961
Analytic conductor $57.822$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,4,Mod(361,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-5,0,-5,0,0,0,2,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.8218718056\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 980.961
Dual form 980.4.i.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 - 4.33013i) q^{3} +(-2.50000 + 4.33013i) q^{5} +(1.00000 - 1.73205i) q^{9} +(-7.50000 - 12.9904i) q^{11} -17.0000 q^{13} +25.0000 q^{15} +(61.5000 + 106.521i) q^{17} +(43.0000 - 74.4782i) q^{19} +(-27.0000 + 46.7654i) q^{23} +(-12.5000 - 21.6506i) q^{25} -145.000 q^{27} -177.000 q^{29} +(106.000 + 183.597i) q^{31} +(-37.5000 + 64.9519i) q^{33} +(-37.0000 + 64.0859i) q^{37} +(42.5000 + 73.6122i) q^{39} +444.000 q^{41} -46.0000 q^{43} +(5.00000 + 8.66025i) q^{45} +(235.500 - 407.898i) q^{47} +(307.500 - 532.606i) q^{51} +(90.0000 + 155.885i) q^{53} +75.0000 q^{55} -430.000 q^{57} +(72.0000 + 124.708i) q^{59} +(-188.000 + 325.626i) q^{61} +(42.5000 - 73.6122i) q^{65} +(-178.000 - 308.305i) q^{67} +270.000 q^{69} -48.0000 q^{71} +(409.000 + 708.409i) q^{73} +(-62.5000 + 108.253i) q^{75} +(-44.5000 + 77.0763i) q^{79} +(335.500 + 581.103i) q^{81} +780.000 q^{83} -615.000 q^{85} +(442.500 + 766.432i) q^{87} +(570.000 - 987.269i) q^{89} +(530.000 - 917.987i) q^{93} +(215.000 + 372.391i) q^{95} +169.000 q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} - 5 q^{5} + 2 q^{9} - 15 q^{11} - 34 q^{13} + 50 q^{15} + 123 q^{17} + 86 q^{19} - 54 q^{23} - 25 q^{25} - 290 q^{27} - 354 q^{29} + 212 q^{31} - 75 q^{33} - 74 q^{37} + 85 q^{39} + 888 q^{41}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.50000 4.33013i −0.481125 0.833333i 0.518640 0.854993i \(-0.326438\pi\)
−0.999765 + 0.0216593i \(0.993105\pi\)
\(4\) 0 0
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.0370370 0.0641500i
\(10\) 0 0
\(11\) −7.50000 12.9904i −0.205576 0.356068i 0.744740 0.667355i \(-0.232573\pi\)
−0.950316 + 0.311287i \(0.899240\pi\)
\(12\) 0 0
\(13\) −17.0000 −0.362689 −0.181344 0.983420i \(-0.558045\pi\)
−0.181344 + 0.983420i \(0.558045\pi\)
\(14\) 0 0
\(15\) 25.0000 0.430331
\(16\) 0 0
\(17\) 61.5000 + 106.521i 0.877408 + 1.51972i 0.854175 + 0.519986i \(0.174063\pi\)
0.0232333 + 0.999730i \(0.492604\pi\)
\(18\) 0 0
\(19\) 43.0000 74.4782i 0.519204 0.899288i −0.480547 0.876969i \(-0.659562\pi\)
0.999751 0.0223187i \(-0.00710486\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −27.0000 + 46.7654i −0.244778 + 0.423968i −0.962069 0.272806i \(-0.912048\pi\)
0.717291 + 0.696773i \(0.245382\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) −145.000 −1.03353
\(28\) 0 0
\(29\) −177.000 −1.13338 −0.566691 0.823930i \(-0.691777\pi\)
−0.566691 + 0.823930i \(0.691777\pi\)
\(30\) 0 0
\(31\) 106.000 + 183.597i 0.614134 + 1.06371i 0.990536 + 0.137255i \(0.0438280\pi\)
−0.376401 + 0.926457i \(0.622839\pi\)
\(32\) 0 0
\(33\) −37.5000 + 64.9519i −0.197816 + 0.342627i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −37.0000 + 64.0859i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 0 0
\(39\) 42.5000 + 73.6122i 0.174499 + 0.302240i
\(40\) 0 0
\(41\) 444.000 1.69125 0.845624 0.533779i \(-0.179229\pi\)
0.845624 + 0.533779i \(0.179229\pi\)
\(42\) 0 0
\(43\) −46.0000 −0.163138 −0.0815690 0.996668i \(-0.525993\pi\)
−0.0815690 + 0.996668i \(0.525993\pi\)
\(44\) 0 0
\(45\) 5.00000 + 8.66025i 0.0165635 + 0.0286888i
\(46\) 0 0
\(47\) 235.500 407.898i 0.730877 1.26592i −0.225632 0.974213i \(-0.572445\pi\)
0.956509 0.291703i \(-0.0942219\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 307.500 532.606i 0.844287 1.46235i
\(52\) 0 0
\(53\) 90.0000 + 155.885i 0.233254 + 0.404007i 0.958764 0.284204i \(-0.0917294\pi\)
−0.725510 + 0.688212i \(0.758396\pi\)
\(54\) 0 0
\(55\) 75.0000 0.183873
\(56\) 0 0
\(57\) −430.000 −0.999209
\(58\) 0 0
\(59\) 72.0000 + 124.708i 0.158875 + 0.275179i 0.934463 0.356060i \(-0.115880\pi\)
−0.775589 + 0.631239i \(0.782547\pi\)
\(60\) 0 0
\(61\) −188.000 + 325.626i −0.394605 + 0.683477i −0.993051 0.117687i \(-0.962452\pi\)
0.598445 + 0.801164i \(0.295785\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 42.5000 73.6122i 0.0810996 0.140469i
\(66\) 0 0
\(67\) −178.000 308.305i −0.324570 0.562171i 0.656856 0.754016i \(-0.271886\pi\)
−0.981425 + 0.191845i \(0.938553\pi\)
\(68\) 0 0
\(69\) 270.000 0.471075
\(70\) 0 0
\(71\) −48.0000 −0.0802331 −0.0401166 0.999195i \(-0.512773\pi\)
−0.0401166 + 0.999195i \(0.512773\pi\)
\(72\) 0 0
\(73\) 409.000 + 708.409i 0.655751 + 1.13579i 0.981705 + 0.190409i \(0.0609813\pi\)
−0.325954 + 0.945386i \(0.605685\pi\)
\(74\) 0 0
\(75\) −62.5000 + 108.253i −0.0962250 + 0.166667i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −44.5000 + 77.0763i −0.0633752 + 0.109769i −0.895972 0.444110i \(-0.853520\pi\)
0.832597 + 0.553879i \(0.186853\pi\)
\(80\) 0 0
\(81\) 335.500 + 581.103i 0.460219 + 0.797124i
