Properties

Label 975.4.a.bc.1.3
Level $975$
Weight $4$
Character 975.1
Self dual yes
Analytic conductor $57.527$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,4,Mod(1,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,3,-33,55,0,-9,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5268622556\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 3 x^{10} - 67 x^{9} + 177 x^{8} + 1527 x^{7} - 3289 x^{6} - 14195 x^{5} + 20777 x^{4} + \cdots - 5840 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.70833\) of defining polynomial
Character \(\chi\) \(=\) 975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70833 q^{2} -3.00000 q^{3} -0.664940 q^{4} +8.12499 q^{6} -5.41772 q^{7} +23.4675 q^{8} +9.00000 q^{9} +3.07004 q^{11} +1.99482 q^{12} +13.0000 q^{13} +14.6730 q^{14} -58.2383 q^{16} -107.736 q^{17} -24.3750 q^{18} +91.3112 q^{19} +16.2532 q^{21} -8.31469 q^{22} +140.680 q^{23} -70.4026 q^{24} -35.2083 q^{26} -27.0000 q^{27} +3.60246 q^{28} +205.961 q^{29} +36.4603 q^{31} -30.0115 q^{32} -9.21012 q^{33} +291.785 q^{34} -5.98446 q^{36} +29.7849 q^{37} -247.301 q^{38} -39.0000 q^{39} -230.912 q^{41} -44.0190 q^{42} -431.281 q^{43} -2.04139 q^{44} -381.008 q^{46} -471.533 q^{47} +174.715 q^{48} -313.648 q^{49} +323.209 q^{51} -8.64422 q^{52} -371.850 q^{53} +73.1250 q^{54} -127.141 q^{56} -273.934 q^{57} -557.810 q^{58} +461.053 q^{59} +729.260 q^{61} -98.7466 q^{62} -48.7595 q^{63} +547.188 q^{64} +24.9441 q^{66} -231.079 q^{67} +71.6381 q^{68} -422.040 q^{69} -169.865 q^{71} +211.208 q^{72} -147.889 q^{73} -80.6674 q^{74} -60.7165 q^{76} -16.6326 q^{77} +105.625 q^{78} -426.831 q^{79} +81.0000 q^{81} +625.386 q^{82} +500.300 q^{83} -10.8074 q^{84} +1168.05 q^{86} -617.883 q^{87} +72.0463 q^{88} -1359.33 q^{89} -70.4304 q^{91} -93.5438 q^{92} -109.381 q^{93} +1277.07 q^{94} +90.0346 q^{96} -1033.12 q^{97} +849.463 q^{98} +27.6304 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 3 q^{2} - 33 q^{3} + 55 q^{4} - 9 q^{6} - 20 q^{7} + 51 q^{8} + 99 q^{9} + 100 q^{11} - 165 q^{12} + 143 q^{13} + 150 q^{14} + 511 q^{16} + 56 q^{17} + 27 q^{18} + 44 q^{19} + 60 q^{21} - 262 q^{22}+ \cdots + 900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70833 −0.957540 −0.478770 0.877940i \(-0.658917\pi\)
−0.478770 + 0.877940i \(0.658917\pi\)
\(3\) −3.00000 −0.577350
\(4\) −0.664940 −0.0831175
\(5\) 0 0
\(6\) 8.12499 0.552836
\(7\) −5.41772 −0.292530 −0.146265 0.989245i \(-0.546725\pi\)
−0.146265 + 0.989245i \(0.546725\pi\)
\(8\) 23.4675 1.03713
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 3.07004 0.0841502 0.0420751 0.999114i \(-0.486603\pi\)
0.0420751 + 0.999114i \(0.486603\pi\)
\(12\) 1.99482 0.0479879
\(13\) 13.0000 0.277350
\(14\) 14.6730 0.280109
\(15\) 0 0
\(16\) −58.2383 −0.909974
\(17\) −107.736 −1.53705 −0.768526 0.639819i \(-0.779009\pi\)
−0.768526 + 0.639819i \(0.779009\pi\)
\(18\) −24.3750 −0.319180
\(19\) 91.3112 1.10254 0.551269 0.834327i \(-0.314144\pi\)
0.551269 + 0.834327i \(0.314144\pi\)
\(20\) 0 0
\(21\) 16.2532 0.168892
\(22\) −8.31469 −0.0805771
\(23\) 140.680 1.27538 0.637692 0.770291i \(-0.279889\pi\)
0.637692 + 0.770291i \(0.279889\pi\)
\(24\) −70.4026 −0.598786
\(25\) 0 0
\(26\) −35.2083 −0.265574
\(27\) −27.0000 −0.192450
\(28\) 3.60246 0.0243143
\(29\) 205.961 1.31883 0.659413 0.751780i \(-0.270805\pi\)
0.659413 + 0.751780i \(0.270805\pi\)
\(30\) 0 0
\(31\) 36.4603 0.211241 0.105620 0.994407i \(-0.466317\pi\)
0.105620 + 0.994407i \(0.466317\pi\)
