Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 720 | 80 | 640 |
Cusp forms | 624 | 80 | 544 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
980.3.n.a | $4$ | $26.703$ | \(\Q(\sqrt{-3}, \sqrt{-35})\) | \(\Q(\sqrt{-35}) \) | \(0\) | \(-1\) | \(-10\) | \(0\) | \(q+\beta _{3}q^{3}+5\beta _{1}q^{5}+(17\beta _{1}+\beta _{2}-\beta _{3})q^{9}+\cdots\) |
980.3.n.b | $4$ | $26.703$ | \(\Q(\sqrt{-3}, \sqrt{-35})\) | \(\Q(\sqrt{-35}) \) | \(0\) | \(1\) | \(10\) | \(0\) | \(q+(1+\beta _{1}+\beta _{3})q^{3}-5\beta _{1}q^{5}+(18\beta _{1}+\cdots)q^{9}+\cdots\) |
980.3.n.c | $8$ | $26.703$ | 8.0.\(\cdots\).6 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}+(-\beta _{1}-2\beta _{4})q^{5}+7\beta _{2}q^{9}+\cdots\) |
980.3.n.d | $16$ | $26.703$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{10}q^{5}+(-2+2\beta _{3}+\beta _{8}+\cdots)q^{9}+\cdots\) |
980.3.n.e | $48$ | $26.703$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(980, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)