\(82\) 0 0
\(83\) 780.000 1.03152 0.515760 0.856733i \(-0.327510\pi\)
0.515760 + 0.856733i \(0.327510\pi\)
\(84\) 0 0
\(85\) −615.000 −0.784778
\(86\) 0 0
\(87\) 442.500 + 766.432i 0.545299 + 0.944485i
\(88\) 0 0
\(89\) 570.000 987.269i 0.678875 1.17585i −0.296445 0.955050i \(-0.595801\pi\)
0.975320 0.220796i \(-0.0708655\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 530.000 917.987i 0.590951 1.02356i
\(94\) 0 0
\(95\) 215.000 + 372.391i 0.232195 + 0.402174i
\(96\) 0 0
\(97\) 169.000 0.176901 0.0884503 0.996081i \(-0.471809\pi\)
0.0884503 + 0.996081i \(0.471809\pi\)
\(98\) 0 0
\(99\) −30.0000 −0.0304557
\(100\) 0 0
\(101\) −369.000 639.127i −0.363533 0.629658i 0.625006 0.780620i \(-0.285096\pi\)
−0.988540 + 0.150961i \(0.951763\pi\)
\(102\) 0 0
\(103\) 425.500 736.988i 0.407046 0.705025i −0.587511 0.809216i \(-0.699892\pi\)
0.994557 + 0.104191i \(0.0332255\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 447.000 774.227i 0.403861 0.699508i −0.590327 0.807164i \(-0.701001\pi\)
0.994188 + 0.107656i \(0.0343346\pi\)
\(108\) 0 0
\(109\) −830.500 1438.47i −0.729793 1.26404i −0.956970 0.290186i \(-0.906283\pi\)
0.227177 0.973853i \(-0.427050\pi\)
\(110\) 0 0
\(111\) 370.000 0.316386
\(112\) 0 0
\(113\) 1302.00 1.08391 0.541955 0.840407i \(-0.317684\pi\)
0.541955 + 0.840407i \(0.317684\pi\)
\(114\) 0 0
\(115\) −135.000 233.827i −0.109468 0.189604i
\(116\) 0 0
\(117\) −17.0000 + 29.4449i −0.0134329 + 0.0232665i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 553.000 957.824i 0.415477 0.719627i
\(122\) 0 0
\(123\) −1110.00 1922.58i −0.813702 1.40937i
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2624.00 1.83340 0.916702 0.399571i \(-0.130841\pi\)
0.916702 + 0.399571i \(0.130841\pi\)
\(128\) 0 0
\(129\) 115.000 + 199.186i 0.0784898 + 0.135948i
\(130\) 0 0
\(131\) 423.000 732.657i 0.282120 0.488646i −0.689787 0.724012i \(-0.742296\pi\)
0.971907 + 0.235367i \(0.0756291\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 362.500 627.868i 0.231104 0.400284i
\(136\) 0 0
\(137\) −522.000 904.131i −0.325529 0.563833i 0.656090 0.754682i \(-0.272209\pi\)
−0.981619 + 0.190850i \(0.938876\pi\)
\(138\) 0 0
\(139\) −1946.00 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −2355.00 −1.40657
\(142\) 0 0
\(143\) 127.500 + 220.836i 0.0745600 + 0.129142i
\(144\) 0 0
\(145\) 442.500 766.432i 0.253432 0.438957i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 783.000 1356.20i 0.430509 0.745664i −0.566408 0.824125i \(-0.691667\pi\)
0.996917 + 0.0784613i \(0.0250007\pi\)
\(150\) 0 0
\(151\) −608.500 1053.95i −0.327941 0.568010i 0.654162 0.756354i \(-0.273021\pi\)
−0.982103 + 0.188344i \(0.939688\pi\)
\(152\) 0 0
\(153\) 246.000 0.129986
\(154\) 0 0
\(155\) −1060.00 −0.549298
\(156\) 0 0
\(157\) 1243.00 + 2152.94i 0.631861 + 1.09442i 0.987171 + 0.159667i \(0.0510420\pi\)
−0.355310 + 0.934749i \(0.615625\pi\)
\(158\) 0 0
\(159\) 450.000 779.423i 0.224449 0.388756i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1781.00 3084.78i 0.855820 1.48232i −0.0200619 0.999799i \(-0.506386\pi\)
0.875882 0.482525i \(-0.160280\pi\)
\(164\) 0 0
\(165\) −187.500 324.760i −0.0884658 0.153227i
\(166\) 0 0
\(167\) 1557.00 0.721463 0.360731 0.932670i \(-0.382527\pi\)
0.360731 + 0.932670i \(0.382527\pi\)
\(168\) 0 0
\(169\) −1908.00 −0.868457
\(170\) 0 0
\(171\) −86.0000 148.956i −0.0384596 0.0666139i
\(172\) 0 0
\(173\) −1234.50 + 2138.22i −0.542528 + 0.939686i 0.456230 + 0.889862i \(0.349199\pi\)
−0.998758 + 0.0498238i \(0.984134\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 360.000 623.538i 0.152877 0.264791i
\(178\) 0 0
\(179\) 1326.00 + 2296.70i 0.553687 + 0.959013i 0.998004 + 0.0631440i \(0.0201128\pi\)
−0.444318 + 0.895869i \(0.646554\pi\)
\(180\) 0 0
\(181\) 1996.00 0.819677 0.409838 0.912158i \(-0.365585\pi\)
0.409838 + 0.912158i \(0.365585\pi\)
\(182\) 0 0
\(183\) 1880.00 0.759419
\(184\) 0 0
\(185\) −185.000 320.429i −0.0735215 0.127343i
\(186\) 0 0
\(187\) 922.500 1597.82i 0.360748 0.624834i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1792.50 3104.70i 0.679062 1.17617i −0.296202 0.955125i \(-0.595720\pi\)
0.975264 0.221044i \(-0.0709464\pi\)
\(192\) 0 0
\(193\) −286.000 495.367i −0.106667 0.184753i 0.807751 0.589524i \(-0.200685\pi\)
−0.914418 + 0.404771i \(0.867351\pi\)
\(194\) 0 0
\(195\) −425.000 −0.156076
\(196\) 0 0
\(197\) −3408.00 −1.23254 −0.616269 0.787536i \(-0.711357\pi\)
−0.616269 + 0.787536i \(0.711357\pi\)
\(198\) 0 0
\(199\) −1808.00 3131.55i −0.644049 1.11553i −0.984520 0.175270i \(-0.943920\pi\)
0.340471 0.940255i \(-0.389413\pi\)
\(200\) 0 0
\(201\) −890.000 + 1541.53i −0.312317 + 0.540949i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1110.00 + 1922.58i −0.378174 + 0.655017i
\(206\) 0 0
\(207\) 54.0000 + 93.5307i 0.0181317 + 0.0314050i
\(208\) 0 0
\(209\) −1290.00 −0.426943
\(210\) 0 0
\(211\) 4889.00 1.59513 0.797565 0.603232i \(-0.206121\pi\)