\(32\) −30.0115 −0.165792
\(33\) −9.21012 −0.0485841
\(34\) 291.785 1.47179
\(35\) 0 0
\(36\) −5.98446 −0.0277058
\(37\) 29.7849 0.132341 0.0661704 0.997808i \(-0.478922\pi\)
0.0661704 + 0.997808i \(0.478922\pi\)
\(38\) −247.301 −1.05572
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) −230.912 −0.879570 −0.439785 0.898103i \(-0.644945\pi\)
−0.439785 + 0.898103i \(0.644945\pi\)
\(42\) −44.0190 −0.161721
\(43\) −431.281 −1.52953 −0.764765 0.644310i \(-0.777145\pi\)
−0.764765 + 0.644310i \(0.777145\pi\)
\(44\) −2.04139 −0.00699435
\(45\) 0 0
\(46\) −381.008 −1.22123
\(47\) −471.533 −1.46341 −0.731704 0.681623i \(-0.761275\pi\)
−0.731704 + 0.681623i \(0.761275\pi\)
\(48\) 174.715 0.525374
\(49\) −313.648 −0.914426
\(50\) 0 0
\(51\) 323.209 0.887417
\(52\) −8.64422 −0.0230526
\(53\) −371.850 −0.963726 −0.481863 0.876247i \(-0.660040\pi\)
−0.481863 + 0.876247i \(0.660040\pi\)
\(54\) 73.1250 0.184279
\(55\) 0 0
\(56\) −127.141 −0.303391
\(57\) −273.934 −0.636551
\(58\) −557.810 −1.26283
\(59\) 461.053 1.01736 0.508678 0.860957i \(-0.330134\pi\)
0.508678 + 0.860957i \(0.330134\pi\)
\(60\) 0 0
\(61\) 729.260 1.53069 0.765346 0.643619i \(-0.222568\pi\)
0.765346 + 0.643619i \(0.222568\pi\)
\(62\) −98.7466 −0.202271
\(63\) −48.7595 −0.0975099
\(64\) 547.188 1.06873
\(65\) 0 0
\(66\) 24.9441 0.0465212
\(67\) −231.079 −0.421356 −0.210678 0.977556i \(-0.567567\pi\)
−0.210678 + 0.977556i \(0.567567\pi\)
\(68\) 71.6381 0.127756
\(69\) −422.040 −0.736343
\(70\) 0 0
\(71\) −169.865 −0.283933 −0.141966 0.989871i \(-0.545342\pi\)
−0.141966 + 0.989871i \(0.545342\pi\)
\(72\) 211.208 0.345709
\(73\) −147.889 −0.237111 −0.118556 0.992947i \(-0.537826\pi\)
−0.118556 + 0.992947i \(0.537826\pi\)
\(74\) −80.6674 −0.126722
\(75\) 0 0
\(76\) −60.7165 −0.0916403
\(77\) −16.6326 −0.0246164
\(78\) 105.625 0.153329
\(79\) −426.831 −0.607876 −0.303938 0.952692i \(-0.598302\pi\)
−0.303938 + 0.952692i \(0.598302\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 625.386 0.842223
\(83\) 500.300 0.661627 0.330813 0.943696i \(-0.392677\pi\)
0.330813 + 0.943696i \(0.392677\pi\)
\(84\) −10.8074 −0.0140379
\(85\) 0 0
\(86\) 1168.05 1.46459
\(87\) −617.883 −0.761425
\(88\) 72.0463 0.0872745
\(89\) −1359.33 −1.61898 −0.809490 0.587134i \(-0.800256\pi\)
−0.809490 + 0.587134i \(0.800256\pi\)
\(90\) 0 0
\(91\) −70.4304 −0.0811331
\(92\) −93.5438 −0.106007
\(93\) −109.381 −0.121960
\(94\) 1277.07 1.40127
\(95\) 0 0
\(96\) 90.0346 0.0957200
\(97\) −1033.12 −1.08142 −0.540711 0.841209i \(-0.681845\pi\)
−0.540711 + 0.841209i \(0.681845\pi\)
\(98\) 849.463 0.875600
\(99\) 27.6304 0.0280501
\(100\) 0 0
\(101\) 1452.89 1.43137 0.715684 0.698424i \(-0.246115\pi\)
0.715684 + 0.698424i \(0.246115\pi\)
\(102\) −875.356 −0.849737
\(103\) 181.209 0.173350 0.0866749 0.996237i \(-0.472376\pi\)
0.0866749 + 0.996237i \(0.472376\pi\)
\(104\) 305.078 0.287648
\(105\) 0 0
\(106\) 1007.09 0.922806
\(107\) 1026.35 0.927300 0.463650 0.886019i \(-0.346540\pi\)
0.463650 + 0.886019i \(0.346540\pi\)
\(108\) 17.9534 0.0159960
\(109\) 1487.64 1.30725 0.653623 0.756821i \(-0.273248\pi\)
0.653623 + 0.756821i \(0.273248\pi\)
\(110\) 0 0
\(111\) −89.3547 −0.0764070
\(112\) 315.519 0.266194
\(113\) 63.9600 0.0532464 0.0266232 0.999646i \(-0.491525\pi\)
0.0266232 + 0.999646i \(0.491525\pi\)
\(114\) 741.903 0.609523
\(115\) 0 0
\(116\) −136.952 −0.109618
\(117\) 117.000 0.0924500
\(118\) −1248.68 −0.974158
\(119\) 583.685 0.449633
\(120\) 0 0
\(121\) −1321.57 −0.992919
