Defining parameters
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 368 | 160 | 208 |
Cusp forms | 304 | 160 | 144 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
980.2.o.a | $4$ | $7.825$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\) |
980.2.o.b | $4$ | $7.825$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\) |
980.2.o.c | $4$ | $7.825$ | \(\Q(\zeta_{12})\) | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+(1-\zeta_{12}^{3})q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\) |
980.2.o.d | $4$ | $7.825$ | \(\Q(\zeta_{12})\) | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+(1+\zeta_{12}^{3})q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\) |
980.2.o.e | $16$ | $7.825$ | 16.0.\(\cdots\).8 | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{4}-\beta _{5})q^{2}+(-\beta _{8}+\beta _{12}+\beta _{15})q^{3}+\cdots\) |
980.2.o.f | $32$ | $7.825$ | None | \(2\) | \(0\) | \(0\) | \(0\) | ||
980.2.o.g | $96$ | $7.825$ | None | \(-8\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)