0.797565 + 0.603232i \(0.206121\pi\)
\(212\) 0 0
\(213\) 120.000 + 207.846i 0.0386022 + 0.0668609i
\(214\) 0 0
\(215\) 115.000 199.186i 0.0364788 0.0631831i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2045.00 3542.04i 0.630997 1.09292i
\(220\) 0 0
\(221\) −1045.50 1810.86i −0.318226 0.551184i
\(222\) 0 0
\(223\) 3229.00 0.969641 0.484820 0.874614i \(-0.338885\pi\)
0.484820 + 0.874614i \(0.338885\pi\)
\(224\) 0 0
\(225\) −50.0000 −0.0148148
\(226\) 0 0
\(227\) 607.500 + 1052.22i 0.177626 + 0.307658i 0.941067 0.338220i \(-0.109825\pi\)
−0.763441 + 0.645878i \(0.776491\pi\)
\(228\) 0 0
\(229\) 1102.00 1908.72i 0.318001 0.550794i −0.662070 0.749442i \(-0.730322\pi\)
0.980071 + 0.198648i \(0.0636552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −108.000 + 187.061i −0.0303662 + 0.0525957i −0.880809 0.473472i \(-0.843001\pi\)
0.850443 + 0.526067i \(0.176334\pi\)
\(234\) 0 0
\(235\) 1177.50 + 2039.49i 0.326858 + 0.566135i
\(236\) 0 0
\(237\) 445.000 0.121966
\(238\) 0 0
\(239\) −5235.00 −1.41684 −0.708418 0.705793i \(-0.750591\pi\)
−0.708418 + 0.705793i \(0.750591\pi\)
\(240\) 0 0
\(241\) 2971.00 + 5145.92i 0.794103 + 1.37543i 0.923407 + 0.383822i \(0.125393\pi\)
−0.129303 + 0.991605i \(0.541274\pi\)
\(242\) 0 0
\(243\) −280.000 + 484.974i −0.0739177 + 0.128029i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −731.000 + 1266.13i −0.188309 + 0.326161i
\(248\) 0 0
\(249\) −1950.00 3377.50i −0.496290 0.859600i
\(250\) 0 0
\(251\) 954.000 0.239904 0.119952 0.992780i \(-0.461726\pi\)
0.119952 + 0.992780i \(0.461726\pi\)
\(252\) 0 0
\(253\) 810.000 0.201282
\(254\) 0 0
\(255\) 1537.50 + 2663.03i 0.377576 + 0.653982i
\(256\) 0 0
\(257\) 1743.00 3018.96i 0.423056 0.732754i −0.573181 0.819429i \(-0.694291\pi\)
0.996237 + 0.0866747i \(0.0276241\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −177.000 + 306.573i −0.0419771 + 0.0727065i
\(262\) 0 0
\(263\) 339.000 + 587.165i 0.0794815 + 0.137666i 0.903026 0.429585i \(-0.141340\pi\)
−0.823545 + 0.567251i \(0.808007\pi\)
\(264\) 0 0
\(265\) −900.000 −0.208629
\(266\) 0 0
\(267\) −5700.00 −1.30650
\(268\) 0 0
\(269\) −1695.00 2935.83i −0.384186 0.665429i 0.607470 0.794343i \(-0.292184\pi\)
−0.991656 + 0.128913i \(0.958851\pi\)
\(270\) 0 0
\(271\) 280.000 484.974i 0.0627631 0.108709i −0.832936 0.553369i \(-0.813342\pi\)
0.895700 + 0.444660i \(0.146675\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −187.500 + 324.760i −0.0411152 + 0.0712136i
\(276\) 0 0
\(277\) 3929.00 + 6805.23i 0.852241 + 1.47612i 0.879181 + 0.476488i \(0.158090\pi\)
−0.0269403 + 0.999637i \(0.508576\pi\)
\(278\) 0 0
\(279\) 424.000 0.0909829
\(280\) 0 0
\(281\) 6171.00 1.31007 0.655037 0.755596i \(-0.272653\pi\)
0.655037 + 0.755596i \(0.272653\pi\)
\(282\) 0 0
\(283\) 2060.50 + 3568.89i 0.432806 + 0.749641i 0.997114 0.0759229i \(-0.0241903\pi\)
−0.564308 + 0.825564i \(0.690857\pi\)
\(284\) 0 0
\(285\) 1075.00 1861.95i 0.223430 0.386992i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5108.00 + 8847.32i −1.03969 + 1.80080i
\(290\) 0 0
\(291\) −422.500 731.791i −0.0851113 0.147417i
\(292\) 0 0
\(293\) 9.00000 0.00179449 0.000897245 1.00000i \(-0.499714\pi\)
0.000897245 1.00000i \(0.499714\pi\)
\(294\) 0 0
\(295\) −720.000 −0.142102
\(296\) 0 0
\(297\) 1087.50 + 1883.61i 0.212469 + 0.368006i
\(298\) 0 0
\(299\) 459.000 795.011i 0.0887781 0.153768i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1845.00 + 3195.63i −0.349810 + 0.605889i
\(304\) 0 0
\(305\) −940.000 1628.13i −0.176473 0.305660i
\(306\) 0 0
\(307\) 6487.00 1.20597 0.602985 0.797753i \(-0.293978\pi\)
0.602985 + 0.797753i \(0.293978\pi\)
\(308\) 0 0
\(309\) −4255.00 −0.783361
\(310\) 0 0
\(311\) 2703.00 + 4681.73i 0.492839 + 0.853623i 0.999966 0.00824865i \(-0.00262566\pi\)
−0.507127 + 0.861872i \(0.669292\pi\)
\(312\) 0 0
\(313\) −633.500 + 1097.25i −0.114401 + 0.198148i −0.917540 0.397643i \(-0.869828\pi\)
0.803139 + 0.595792i \(0.203162\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1731.00 + 2998.18i −0.306696 + 0.531213i −0.977638 0.210297i \(-0.932557\pi\)
0.670941 + 0.741510i \(0.265890\pi\)
\(318\) 0 0
\(319\) 1327.50 + 2299.30i 0.232996 + 0.403561i
\(320\) 0 0
\(321\) −4470.00 −0.777231
\(322\) 0 0
\(323\) 10578.0 1.82222
\(324\) 0 0
\(325\) 212.500 + 368.061i 0.0362689 + 0.0628195i
\(326\) 0 0
\(327\) −4152.50 + 7192.34i −0.702244 + 1.21632i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4102.00 + 7104.87i −0.681167 + 1.17982i 0.293458 + 0.955972i \(0.405194\pi\)
−0.974625 + 0.223844i \(0.928139\pi\)
\(332\) 0 0
\(333\) 74.0000 + 128.172i 0.0121777 + 0.0210924i
\(334\) 0 0
\(335\) 1780.00 0.290304
\(336\) 0 0
\(337\) −4066.00 −0.657238 −0.328619 0.944463i \(-0.606583\pi\)
−0.328619 + 0.944463i \(0.606583\pi\)
\(338\) 0 0
\(339\) −3255.00 5637.83i −0.521497 0.903259i
\(340\) 0 0