\(122\) −1975.08 −1.46570
\(123\) 692.736 0.507820
\(124\) −24.2439 −0.0175578
\(125\) 0 0
\(126\) 132.057 0.0933696
\(127\) 1090.42 0.761883 0.380941 0.924599i \(-0.375600\pi\)
0.380941 + 0.924599i \(0.375600\pi\)
\(128\) −1241.87 −0.857556
\(129\) 1293.84 0.883074
\(130\) 0 0
\(131\) 1577.19 1.05191 0.525954 0.850513i \(-0.323708\pi\)
0.525954 + 0.850513i \(0.323708\pi\)
\(132\) 6.12418 0.00403819
\(133\) −494.699 −0.322525
\(134\) 625.840 0.403465
\(135\) 0 0
\(136\) −2528.30 −1.59412
\(137\) 200.368 0.124953 0.0624766 0.998046i \(-0.480100\pi\)
0.0624766 + 0.998046i \(0.480100\pi\)
\(138\) 1143.03 0.705078
\(139\) −503.261 −0.307094 −0.153547 0.988141i \(-0.549070\pi\)
−0.153547 + 0.988141i \(0.549070\pi\)
\(140\) 0 0
\(141\) 1414.60 0.844899
\(142\) 460.050 0.271877
\(143\) 39.9105 0.0233391
\(144\) −524.145 −0.303325
\(145\) 0 0
\(146\) 400.533 0.227044
\(147\) 940.945 0.527944
\(148\) −19.8052 −0.0109998
\(149\) 3103.97 1.70662 0.853312 0.521400i \(-0.174590\pi\)
0.853312 + 0.521400i \(0.174590\pi\)
\(150\) 0 0
\(151\) −1638.87 −0.883241 −0.441621 0.897202i \(-0.645596\pi\)
−0.441621 + 0.897202i \(0.645596\pi\)
\(152\) 2142.85 1.14347
\(153\) −969.626 −0.512351
\(154\) 45.0467 0.0235712
\(155\) 0 0
\(156\) 25.9327 0.0133095
\(157\) −986.717 −0.501583 −0.250792 0.968041i \(-0.580691\pi\)
−0.250792 + 0.968041i \(0.580691\pi\)
\(158\) 1156.00 0.582065
\(159\) 1115.55 0.556408
\(160\) 0 0
\(161\) −762.166 −0.373088
\(162\) −219.375 −0.106393
\(163\) −164.386 −0.0789922 −0.0394961 0.999220i \(-0.512575\pi\)
−0.0394961 + 0.999220i \(0.512575\pi\)
\(164\) 153.543 0.0731077
\(165\) 0 0
\(166\) −1354.98 −0.633534
\(167\) 3722.38 1.72483 0.862414 0.506203i \(-0.168951\pi\)
0.862414 + 0.506203i \(0.168951\pi\)
\(168\) 381.422 0.175163
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 821.801 0.367513
\(172\) 286.776 0.127131
\(173\) 3048.06 1.33954 0.669769 0.742570i \(-0.266393\pi\)
0.669769 + 0.742570i \(0.266393\pi\)
\(174\) 1673.43 0.729095
\(175\) 0 0
\(176\) −178.794 −0.0765745
\(177\) −1383.16 −0.587370
\(178\) 3681.53 1.55024
\(179\) 3867.45 1.61490 0.807449 0.589938i \(-0.200848\pi\)
0.807449 + 0.589938i \(0.200848\pi\)
\(180\) 0 0
\(181\) −1241.98 −0.510032 −0.255016 0.966937i \(-0.582081\pi\)
−0.255016 + 0.966937i \(0.582081\pi\)
\(182\) 190.749 0.0776882
\(183\) −2187.78 −0.883745
\(184\) 3301.41 1.32274
\(185\) 0 0
\(186\) 296.240 0.116781
\(187\) −330.755 −0.129343
\(188\) 313.541 0.121635
\(189\) 146.279 0.0562974
\(190\) 0 0
\(191\) 4548.65 1.72319 0.861593 0.507600i \(-0.169467\pi\)
0.861593 + 0.507600i \(0.169467\pi\)
\(192\) −1641.56 −0.617029
\(193\) 1560.79 0.582115 0.291057 0.956706i \(-0.405993\pi\)
0.291057 + 0.956706i \(0.405993\pi\)
\(194\) 2798.04 1.03550
\(195\) 0 0
\(196\) 208.557 0.0760048
\(197\) 34.2839 0.0123991 0.00619956 0.999981i \(-0.498027\pi\)
0.00619956 + 0.999981i \(0.498027\pi\)
\(198\) −74.8322 −0.0268590
\(199\) −4550.33 −1.62093 −0.810463 0.585790i \(-0.800785\pi\)
−0.810463 + 0.585790i \(0.800785\pi\)
\(200\) 0 0
\(201\) 693.238 0.243270
\(202\) −3934.91 −1.37059
\(203\) −1115.84 −0.385796
\(204\) −214.914 −0.0737599
\(205\) 0 0
\(206\) −490.773 −0.165989
\(207\) 1266.12 0.425128
\(208\) −757.098 −0.252381
\(209\) 280.329 0.0927788
\(210\) 0 0
\(211\) −7.91124 −0.00258119 −0.00129060 0.999999i \(-0.500411\pi\)
−0.00129060 + 0.999999i \(0.500411\pi\)
\(212\) 247.258 0.0801025
\(213\) 509.594 0.163929
\(214\) −2779.70 −0.887926
\(215\) 0 0
\(216\) −633.623 −0.199595
