Properties

Label 980.3.n
Level $980$
Weight $3$
Character orbit 980.n
Rep. character $\chi_{980}(129,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $5$
Sturm bound $504$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 980.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(504\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(980, [\chi])\).

Total New Old
Modular forms 720 80 640
Cusp forms 624 80 544
Eisenstein series 96 0 96

Trace form

\( 80 q - 3 q^{5} - 124 q^{9} + 6 q^{11} + 62 q^{15} + 48 q^{19} + 7 q^{25} - 180 q^{29} - 138 q^{31} - 62 q^{39} + 48 q^{45} + 248 q^{51} + 174 q^{59} + 390 q^{61} - 42 q^{65} + 88 q^{71} - 507 q^{75} - 208 q^{79}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
980.3.n.a 980.n 35.i $4$ $26.703$ \(\Q(\sqrt{-3}, \sqrt{-35})\) \(\Q(\sqrt{-35}) \) 140.3.h.a \(0\) \(-1\) \(-10\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+\beta _{3}q^{3}+5\beta _{1}q^{5}+(17\beta _{1}+\beta _{2}-\beta _{3})q^{9}+\cdots\)
980.3.n.b 980.n 35.i $4$ $26.703$ \(\Q(\sqrt{-3}, \sqrt{-35})\) \(\Q(\sqrt{-35}) \) 140.3.h.a \(0\) \(1\) \(10\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(1+\beta _{1}+\beta _{3})q^{3}-5\beta _{1}q^{5}+(18\beta _{1}+\cdots)q^{9}+\cdots\)
980.3.n.c 980.n 35.i $8$ $26.703$ 8.0.\(\cdots\).6 None 140.3.h.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{3}+(-\beta _{1}-2\beta _{4})q^{5}+7\beta _{2}q^{9}+\cdots\)
980.3.n.d 980.n 35.i $16$ $26.703$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 140.3.n.a \(0\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}-\beta _{10}q^{5}+(-2+2\beta _{3}+\beta _{8}+\cdots)q^{9}+\cdots\)
980.3.n.e 980.n 35.i $48$ $26.703$ None 980.3.h.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(980, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)