\(341\) 1590.00 2753.96i 0.252502 0.437347i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −675.000 + 1169.13i −0.105336 + 0.182447i
\(346\) 0 0
\(347\) 1611.00 + 2790.33i 0.249231 + 0.431680i 0.963313 0.268382i \(-0.0864890\pi\)
−0.714082 + 0.700062i \(0.753156\pi\)
\(348\) 0 0
\(349\) −11666.0 −1.78930 −0.894651 0.446765i \(-0.852576\pi\)
−0.894651 + 0.446765i \(0.852576\pi\)
\(350\) 0 0
\(351\) 2465.00 0.374849
\(352\) 0 0
\(353\) −4300.50 7448.68i −0.648421 1.12310i −0.983500 0.180908i \(-0.942096\pi\)
0.335079 0.942190i \(-0.391237\pi\)
\(354\) 0 0
\(355\) 120.000 207.846i 0.0179407 0.0310742i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2340.00 4053.00i 0.344012 0.595847i −0.641161 0.767406i \(-0.721547\pi\)
0.985174 + 0.171559i \(0.0548804\pi\)
\(360\) 0 0
\(361\) −268.500 465.056i −0.0391456 0.0678023i
\(362\) 0 0
\(363\) −5530.00 −0.799586
\(364\) 0 0
\(365\) −4090.00 −0.586522
\(366\) 0 0
\(367\) 2879.50 + 4987.44i 0.409560 + 0.709379i 0.994840 0.101452i \(-0.0323488\pi\)
−0.585280 + 0.810831i \(0.699015\pi\)
\(368\) 0 0
\(369\) 444.000 769.031i 0.0626388 0.108494i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6122.00 10603.6i 0.849826 1.47194i −0.0315370 0.999503i \(-0.510040\pi\)
0.881363 0.472439i \(-0.156626\pi\)
\(374\) 0 0
\(375\) −312.500 541.266i −0.0430331 0.0745356i
\(376\) 0 0
\(377\) 3009.00 0.411065
\(378\) 0 0
\(379\) 9308.00 1.26153 0.630765 0.775974i \(-0.282741\pi\)
0.630765 + 0.775974i \(0.282741\pi\)
\(380\) 0 0
\(381\) −6560.00 11362.3i −0.882097 1.52784i
\(382\) 0 0
\(383\) −2934.00 + 5081.84i −0.391437 + 0.677989i −0.992639 0.121108i \(-0.961355\pi\)
0.601202 + 0.799097i \(0.294689\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −46.0000 + 79.6743i −0.00604215 + 0.0104653i
\(388\) 0 0
\(389\) 1675.50 + 2902.05i 0.218384 + 0.378251i 0.954314 0.298806i \(-0.0965883\pi\)
−0.735930 + 0.677057i \(0.763255\pi\)
\(390\) 0 0
\(391\) −6642.00 −0.859080
\(392\) 0 0
\(393\) −4230.00 −0.542940
\(394\) 0 0
\(395\) −222.500 385.381i −0.0283423 0.0490902i
\(396\) 0 0
\(397\) −4434.50 + 7680.78i −0.560607 + 0.971001i 0.436836 + 0.899541i \(0.356099\pi\)
−0.997444 + 0.0714595i \(0.977234\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7336.50 + 12707.2i −0.913634 + 1.58246i −0.104746 + 0.994499i \(0.533403\pi\)
−0.808889 + 0.587962i \(0.799931\pi\)
\(402\) 0 0
\(403\) −1802.00 3121.16i −0.222739 0.385796i
\(404\) 0 0
\(405\) −3355.00 −0.411633
\(406\) 0 0
\(407\) 1110.00 0.135186
\(408\) 0 0
\(409\) −7145.00 12375.5i −0.863808 1.49616i −0.868226 0.496169i \(-0.834740\pi\)
0.00441771 0.999990i \(-0.498594\pi\)
\(410\) 0 0
\(411\) −2610.00 + 4520.65i −0.313240 + 0.542548i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1950.00 + 3377.50i −0.230655 + 0.399506i
\(416\) 0 0
\(417\) 4865.00 + 8426.43i 0.571319 + 0.989554i
\(418\) 0 0
\(419\) 10452.0 1.21865 0.609324 0.792921i \(-0.291441\pi\)
0.609324 + 0.792921i \(0.291441\pi\)
\(420\) 0 0
\(421\) −13795.0 −1.59698 −0.798488 0.602010i \(-0.794367\pi\)
−0.798488 + 0.602010i \(0.794367\pi\)
\(422\) 0 0
\(423\) −471.000 815.796i −0.0541390 0.0937715i
\(424\) 0 0
\(425\) 1537.50 2663.03i 0.175482 0.303943i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 637.500 1104.18i 0.0717454 0.124267i
\(430\) 0 0
\(431\) 1582.50 + 2740.97i 0.176859 + 0.306329i 0.940803 0.338953i \(-0.110073\pi\)
−0.763944 + 0.645283i \(0.776740\pi\)
\(432\) 0 0
\(433\) 6526.00 0.724295 0.362147 0.932121i \(-0.382044\pi\)
0.362147 + 0.932121i \(0.382044\pi\)
\(434\) 0 0
\(435\) −4425.00 −0.487730
\(436\) 0 0
\(437\) 2322.00 + 4021.82i 0.254179 + 0.440251i
\(438\) 0 0
\(439\) −8909.00 + 15430.8i −0.968573 + 1.67762i −0.268879 + 0.963174i \(0.586653\pi\)
−0.699694 + 0.714443i \(0.746680\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5901.00 + 10220.8i −0.632878 + 1.09618i 0.354082 + 0.935214i \(0.384793\pi\)
−0.986960 + 0.160963i \(0.948540\pi\)
\(444\) 0 0
\(445\) 2850.00 + 4936.34i 0.303602 + 0.525854i
\(446\) 0 0
\(447\) −7830.00 −0.828515
\(448\) 0 0
\(449\) 10743.0 1.12916 0.564581 0.825378i \(-0.309038\pi\)
0.564581 + 0.825378i \(0.309038\pi\)
\(450\) 0 0
\(451\) −3330.00 5767.73i −0.347680 0.602199i
\(452\) 0 0
\(453\) −3042.50 + 5269.76i −0.315561 + 0.546568i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3964.00 + 6865.85i −0.405751 + 0.702781i −0.994409 0.105601i \(-0.966323\pi\)
0.588658 + 0.808382i \(0.299657\pi\)
\(458\) 0 0
\(459\) −8917.50 15445.6i −0.906826 1.57067i
\(460\) 0 0
\(461\) −4104.00 −0.414625 −0.207313 0.978275i \(-0.566472\pi\)
−0.207313 + 0.978275i \(0.566472\pi\)
\(462\) 0 0
\(463\) 12416.0 1.24626 0.623132 0.782116i \(-0.285860\pi\)
0.623132 + 0.782116i \(0.285860\pi\)
\(464\) 0 0
\(465\) 2650.00 + 4589.93i 0.264281 + 0.457749i
\(466\) 0 0
\(467\) 4618.50 7999.48i 0.457642 0.792659i −0.541194 0.840898i \(-0.682028\pi\)
0.998836 + 0.0482390i \(0.0153609\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 6215.00 10764.7i 0.608009 1.05310i