\(217\) −197.532 −0.0617942
\(218\) −4029.01 −1.25174
\(219\) 443.668 0.136896
\(220\) 0 0
\(221\) −1400.57 −0.426301
\(222\) 242.002 0.0731627
\(223\) 4124.30 1.23849 0.619245 0.785197i \(-0.287439\pi\)
0.619245 + 0.785197i \(0.287439\pi\)
\(224\) 162.594 0.0484990
\(225\) 0 0
\(226\) −173.225 −0.0509856
\(227\) −1241.38 −0.362967 −0.181483 0.983394i \(-0.558090\pi\)
−0.181483 + 0.983394i \(0.558090\pi\)
\(228\) 182.150 0.0529085
\(229\) 94.8108 0.0273593 0.0136796 0.999906i \(-0.495645\pi\)
0.0136796 + 0.999906i \(0.495645\pi\)
\(230\) 0 0
\(231\) 49.8979 0.0142123
\(232\) 4833.39 1.36779
\(233\) 1419.38 0.399083 0.199542 0.979889i \(-0.436055\pi\)
0.199542 + 0.979889i \(0.436055\pi\)
\(234\) −316.875 −0.0885246
\(235\) 0 0
\(236\) −306.573 −0.0845600
\(237\) 1280.49 0.350957
\(238\) −1580.81 −0.430542
\(239\) −3166.49 −0.857001 −0.428501 0.903542i \(-0.640958\pi\)
−0.428501 + 0.903542i \(0.640958\pi\)
\(240\) 0 0
\(241\) 3386.63 0.905194 0.452597 0.891715i \(-0.350498\pi\)
0.452597 + 0.891715i \(0.350498\pi\)
\(242\) 3579.26 0.950759
\(243\) −243.000 −0.0641500
\(244\) −484.914 −0.127227
\(245\) 0 0
\(246\) −1876.16 −0.486258
\(247\) 1187.05 0.305789
\(248\) 855.633 0.219084
\(249\) −1500.90 −0.381991
\(250\) 0 0
\(251\) 426.852 0.107341 0.0536706 0.998559i \(-0.482908\pi\)
0.0536706 + 0.998559i \(0.482908\pi\)
\(252\) 32.4222 0.00810478
\(253\) 431.894 0.107324
\(254\) −2953.22 −0.729533
\(255\) 0 0
\(256\) −1014.10 −0.247582
\(257\) 5944.49 1.44283 0.721415 0.692503i \(-0.243492\pi\)
0.721415 + 0.692503i \(0.243492\pi\)
\(258\) −3504.16 −0.845579
\(259\) −161.366 −0.0387136
\(260\) 0 0
\(261\) 1853.65 0.439609
\(262\) −4271.56 −1.00724
\(263\) −140.731 −0.0329957 −0.0164978 0.999864i \(-0.505252\pi\)
−0.0164978 + 0.999864i \(0.505252\pi\)
\(264\) −216.139 −0.0503880
\(265\) 0 0
\(266\) 1339.81 0.308831
\(267\) 4078.00 0.934718
\(268\) 153.654 0.0350221
\(269\) 478.062 0.108357 0.0541783 0.998531i \(-0.482746\pi\)
0.0541783 + 0.998531i \(0.482746\pi\)
\(270\) 0 0
\(271\) 3095.39 0.693843 0.346921 0.937894i \(-0.387227\pi\)
0.346921 + 0.937894i \(0.387227\pi\)
\(272\) 6274.38 1.39868
\(273\) 211.291 0.0468422
\(274\) −542.663 −0.119648
\(275\) 0 0
\(276\) 280.631 0.0612030
\(277\) −1439.02 −0.312138 −0.156069 0.987746i \(-0.549882\pi\)
−0.156069 + 0.987746i \(0.549882\pi\)
\(278\) 1363.00 0.294054
\(279\) 328.143 0.0704136
\(280\) 0 0
\(281\) −7641.31 −1.62221 −0.811107 0.584897i \(-0.801135\pi\)
−0.811107 + 0.584897i \(0.801135\pi\)
\(282\) −3831.20 −0.809024
\(283\) −2139.12 −0.449319 −0.224660 0.974437i \(-0.572127\pi\)
−0.224660 + 0.974437i \(0.572127\pi\)
\(284\) 112.950 0.0235998
\(285\) 0 0
\(286\) −108.091 −0.0223481
\(287\) 1251.02 0.257300
\(288\) −270.104 −0.0552639
\(289\) 6694.10 1.36253
\(290\) 0 0
\(291\) 3099.37 0.624359
\(292\) 98.3375 0.0197081
\(293\) 8705.33 1.73574 0.867869 0.496794i \(-0.165489\pi\)
0.867869 + 0.496794i \(0.165489\pi\)
\(294\) −2548.39 −0.505528
\(295\) 0 0
\(296\) 698.978 0.137254
\(297\) −82.8911 −0.0161947
\(298\) −8406.58 −1.63416
\(299\) 1828.84 0.353728
\(300\) 0 0
\(301\) 2336.56 0.447433
\(302\) 4438.61 0.845738
\(303\) −4358.68 −0.826401
\(304\) −5317.82 −1.00328
\(305\) 0 0
\(306\) 2626.07 0.490596
\(307\) −7898.09 −1.46830 −0.734150 0.678988i \(-0.762419\pi\)
−0.734150 + 0.678988i \(0.762419\pi\)
\(308\) 11.0597 0.00204606
\(309\) −543.626 −0.100084
\(310\) 0 0
\(311\) 4176.48 0.761501 0.380750 0.924678i \(-0.375666\pi\)
0.380750 + 0.924678i \(0.375666\pi\)
