Properties

Label 980.2.o
Level $980$
Weight $2$
Character orbit 980.o
Rep. character $\chi_{980}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $160$
Newform subspaces $7$
Sturm bound $336$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(336\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(980, [\chi])\).

Total New Old
Modular forms 368 160 208
Cusp forms 304 160 144
Eisenstein series 64 0 64

Trace form

\( 160 q - 4 q^{2} + 4 q^{4} + 8 q^{8} - 80 q^{9} + 30 q^{12} + 24 q^{16} - 10 q^{18} - 8 q^{22} - 36 q^{24} + 80 q^{25} - 30 q^{26} + 72 q^{29} - 4 q^{32} - 80 q^{36} - 24 q^{37} + 60 q^{38} + 18 q^{44} - 12 q^{45}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(980, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
980.2.o.a 980.o 28.f $4$ $7.825$ \(\Q(\zeta_{12})\) None 140.2.g.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\)
980.2.o.b 980.o 28.f $4$ $7.825$ \(\Q(\zeta_{12})\) None 140.2.g.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\)
980.2.o.c 980.o 28.f $4$ $7.825$ \(\Q(\zeta_{12})\) None 140.2.g.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{12}^{3})q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
980.2.o.d 980.o 28.f $4$ $7.825$ \(\Q(\zeta_{12})\) None 140.2.g.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{12}^{3})q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
980.2.o.e 980.o 28.f $16$ $7.825$ 16.0.\(\cdots\).8 None 140.2.g.c \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}-\beta _{5})q^{2}+(-\beta _{8}+\beta _{12}+\beta _{15})q^{3}+\cdots\)
980.2.o.f 980.o 28.f $32$ $7.825$ None 140.2.o.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
980.2.o.g 980.o 28.f $96$ $7.825$ None 980.2.g.b \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(980, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(980, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)