\(472\) 0 0
\(473\) 345.000 + 597.558i 0.0335372 + 0.0580882i
\(474\) 0 0
\(475\) −2150.00 −0.207682
\(476\) 0 0
\(477\) 360.000 0.0345561
\(478\) 0 0
\(479\) −9945.00 17225.2i −0.948640 1.64309i −0.748293 0.663368i \(-0.769126\pi\)
−0.200347 0.979725i \(-0.564207\pi\)
\(480\) 0 0
\(481\) 629.000 1089.46i 0.0596256 0.103275i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −422.500 + 731.791i −0.0395562 + 0.0685133i
\(486\) 0 0
\(487\) −997.000 1726.85i −0.0927688 0.160680i 0.815906 0.578184i \(-0.196238\pi\)
−0.908675 + 0.417504i \(0.862905\pi\)
\(488\) 0 0
\(489\) −17810.0 −1.64703
\(490\) 0 0
\(491\) 18885.0 1.73578 0.867890 0.496756i \(-0.165476\pi\)
0.867890 + 0.496756i \(0.165476\pi\)
\(492\) 0 0
\(493\) −10885.5 18854.2i −0.994439 1.72242i
\(494\) 0 0
\(495\) 75.0000 129.904i 0.00681010 0.0117954i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1121.50 + 1942.49i −0.100612 + 0.174265i −0.911937 0.410331i \(-0.865413\pi\)
0.811325 + 0.584595i \(0.198747\pi\)
\(500\) 0 0
\(501\) −3892.50 6742.01i −0.347114 0.601219i
\(502\) 0 0
\(503\) −10461.0 −0.927302 −0.463651 0.886018i \(-0.653461\pi\)
−0.463651 + 0.886018i \(0.653461\pi\)
\(504\) 0 0
\(505\) 3690.00 0.325154
\(506\) 0 0
\(507\) 4770.00 + 8261.88i 0.417837 + 0.723714i
\(508\) 0 0
\(509\) −399.000 + 691.088i −0.0347453 + 0.0601806i −0.882875 0.469608i \(-0.844395\pi\)
0.848130 + 0.529788i \(0.177729\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6235.00 + 10799.3i −0.536612 + 0.929439i
\(514\) 0 0
\(515\) 2127.50 + 3684.94i 0.182037 + 0.315297i
\(516\) 0 0
\(517\) −7065.00 −0.601003
\(518\) 0 0
\(519\) 12345.0 1.04410
\(520\) 0 0
\(521\) −7413.00 12839.7i −0.623358 1.07969i −0.988856 0.148875i \(-0.952435\pi\)
0.365498 0.930812i \(-0.380899\pi\)
\(522\) 0 0
\(523\) −3098.00 + 5365.89i −0.259017 + 0.448631i −0.965979 0.258621i \(-0.916732\pi\)
0.706962 + 0.707252i \(0.250065\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13038.0 + 22582.5i −1.07769 + 1.86662i
\(528\) 0 0
\(529\) 4625.50 + 8011.60i 0.380168 + 0.658470i
\(530\) 0 0
\(531\) 288.000 0.0235370
\(532\) 0 0
\(533\) −7548.00 −0.613396
\(534\) 0 0
\(535\) 2235.00 + 3871.13i 0.180612 + 0.312829i
\(536\) 0 0
\(537\) 6630.00 11483.5i 0.532785 0.922811i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5340.50 9250.02i 0.424410 0.735100i −0.571955 0.820285i \(-0.693815\pi\)
0.996365 + 0.0851848i \(0.0271481\pi\)
\(542\) 0 0
\(543\) −4990.00 8642.93i −0.394367 0.683064i
\(544\) 0 0
\(545\) 8305.00 0.652747
\(546\) 0 0
\(547\) −6856.00 −0.535907 −0.267954 0.963432i \(-0.586347\pi\)
−0.267954 + 0.963432i \(0.586347\pi\)
\(548\) 0 0
\(549\) 376.000 + 651.251i 0.0292300 + 0.0506279i
\(550\) 0 0
\(551\) −7611.00 + 13182.6i −0.588456 + 1.01924i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −925.000 + 1602.15i −0.0707461 + 0.122536i
\(556\) 0 0
\(557\) −1284.00 2223.95i −0.0976747 0.169178i 0.813047 0.582198i \(-0.197807\pi\)
−0.910722 + 0.413020i \(0.864474\pi\)
\(558\) 0 0
\(559\) 782.000 0.0591683
\(560\) 0 0
\(561\) −9225.00 −0.694260
\(562\) 0 0
\(563\) 126.000 + 218.238i 0.00943209 + 0.0163369i 0.870703 0.491809i \(-0.163664\pi\)
−0.861271 + 0.508146i \(0.830331\pi\)
\(564\) 0 0
\(565\) −3255.00 + 5637.83i −0.242370 + 0.419797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6351.00 11000.3i 0.467922 0.810465i −0.531406 0.847117i \(-0.678336\pi\)
0.999328 + 0.0366522i \(0.0116694\pi\)
\(570\) 0 0
\(571\) 10790.0 + 18688.8i 0.790801 + 1.36971i 0.925471 + 0.378817i \(0.123669\pi\)
−0.134670 + 0.990890i \(0.542998\pi\)
\(572\) 0 0
\(573\) −17925.0 −1.30685
\(574\) 0 0
\(575\) 1350.00 0.0979111
\(576\) 0 0
\(577\) 10568.5 + 18305.2i 0.762517 + 1.32072i 0.941549 + 0.336875i \(0.109370\pi\)
−0.179032 + 0.983843i \(0.557297\pi\)
\(578\) 0 0
\(579\) −1430.00 + 2476.83i −0.102640 + 0.177778i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1350.00 2338.27i 0.0959027 0.166108i
\(584\) 0 0
\(585\) −85.0000 147.224i −0.00600738 0.0104051i
\(586\) 0 0
\(587\) 22104.0 1.55422 0.777112 0.629362i \(-0.216684\pi\)
0.777112 + 0.629362i \(0.216684\pi\)
\(588\) 0 0
\(589\) 18232.0 1.27544
\(590\) 0 0
\(591\) 8520.00 + 14757.1i 0.593005 + 1.02711i
\(592\) 0 0
\(593\) 11608.5 20106.5i 0.803885 1.39237i −0.113156 0.993577i \(-0.536096\pi\)
0.917041 0.398793i \(-0.130571\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9040.00 + 15657.7i −0.619736 + 1.07341i
\(598\) 0 0
\(599\) −7705.50 13346.3i −0.525606 0.910377i −0.999555 0.0298245i \(-0.990505\pi\)
0.473949 0.880552i \(-0.342828\pi\)
\(600\) 0 0
\(601\) 19210.0 1.30381 0.651907 0.758299i \(-0.273969\pi\)
0.651907 + 0.758299i \(0.273969\pi\)
\(602\) 0 0
\(603\) −712.000 −0.0480844
\(604\) 0 0
\(605\) 2765.00 + 4789.12i 0.185807 + 0.321827i
\(606\) 0 0
\(607\) 5702.50 9877.02i 0.381314 0.660454i −0.609937 0.792450i \(-0.708805\pi\)