\(312\) −915.234 −0.166073
\(313\) 5630.55 1.01680 0.508399 0.861122i \(-0.330238\pi\)
0.508399 + 0.861122i \(0.330238\pi\)
\(314\) 2672.36 0.480286
\(315\) 0 0
\(316\) 283.817 0.0505251
\(317\) 5820.53 1.03127 0.515637 0.856807i \(-0.327555\pi\)
0.515637 + 0.856807i \(0.327555\pi\)
\(318\) −3021.28 −0.532782
\(319\) 632.308 0.110980
\(320\) 0 0
\(321\) −3079.05 −0.535377
\(322\) 2064.20 0.357246
\(323\) −9837.53 −1.69466
\(324\) −53.8601 −0.00923528
\(325\) 0 0
\(326\) 445.213 0.0756382
\(327\) −4462.91 −0.754738
\(328\) −5418.93 −0.912227
\(329\) 2554.64 0.428090
\(330\) 0 0
\(331\) 958.521 0.159169 0.0795847 0.996828i \(-0.474641\pi\)
0.0795847 + 0.996828i \(0.474641\pi\)
\(332\) −332.669 −0.0549928
\(333\) 268.064 0.0441136
\(334\) −10081.4 −1.65159
\(335\) 0 0
\(336\) −946.558 −0.153687
\(337\) −12029.2 −1.94442 −0.972211 0.234105i \(-0.924784\pi\)
−0.972211 + 0.234105i \(0.924784\pi\)
\(338\) −457.708 −0.0736569
\(339\) −191.880 −0.0307418
\(340\) 0 0
\(341\) 111.935 0.0177759
\(342\) −2225.71 −0.351908
\(343\) 3557.54 0.560026
\(344\) −10121.1 −1.58632
\(345\) 0 0
\(346\) −8255.17 −1.28266
\(347\) −9167.14 −1.41821 −0.709103 0.705105i \(-0.750900\pi\)
−0.709103 + 0.705105i \(0.750900\pi\)
\(348\) 410.855 0.0632878
\(349\) −1439.35 −0.220765 −0.110382 0.993889i \(-0.535208\pi\)
−0.110382 + 0.993889i \(0.535208\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) −92.1366 −0.0139514
\(353\) 3422.82 0.516086 0.258043 0.966133i \(-0.416922\pi\)
0.258043 + 0.966133i \(0.416922\pi\)
\(354\) 3746.05 0.562431
\(355\) 0 0
\(356\) 903.876 0.134566
\(357\) −1751.06 −0.259596
\(358\) −10474.3 −1.54633
\(359\) −8285.14 −1.21803 −0.609015 0.793159i \(-0.708435\pi\)
−0.609015 + 0.793159i \(0.708435\pi\)
\(360\) 0 0
\(361\) 1478.74 0.215592
\(362\) 3363.70 0.488376
\(363\) 3964.72 0.573262
\(364\) 46.8320 0.00674358
\(365\) 0 0
\(366\) 5925.24 0.846221
\(367\) 5545.58 0.788765 0.394383 0.918946i \(-0.370958\pi\)
0.394383 + 0.918946i \(0.370958\pi\)
\(368\) −8192.97 −1.16057
\(369\) −2078.21 −0.293190
\(370\) 0 0
\(371\) 2014.58 0.281918
\(372\) 72.7317 0.0101370
\(373\) 12633.8 1.75376 0.876878 0.480712i \(-0.159622\pi\)
0.876878 + 0.480712i \(0.159622\pi\)
\(374\) 895.793 0.123851
\(375\) 0 0
\(376\) −11065.7 −1.51774
\(377\) 2677.49 0.365777
\(378\) −396.171 −0.0539070
\(379\) 828.732 0.112319 0.0561597 0.998422i \(-0.482114\pi\)
0.0561597 + 0.998422i \(0.482114\pi\)
\(380\) 0 0
\(381\) −3271.26 −0.439873
\(382\) −12319.2 −1.65002
\(383\) 4358.99 0.581551 0.290775 0.956791i \(-0.406087\pi\)
0.290775 + 0.956791i \(0.406087\pi\)
\(384\) 3725.62 0.495110
\(385\) 0 0
\(386\) −4227.14 −0.557398
\(387\) −3881.53 −0.509843
\(388\) 686.966 0.0898850
\(389\) 7099.72 0.925372 0.462686 0.886522i \(-0.346886\pi\)
0.462686 + 0.886522i \(0.346886\pi\)
\(390\) 0 0
\(391\) −15156.3 −1.96033
\(392\) −7360.55 −0.948377
\(393\) −4731.58 −0.607320
\(394\) −92.8522 −0.0118726
\(395\) 0 0
\(396\) −18.3725 −0.00233145
\(397\) 3687.56 0.466180 0.233090 0.972455i \(-0.425116\pi\)
0.233090 + 0.972455i \(0.425116\pi\)
\(398\) 12323.8 1.55210
\(399\) 1484.10 0.186210
\(400\) 0 0
\(401\) −4891.98 −0.609211 −0.304606 0.952479i \(-0.598525\pi\)
−0.304606 + 0.952479i \(0.598525\pi\)
\(402\) −1877.52 −0.232941
\(403\) 473.984 0.0585876
\(404\) −966.086 −0.118972
\(405\) 0 0
\(406\) 3022.06 0.369415
\(407\) 91.4408 0.0111365
\(408\) 7584.91 0.920365
\(409\) 12871.0 1.55607 0.778033 0.628223i \(-0.216218\pi\)
