Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(504\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 360 | 40 | 320 |
Cusp forms | 312 | 40 | 272 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
980.3.h.a | $16$ | $26.703$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}-\beta _{8}q^{5}+(2+\beta _{1})q^{9}+\beta _{2}q^{11}+\cdots\) |
980.3.h.b | $24$ | $26.703$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(980, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)