0.991250 + 0.131996i \(0.0421385\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4003.50 + 6934.27i −0.265081 + 0.459133i
\(612\) 0 0
\(613\) 12131.0 + 21011.5i 0.799293 + 1.38442i 0.920077 + 0.391737i \(0.128126\pi\)
−0.120784 + 0.992679i \(0.538541\pi\)
\(614\) 0 0
\(615\) 11100.0 0.727797
\(616\) 0 0
\(617\) −22614.0 −1.47554 −0.737768 0.675055i \(-0.764120\pi\)
−0.737768 + 0.675055i \(0.764120\pi\)
\(618\) 0 0
\(619\) 223.000 + 386.247i 0.0144800 + 0.0250801i 0.873175 0.487408i \(-0.162057\pi\)
−0.858695 + 0.512488i \(0.828724\pi\)
\(620\) 0 0
\(621\) 3915.00 6780.98i 0.252985 0.438182i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 3225.00 + 5585.86i 0.205413 + 0.355786i
\(628\) 0 0
\(629\) −9102.00 −0.576980
\(630\) 0 0
\(631\) 2819.00 0.177849 0.0889244 0.996038i \(-0.471657\pi\)
0.0889244 + 0.996038i \(0.471657\pi\)
\(632\) 0 0
\(633\) −12222.5 21170.0i −0.767458 1.32928i
\(634\) 0 0
\(635\) −6560.00 + 11362.3i −0.409962 + 0.710074i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −48.0000 + 83.1384i −0.00297160 + 0.00514696i
\(640\) 0 0
\(641\) −2769.00 4796.05i −0.170622 0.295527i 0.768015 0.640432i \(-0.221244\pi\)
−0.938638 + 0.344905i \(0.887911\pi\)
\(642\) 0 0
\(643\) 2077.00 0.127386 0.0636928 0.997970i \(-0.479712\pi\)
0.0636928 + 0.997970i \(0.479712\pi\)
\(644\) 0 0
\(645\) −1150.00 −0.0702034
\(646\) 0 0
\(647\) 11244.0 + 19475.2i 0.683226 + 1.18338i 0.973991 + 0.226588i \(0.0727570\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(648\) 0 0
\(649\) 1080.00 1870.61i 0.0653216 0.113140i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −849.000 + 1470.51i −0.0508789 + 0.0881249i −0.890343 0.455290i \(-0.849536\pi\)
0.839464 + 0.543415i \(0.182869\pi\)
\(654\) 0 0
\(655\) 2115.00 + 3663.29i 0.126168 + 0.218529i
\(656\) 0 0
\(657\) 1636.00 0.0971483
\(658\) 0 0
\(659\) 2691.00 0.159069 0.0795345 0.996832i \(-0.474657\pi\)
0.0795345 + 0.996832i \(0.474657\pi\)
\(660\) 0 0
\(661\) −5648.00 9782.62i −0.332348 0.575643i 0.650624 0.759400i \(-0.274507\pi\)
−0.982972 + 0.183757i \(0.941174\pi\)
\(662\) 0 0
\(663\) −5227.50 + 9054.30i −0.306213 + 0.530377i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4779.00 8277.47i 0.277427 0.480517i
\(668\) 0 0
\(669\) −8072.50 13982.0i −0.466519 0.808034i
\(670\) 0 0
\(671\) 5640.00 0.324486
\(672\) 0 0
\(673\) −12316.0 −0.705419 −0.352709 0.935733i \(-0.614740\pi\)
−0.352709 + 0.935733i \(0.614740\pi\)
\(674\) 0 0
\(675\) 1812.50 + 3139.34i 0.103353 + 0.179012i
\(676\) 0 0
\(677\) 5896.50 10213.0i 0.334743 0.579792i −0.648693 0.761051i \(-0.724684\pi\)
0.983435 + 0.181259i \(0.0580172\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3037.50 5261.10i 0.170921 0.296044i
\(682\) 0 0
\(683\) −15948.0 27622.7i −0.893460 1.54752i −0.835699 0.549188i \(-0.814937\pi\)
−0.0577612 0.998330i \(-0.518396\pi\)
\(684\) 0 0
\(685\) 5220.00 0.291162
\(686\) 0 0
\(687\) −11020.0 −0.611993
\(688\) 0 0
\(689\) −1530.00 2650.04i −0.0845985 0.146529i
\(690\) 0 0
\(691\) −10346.0 + 17919.8i −0.569581 + 0.986543i 0.427026 + 0.904239i \(0.359561\pi\)
−0.996607 + 0.0823039i \(0.973772\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4865.00 8426.43i 0.265525 0.459903i
\(696\) 0 0
\(697\) 27306.0 + 47295.4i 1.48391 + 2.57022i
\(698\) 0 0
\(699\) 1080.00 0.0584397
\(700\) 0 0
\(701\) −28173.0 −1.51795 −0.758973 0.651123i \(-0.774298\pi\)
−0.758973 + 0.651123i \(0.774298\pi\)
\(702\) 0 0
\(703\) 3182.00 + 5511.39i 0.170713 + 0.295684i
\(704\) 0 0
\(705\) 5887.50 10197.4i 0.314519 0.544763i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5124.50 8875.89i 0.271445 0.470157i −0.697787 0.716305i \(-0.745832\pi\)
0.969232 + 0.246149i \(0.0791651\pi\)
\(710\) 0 0
\(711\) 89.0000 + 154.153i 0.00469446 + 0.00813104i
\(712\) 0 0
\(713\) −11448.0 −0.601306
\(714\) 0 0
\(715\) −1275.00 −0.0666885
\(716\) 0 0
\(717\) 13087.5 + 22668.2i 0.681676 + 1.18070i
\(718\) 0 0
\(719\) −14601.0 + 25289.7i −0.757337 + 1.31175i 0.186867 + 0.982385i \(0.440167\pi\)
−0.944204 + 0.329361i \(0.893167\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14855.0 25729.6i 0.764126 1.32351i
\(724\) 0 0
\(725\) 2212.50 + 3832.16i 0.113338 + 0.196308i
\(726\) 0 0
\(727\) 6856.00 0.349759 0.174880 0.984590i \(-0.444046\pi\)
0.174880 + 0.984590i \(0.444046\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 0 0
\(731\) −2829.00 4899.97i −0.143139 0.247923i
\(732\) 0 0
\(733\) 12062.5 20892.9i 0.607829 1.05279i −0.383769 0.923429i \(-0.625374\pi\)
0.991598 0.129361i \(-0.0412927\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2670.00 + 4624.58i −0.133447 + 0.231138i
\(738\) 0 0
\(739\) −11711.5 20284.9i −0.582970 1.00973i −0.995125 0.0986194i \(-0.968557\pi\)
0.412156 0.911113i \(-0.364776\pi\)
\(740\) 0 0
\(741\) 7310.00 0.362402
\(742\) 0 0
\(743\) −13572.0 −0.670132 −0.335066 0.942195i \(-0.608759\pi\)
−0.335066 + 0.942195i \(0.608759\pi\)
\(744\) 0 0
\(745\) 3915.00 + 6780.98i 0.192530 + 0.333471i