0.778033 + 0.628223i \(0.216218\pi\)
\(410\) 0 0
\(411\) −601.104 −0.0721418
\(412\) −120.493 −0.0144084
\(413\) −2497.86 −0.297607
\(414\) −3429.08 −0.407077
\(415\) 0 0
\(416\) −390.150 −0.0459824
\(417\) 1509.78 0.177301
\(418\) −759.224 −0.0888394
\(419\) −13348.5 −1.55637 −0.778183 0.628038i \(-0.783858\pi\)
−0.778183 + 0.628038i \(0.783858\pi\)
\(420\) 0 0
\(421\) 12034.2 1.39314 0.696571 0.717488i \(-0.254708\pi\)
0.696571 + 0.717488i \(0.254708\pi\)
\(422\) 21.4263 0.00247160
\(423\) −4243.80 −0.487802
\(424\) −8726.39 −0.999508
\(425\) 0 0
\(426\) −1380.15 −0.156968
\(427\) −3950.93 −0.447773
\(428\) −682.462 −0.0770748
\(429\) −119.732 −0.0134748
\(430\) 0 0
\(431\) 7224.57 0.807413 0.403707 0.914888i \(-0.367722\pi\)
0.403707 + 0.914888i \(0.367722\pi\)
\(432\) 1572.44 0.175125
\(433\) 4808.44 0.533669 0.266835 0.963742i \(-0.414022\pi\)
0.266835 + 0.963742i \(0.414022\pi\)
\(434\) 534.982 0.0591704
\(435\) 0 0
\(436\) −989.189 −0.108655
\(437\) 12845.7 1.40616
\(438\) −1201.60 −0.131084
\(439\) −813.739 −0.0884684 −0.0442342 0.999021i \(-0.514085\pi\)
−0.0442342 + 0.999021i \(0.514085\pi\)
\(440\) 0 0
\(441\) −2822.83 −0.304809
\(442\) 3793.21 0.408201
\(443\) −3538.13 −0.379462 −0.189731 0.981836i \(-0.560762\pi\)
−0.189731 + 0.981836i \(0.560762\pi\)
\(444\) 59.4155 0.00635076
\(445\) 0 0
\(446\) −11170.0 −1.18590
\(447\) −9311.91 −0.985320
\(448\) −2964.51 −0.312634
\(449\) −2525.20 −0.265415 −0.132708 0.991155i \(-0.542367\pi\)
−0.132708 + 0.991155i \(0.542367\pi\)
\(450\) 0 0
\(451\) −708.909 −0.0740160
\(452\) −42.5295 −0.00442571
\(453\) 4916.61 0.509939
\(454\) 3362.08 0.347555
\(455\) 0 0
\(456\) −6428.55 −0.660185
\(457\) −6979.12 −0.714375 −0.357188 0.934033i \(-0.616264\pi\)
−0.357188 + 0.934033i \(0.616264\pi\)
\(458\) −256.779 −0.0261976
\(459\) 2908.88 0.295806
\(460\) 0 0
\(461\) 13807.6 1.39498 0.697489 0.716595i \(-0.254301\pi\)
0.697489 + 0.716595i \(0.254301\pi\)
\(462\) −135.140 −0.0136088
\(463\) −5081.40 −0.510049 −0.255024 0.966935i \(-0.582083\pi\)
−0.255024 + 0.966935i \(0.582083\pi\)
\(464\) −11994.8 −1.20010
\(465\) 0 0
\(466\) −3844.14 −0.382138
\(467\) 6741.20 0.667978 0.333989 0.942577i \(-0.391605\pi\)
0.333989 + 0.942577i \(0.391605\pi\)
\(468\) −77.7980 −0.00768422
\(469\) 1251.92 0.123259
\(470\) 0 0
\(471\) 2960.15 0.289589
\(472\) 10819.8 1.05513
\(473\) −1324.05 −0.128710
\(474\) −3468.00 −0.336056
\(475\) 0 0
\(476\) −388.116 −0.0373724
\(477\) −3346.65 −0.321242
\(478\) 8575.91 0.820613
\(479\) 3261.59 0.311119 0.155559 0.987827i \(-0.450282\pi\)
0.155559 + 0.987827i \(0.450282\pi\)
\(480\) 0 0
\(481\) 387.204 0.0367047
\(482\) −9172.11 −0.866760
\(483\) 2286.50 0.215402
\(484\) 878.768 0.0825289
\(485\) 0 0
\(486\) 658.125 0.0614262
\(487\) −6121.95 −0.569634 −0.284817 0.958582i \(-0.591933\pi\)
−0.284817 + 0.958582i \(0.591933\pi\)
\(488\) 17113.9 1.58752
\(489\) 493.159 0.0456062
\(490\) 0 0
\(491\) −13314.3 −1.22376 −0.611880 0.790951i \(-0.709586\pi\)
−0.611880 + 0.790951i \(0.709586\pi\)
\(492\) −460.628 −0.0422087
\(493\) −22189.5 −2.02711
\(494\) −3214.91 −0.292805
\(495\) 0 0
\(496\) −2123.39 −0.192224
\(497\) 920.280 0.0830587
\(498\) 4064.93 0.365771
\(499\) −15727.4 −1.41093 −0.705467 0.708743i \(-0.749263\pi\)
−0.705467 + 0.708743i \(0.749263\pi\)
\(500\) 0 0
\(501\) −11167.1 −0.995830
\(502\) −1156.06 −0.102784
\(503\) 13039.0 1.15583 0.577913 0.816098i \(-0.303867\pi\)
0.577913 + 0.816098i \(0.303867\pi\)
\(504\) −1144.27 −0.101130
\(505\) 0 0
