Properties

Label 980.3.h
Level $980$
Weight $3$
Character orbit 980.h
Rep. character $\chi_{980}(489,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $2$
Sturm bound $504$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 980.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(504\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(980, [\chi])\).

Total New Old
Modular forms 360 40 320
Cusp forms 312 40 272
Eisenstein series 48 0 48

Trace form

\( 40 q + 100 q^{9} - 24 q^{11} - 14 q^{15} - 46 q^{25} - 48 q^{29} + 320 q^{39} + 148 q^{51} - 48 q^{65} + 392 q^{71} - 236 q^{79} - 200 q^{81} - 190 q^{85} + 322 q^{95} - 228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
980.3.h.a 980.h 35.c $16$ $26.703$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 140.3.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}-\beta _{8}q^{5}+(2+\beta _{1})q^{9}+\beta _{2}q^{11}+\cdots\)
980.3.h.b 980.h 35.c $24$ $26.703$ None 980.3.h.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(980, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)