\(746\) 0 0
\(747\) 780.000 1351.00i 0.0382044 0.0661720i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8247.50 14285.1i 0.400740 0.694102i −0.593076 0.805147i \(-0.702086\pi\)
0.993815 + 0.111045i \(0.0354198\pi\)
\(752\) 0 0
\(753\) −2385.00 4130.94i −0.115424 0.199920i
\(754\) 0 0
\(755\) 6085.00 0.293319
\(756\) 0 0
\(757\) −22768.0 −1.09315 −0.546577 0.837409i \(-0.684069\pi\)
−0.546577 + 0.837409i \(0.684069\pi\)
\(758\) 0 0
\(759\) −2025.00 3507.40i −0.0968417 0.167735i
\(760\) 0 0
\(761\) 12135.0 21018.4i 0.578047 1.00121i −0.417657 0.908605i \(-0.637149\pi\)
0.995703 0.0926011i \(-0.0295181\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −615.000 + 1065.21i −0.0290658 + 0.0503435i
\(766\) 0 0
\(767\) −1224.00 2120.03i −0.0576220 0.0998042i
\(768\) 0 0
\(769\) 13378.0 0.627338 0.313669 0.949532i \(-0.398442\pi\)
0.313669 + 0.949532i \(0.398442\pi\)
\(770\) 0 0
\(771\) −17430.0 −0.814171
\(772\) 0 0
\(773\) 16636.5 + 28815.3i 0.774092 + 1.34077i 0.935303 + 0.353847i \(0.115127\pi\)
−0.161211 + 0.986920i \(0.551540\pi\)
\(774\) 0 0
\(775\) 2650.00 4589.93i 0.122827 0.212742i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 19092.0 33068.3i 0.878103 1.52092i
\(780\) 0 0
\(781\) 360.000 + 623.538i 0.0164940 + 0.0285684i
\(782\) 0 0
\(783\) 25665.0 1.17138
\(784\) 0 0
\(785\) −12430.0 −0.565154
\(786\) 0 0
\(787\) 19499.5 + 33774.1i 0.883205 + 1.52976i 0.847758 + 0.530384i \(0.177952\pi\)
0.0354471 + 0.999372i \(0.488714\pi\)
\(788\) 0 0
\(789\) 1695.00 2935.83i 0.0764811 0.132469i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3196.00 5535.63i 0.143119 0.247889i
\(794\) 0 0
\(795\) 2250.00 + 3897.11i 0.100376 + 0.173857i
\(796\) 0 0
\(797\) −9651.00 −0.428928 −0.214464 0.976732i \(-0.568801\pi\)
−0.214464 + 0.976732i \(0.568801\pi\)
\(798\) 0 0
\(799\) 57933.0 2.56511
\(800\) 0 0
\(801\) −1140.00 1974.54i −0.0502870 0.0870997i
\(802\) 0 0
\(803\) 6135.00 10626.1i 0.269613 0.466984i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8475.00 + 14679.1i −0.369683 + 0.640310i
\(808\) 0 0
\(809\) −8260.50 14307.6i −0.358991 0.621791i 0.628802 0.777566i \(-0.283546\pi\)
−0.987793 + 0.155775i \(0.950212\pi\)
\(810\) 0 0
\(811\) −44534.0 −1.92824 −0.964119 0.265472i \(-0.914472\pi\)
−0.964119 + 0.265472i \(0.914472\pi\)
\(812\) 0 0
\(813\) −2800.00 −0.120788
\(814\) 0 0
\(815\) 8905.00 + 15423.9i 0.382734 + 0.662915i
\(816\) 0 0
\(817\) −1978.00 + 3426.00i −0.0847019 + 0.146708i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4864.50 + 8425.56i −0.206787 + 0.358166i −0.950701 0.310110i \(-0.899634\pi\)
0.743914 + 0.668276i \(0.232967\pi\)
\(822\) 0 0
\(823\) 15974.0 + 27667.8i 0.676572 + 1.17186i 0.976007 + 0.217740i \(0.0698685\pi\)
−0.299435 + 0.954117i \(0.596798\pi\)
\(824\) 0 0
\(825\) 1875.00 0.0791262
\(826\) 0 0
\(827\) 1506.00 0.0633238 0.0316619 0.999499i \(-0.489920\pi\)
0.0316619 + 0.999499i \(0.489920\pi\)
\(828\) 0 0
\(829\) 3094.00 + 5358.97i 0.129625 + 0.224517i 0.923531 0.383523i \(-0.125289\pi\)
−0.793906 + 0.608040i \(0.791956\pi\)
\(830\) 0 0
\(831\) 19645.0 34026.1i 0.820069 1.42040i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3892.50 + 6742.01i −0.161324 + 0.279421i
\(836\) 0 0
\(837\) −15370.0 26621.6i −0.634725 1.09938i
\(838\) 0 0
\(839\) 27414.0 1.12805 0.564026 0.825757i \(-0.309252\pi\)
0.564026 + 0.825757i \(0.309252\pi\)
\(840\) 0 0
\(841\) 6940.00 0.284555
\(842\) 0 0
\(843\) −15427.5 26721.2i −0.630310 1.09173i
\(844\) 0 0
\(845\) 4770.00 8261.88i 0.194193 0.336352i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 10302.5 17844.5i 0.416467 0.721343i
\(850\) 0 0
\(851\) −1998.00 3460.64i −0.0804824 0.139400i
\(852\) 0 0
\(853\) −34478.0 −1.38394 −0.691972 0.721924i \(-0.743258\pi\)
−0.691972 + 0.721924i \(0.743258\pi\)
\(854\) 0 0
\(855\) 860.000 0.0343993
\(856\) 0 0
\(857\) 8553.00 + 14814.2i 0.340916 + 0.590484i 0.984603 0.174805i \(-0.0559295\pi\)
−0.643687 + 0.765289i \(0.722596\pi\)
\(858\) 0 0
\(859\) 6922.00 11989.3i 0.274942 0.476214i −0.695178 0.718838i \(-0.744675\pi\)
0.970121 + 0.242623i \(0.0780079\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 852.000 1475.71i 0.0336065 0.0582082i −0.848733 0.528822i \(-0.822634\pi\)
0.882339 + 0.470613i \(0.155967\pi\)
\(864\) 0 0
\(865\) −6172.50 10691.1i −0.242626 0.420240i
\(866\) 0 0
\(867\) 51080.0 2.00089
\(868\) 0 0
\(869\) 1335.00 0.0521137
\(870\) 0 0
\(871\) 3026.00 + 5241.19i 0.117718 + 0.203893i
\(872\) 0 0
\(873\) 169.000 292.717i 0.00655187 0.0113482i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8675.00 15025.5i 0.334018 0.578536i −0.649278 0.760552i \(-0.724929\pi\)
0.983296 + 0.182015i \(0.0582620\pi\)
\(878\) 0 0
\(879\) −22.5000 38.9711i −0.000863374 0.00149541i
\(880\) 0 0
\(881\) −13632.0 −0.521310 −0.260655 0.965432i \(-0.583938\pi\)
−0.260655 + 0.965432i \(0.583938\pi\)
\(882\) 0 0
\(883\) −7204.00 −0.274557 −0.137279 0.990532i \(-0.543836\pi\)