\(506\) −1169.71 −0.102767
\(507\) −507.000 −0.0444116
\(508\) −725.064 −0.0633258
\(509\) −6419.60 −0.559025 −0.279513 0.960142i \(-0.590173\pi\)
−0.279513 + 0.960142i \(0.590173\pi\)
\(510\) 0 0
\(511\) 801.223 0.0693621
\(512\) 12681.5 1.09463
\(513\) −2465.40 −0.212184
\(514\) −16099.7 −1.38157
\(515\) 0 0
\(516\) −860.329 −0.0733989
\(517\) −1447.63 −0.123146
\(518\) 437.034 0.0370698
\(519\) −9144.19 −0.773382
\(520\) 0 0
\(521\) −10256.4 −0.862460 −0.431230 0.902242i \(-0.641920\pi\)
−0.431230 + 0.902242i \(0.641920\pi\)
\(522\) −5020.29 −0.420943
\(523\) −16477.9 −1.37768 −0.688839 0.724914i \(-0.741880\pi\)
−0.688839 + 0.724914i \(0.741880\pi\)
\(524\) −1048.74 −0.0874320
\(525\) 0 0
\(526\) 381.147 0.0315947
\(527\) −3928.10 −0.324688
\(528\) 536.382 0.0442103
\(529\) 7623.89 0.626604
\(530\) 0 0
\(531\) 4149.48 0.339118
\(532\) 328.945 0.0268075
\(533\) −3001.85 −0.243949
\(534\) −11044.6 −0.895030
\(535\) 0 0
\(536\) −5422.86 −0.437000
\(537\) −11602.3 −0.932362
\(538\) −1294.75 −0.103756
\(539\) −962.913 −0.0769491
\(540\) 0 0
\(541\) 4990.81 0.396621 0.198310 0.980139i \(-0.436455\pi\)
0.198310 + 0.980139i \(0.436455\pi\)
\(542\) −8383.33 −0.664382
\(543\) 3725.95 0.294467
\(544\) 3233.33 0.254831
\(545\) 0 0
\(546\) −572.247 −0.0448533
\(547\) −1666.16 −0.130237 −0.0651187 0.997878i \(-0.520743\pi\)
−0.0651187 + 0.997878i \(0.520743\pi\)
\(548\) −133.233 −0.0103858
\(549\) 6563.34 0.510231
\(550\) 0 0
\(551\) 18806.5 1.45406
\(552\) −9904.24 −0.763682
\(553\) 2312.45 0.177822
\(554\) 3897.34 0.298885
\(555\) 0 0
\(556\) 334.638 0.0255249
\(557\) 19693.7 1.49811 0.749057 0.662506i \(-0.230507\pi\)
0.749057 + 0.662506i \(0.230507\pi\)
\(558\) −888.719 −0.0674238
\(559\) −5606.66 −0.424215
\(560\) 0 0
\(561\) 992.264 0.0746763
\(562\) 20695.2 1.55334
\(563\) 17759.0 1.32940 0.664700 0.747110i \(-0.268559\pi\)
0.664700 + 0.747110i \(0.268559\pi\)
\(564\) −940.623 −0.0702259
\(565\) 0 0
\(566\) 5793.44 0.430241
\(567\) −438.836 −0.0325033
\(568\) −3986.30 −0.294475
\(569\) 3979.03 0.293163 0.146581 0.989199i \(-0.453173\pi\)
0.146581 + 0.989199i \(0.453173\pi\)
\(570\) 0 0
\(571\) 25536.4 1.87156 0.935782 0.352578i \(-0.114695\pi\)
0.935782 + 0.352578i \(0.114695\pi\)
\(572\) −26.5381 −0.00193988
\(573\) −13645.9 −0.994882
\(574\) −3388.17 −0.246375
\(575\) 0 0
\(576\) 4924.69 0.356242
\(577\) −2840.80 −0.204964 −0.102482 0.994735i \(-0.532678\pi\)
−0.102482 + 0.994735i \(0.532678\pi\)
\(578\) −18129.8 −1.30467
\(579\) −4682.37 −0.336084
\(580\) 0 0
\(581\) −2710.49 −0.193546
\(582\) −8394.13 −0.597848
\(583\) −1141.59 −0.0810977
\(584\) −3470.60 −0.245915
\(585\) 0 0
\(586\) −23576.9 −1.66204
\(587\) 25276.9 1.77732 0.888661 0.458565i \(-0.151636\pi\)
0.888661 + 0.458565i \(0.151636\pi\)
\(588\) −625.672 −0.0438814
\(589\) 3329.23 0.232901
\(590\) 0 0
\(591\) −102.852 −0.00715863
\(592\) −1734.62 −0.120427
\(593\) −7804.98 −0.540492 −0.270246 0.962791i \(-0.587105\pi\)
−0.270246 + 0.962791i \(0.587105\pi\)
\(594\) 224.497 0.0155071
\(595\) 0 0
\(596\) −2063.95 −0.141850
\(597\) 13651.0 0.935842
\(598\) −4953.11 −0.338708
\(599\) −25470.2 −1.73737 −0.868684 0.495367i \(-0.835034\pi\)
−0.868684 + 0.495367i \(0.835034\pi\)
\(600\) 0 0
\(601\) 24252.1 1.64603 0.823014 0.568021i \(-0.192291\pi\)
0.823014 + 0.568021i \(0.192291\pi\)
\(602\) −6328.19 −0.428435
\(603\) −2079.71 −0.140452
\(604\) 1089.75 0.0734128
\(605\) 0 0
\(606\) 11804.7 0.791312
\(607\) −2614.50 −0.174826 −0.0874128 0.996172i \(-0.527860\pi\)