−0.137279 + 0.990532i \(0.543836\pi\)
\(884\) 0 0
\(885\) 1800.00 + 3117.69i 0.0683687 + 0.118418i
\(886\) 0 0
\(887\) 7356.00 12741.0i 0.278456 0.482300i −0.692545 0.721374i \(-0.743511\pi\)
0.971001 + 0.239075i \(0.0768441\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5032.50 8716.55i 0.189220 0.327739i
\(892\) 0 0
\(893\) −20253.0 35079.2i −0.758948 1.31454i
\(894\) 0 0
\(895\) −13260.0 −0.495232
\(896\) 0 0
\(897\) −4590.00 −0.170854
\(898\) 0 0
\(899\) −18762.0 32496.7i −0.696049 1.20559i
\(900\) 0 0
\(901\) −11070.0 + 19173.8i −0.409318 + 0.708959i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4990.00 + 8642.93i −0.183285 + 0.317459i
\(906\) 0 0
\(907\) −18823.0 32602.4i −0.689093 1.19354i −0.972132 0.234436i \(-0.924676\pi\)
0.283039 0.959109i \(-0.408658\pi\)
\(908\) 0 0
\(909\) −1476.00 −0.0538568
\(910\) 0 0
\(911\) 12552.0 0.456494 0.228247 0.973603i \(-0.426701\pi\)
0.228247 + 0.973603i \(0.426701\pi\)
\(912\) 0 0
\(913\) −5850.00 10132.5i −0.212056 0.367291i
\(914\) 0 0
\(915\) −4700.00 + 8140.64i −0.169811 + 0.294122i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 26445.5 45804.9i 0.949245 1.64414i 0.202226 0.979339i \(-0.435182\pi\)
0.747019 0.664802i \(-0.231484\pi\)
\(920\) 0 0
\(921\) −16217.5 28089.5i −0.580222 1.00497i
\(922\) 0 0
\(923\) 816.000 0.0290996
\(924\) 0 0
\(925\) 1850.00 0.0657596
\(926\) 0 0
\(927\) −851.000 1473.98i −0.0301516 0.0522241i
\(928\) 0 0
\(929\) −19110.0 + 33099.5i −0.674896 + 1.16895i 0.301603 + 0.953434i \(0.402478\pi\)
−0.976499 + 0.215521i \(0.930855\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 13515.0 23408.7i 0.474235 0.821399i
\(934\) 0 0
\(935\) 4612.50 + 7989.08i 0.161331 + 0.279434i
\(936\) 0 0
\(937\) 10897.0 0.379925 0.189962 0.981791i \(-0.439163\pi\)
0.189962 + 0.981791i \(0.439163\pi\)
\(938\) 0 0
\(939\) 6335.00 0.220165
\(940\) 0 0
\(941\) 384.000 + 665.108i 0.0133029 + 0.0230413i 0.872600 0.488435i \(-0.162432\pi\)
−0.859297 + 0.511476i \(0.829099\pi\)
\(942\) 0 0
\(943\) −11988.0 + 20763.8i −0.413980 + 0.717034i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22056.0 38202.1i 0.756836 1.31088i −0.187620 0.982242i \(-0.560077\pi\)
0.944456 0.328637i \(-0.106589\pi\)
\(948\) 0 0
\(949\) −6953.00 12042.9i −0.237833 0.411940i
\(950\) 0 0
\(951\) 17310.0 0.590237
\(952\) 0 0
\(953\) 24720.0 0.840251 0.420126 0.907466i \(-0.361986\pi\)
0.420126 + 0.907466i \(0.361986\pi\)
\(954\) 0 0
\(955\) 8962.50 + 15523.5i 0.303686 + 0.525999i
\(956\) 0 0
\(957\) 6637.50 11496.5i 0.224201 0.388327i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −7576.50 + 13122.9i −0.254322 + 0.440498i
\(962\) 0 0
\(963\) −894.000 1548.45i −0.0299156 0.0518154i
\(964\) 0 0
\(965\) 2860.00 0.0954059
\(966\) 0 0
\(967\) −5098.00 −0.169535 −0.0847676 0.996401i \(-0.527015\pi\)
−0.0847676 + 0.996401i \(0.527015\pi\)
\(968\) 0 0
\(969\) −26445.0 45804.1i −0.876714 1.51851i
\(970\) 0 0
\(971\) 16320.0 28267.1i 0.539376 0.934226i −0.459562 0.888146i \(-0.651994\pi\)
0.998938 0.0460803i \(-0.0146730\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1062.50 1840.30i 0.0348997 0.0604481i
\(976\) 0 0
\(977\) 29589.0 + 51249.7i 0.968921 + 1.67822i 0.698689 + 0.715425i \(0.253767\pi\)
0.270232 + 0.962795i \(0.412900\pi\)
\(978\) 0 0
\(979\) −17100.0 −0.558241
\(980\) 0 0
\(981\) −3322.00 −0.108118
\(982\) 0 0
\(983\) −25537.5 44232.2i −0.828606 1.43519i −0.899132 0.437678i \(-0.855801\pi\)
0.0705258 0.997510i \(-0.477532\pi\)
\(984\) 0 0
\(985\) 8520.00 14757.1i 0.275604 0.477360i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1242.00 2151.21i 0.0399326 0.0691652i
\(990\) 0 0
\(991\) 13268.0 + 22980.9i 0.425300 + 0.736641i 0.996448 0.0842060i \(-0.0268354\pi\)
−0.571149 + 0.820847i \(0.693502\pi\)
\(992\) 0 0
\(993\) 41020.0 1.31091
\(994\) 0 0
\(995\) 18080.0 0.576055
\(996\) 0 0
\(997\) 20435.5 + 35395.3i 0.649146 + 1.12435i 0.983327 + 0.181845i \(0.0582070\pi\)
−0.334181 + 0.942509i \(0.608460\pi\)
\(998\) 0 0
\(999\) 5365.00 9292.45i 0.169911 0.294294i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.4.i.c.961.1 2
7.2 even 3 980.4.a.m.1.1 1
7.3 odd 6 980.4.i.p.361.1 2
7.4 even 3 inner 980.4.i.c.361.1 2
7.5 odd 6 140.4.a.a.1.1 1
7.6 odd 2 980.4.i.p.961.1 2
21.5 even 6 1260.4.a.k.1.1 1
28.19 even 6 560.4.a.n.1.1 1
35.12 even 12 700.4.e.e.449.2 2
35.19 odd 6 700.4.a.k.1.1 1
35.33 even 12 700.4.e.e.449.1 2
56.5 odd 6 2240.4.a.bf.1.1 1
56.19 even 6 2240.4.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.4.a.a.1.1 1 7.5 odd 6
560.4.a.n.1.1 1 28.19 even 6
700.4.a.k.1.1 1 35.19 odd 6
700.4.e.e.449.1 2 35.33 even 12
700.4.e.e.449.2 2 35.12 even 12
980.4.a.m.1.1 1 7.2 even 3
980.4.i.c.361.1 2 7.4 even 3 inner
980.4.i.c.961.1 2 1.1 even 1 trivial
980.4.i.p.361.1 2 7.3 odd 6
980.4.i.p.961.1 2 7.6 odd 2
1260.4.a.k.1.1 1 21.5 even 6
2240.4.a.i.1.1 1 56.19 even 6
2240.4.a.bf.1.1 1 56.5 odd 6