−0.0874128 + 0.996172i \(0.527860\pi\)
\(608\) −2740.39 −0.182792
\(609\) 3347.52 0.222739
\(610\) 0 0
\(611\) −6129.93 −0.405876
\(612\) 644.743 0.0425853
\(613\) 17271.2 1.13797 0.568987 0.822347i \(-0.307336\pi\)
0.568987 + 0.822347i \(0.307336\pi\)
\(614\) 21390.6 1.40595
\(615\) 0 0
\(616\) −390.327 −0.0255304
\(617\) −5488.99 −0.358150 −0.179075 0.983835i \(-0.557310\pi\)
−0.179075 + 0.983835i \(0.557310\pi\)
\(618\) 1472.32 0.0958340
\(619\) −1624.78 −0.105502 −0.0527509 0.998608i \(-0.516799\pi\)
−0.0527509 + 0.998608i \(0.516799\pi\)
\(620\) 0 0
\(621\) −3798.36 −0.245448
\(622\) −11311.3 −0.729167
\(623\) 7364.50 0.473600
\(624\) 2271.30 0.145712
\(625\) 0 0
\(626\) −15249.4 −0.973624
\(627\) −840.988 −0.0535659
\(628\) 656.108 0.0416904
\(629\) −3208.91 −0.203415
\(630\) 0 0
\(631\) 6502.32 0.410227 0.205114 0.978738i \(-0.434244\pi\)
0.205114 + 0.978738i \(0.434244\pi\)
\(632\) −10016.7 −0.630445
\(633\) 23.7337 0.00149025
\(634\) −15763.9 −0.987485
\(635\) 0 0
\(636\) −741.773 −0.0462472
\(637\) −4077.43 −0.253616
\(638\) −1712.50 −0.106267
\(639\) −1528.78 −0.0946442
\(640\) 0 0
\(641\) 3787.91 0.233406 0.116703 0.993167i \(-0.462767\pi\)
0.116703 + 0.993167i \(0.462767\pi\)
\(642\) 8339.09 0.512644
\(643\) −13088.1 −0.802710 −0.401355 0.915922i \(-0.631461\pi\)
−0.401355 + 0.915922i \(0.631461\pi\)
\(644\) 506.795 0.0310101
\(645\) 0 0
\(646\) 26643.3 1.62270
\(647\) 25582.4 1.55448 0.777239 0.629205i \(-0.216619\pi\)
0.777239 + 0.629205i \(0.216619\pi\)
\(648\) 1900.87 0.115236
\(649\) 1415.45 0.0856106
\(650\) 0 0
\(651\) 592.595 0.0356769
\(652\) 109.307 0.00656564
\(653\) 26811.4 1.60675 0.803376 0.595472i \(-0.203035\pi\)
0.803376 + 0.595472i \(0.203035\pi\)
\(654\) 12087.0 0.722692
\(655\) 0 0
\(656\) 13447.9 0.800386
\(657\) −1331.00 −0.0790371
\(658\) −6918.80 −0.409913
\(659\) 30688.3 1.81403 0.907014 0.421100i \(-0.138356\pi\)
0.907014 + 0.421100i \(0.138356\pi\)
\(660\) 0 0
\(661\) −7558.15 −0.444747 −0.222374 0.974962i \(-0.571380\pi\)
−0.222374 + 0.974962i \(0.571380\pi\)
\(662\) −2595.99 −0.152411
\(663\) 4201.71 0.246125
\(664\) 11740.8 0.686192
\(665\) 0 0
\(666\) −726.006 −0.0422405
\(667\) 28974.6 1.68201
\(668\) −2475.16 −0.143363
\(669\) −12372.9 −0.715043
\(670\) 0 0
\(671\) 2238.86 0.128808
\(672\) −487.783 −0.0280009
\(673\) −26209.2 −1.50118 −0.750589 0.660770i \(-0.770230\pi\)
−0.750589 + 0.660770i \(0.770230\pi\)
\(674\) 32579.0 1.86186
\(675\) 0 0
\(676\) −112.375 −0.00639365
\(677\) −8585.42 −0.487392 −0.243696 0.969852i \(-0.578360\pi\)
−0.243696 + 0.969852i \(0.578360\pi\)
\(678\) 519.674 0.0294365
\(679\) 5597.18 0.316348
\(680\) 0 0
\(681\) 3724.15 0.209559
\(682\) −303.156 −0.0170212
\(683\) −10219.8 −0.572548 −0.286274 0.958148i \(-0.592417\pi\)
−0.286274 + 0.958148i \(0.592417\pi\)
\(684\) −546.449 −0.0305468
\(685\) 0 0
\(686\) −9635.00 −0.536248
\(687\) −284.433 −0.0157959
\(688\) 25117.1 1.39183
\(689\) −4834.05 −0.267290
\(690\) 0 0
\(691\) −12144.3 −0.668583 −0.334292 0.942470i \(-0.608497\pi\)
−0.334292 + 0.942470i \(0.608497\pi\)
\(692\) −2026.78 −0.111339
\(693\) −149.694 −0.00820547
\(694\) 24827.6 1.35799
\(695\) 0 0
\(696\) −14500.2 −0.789695
\(697\) 24877.6 1.35194
\(698\) 3898.25 0.211391
\(699\) −4258.13 −0.230411
\(700\) 0 0
\(701\) −18328.1 −0.987505 −0.493753 0.869602i \(-0.664375\pi\)
−0.493753 + 0.869602i \(0.664375\pi\)
\(702\) 950.624 0.0511097
\(703\) 2719.70 0.145911
\(704\) 1679.89 0.0899335
\(705\) 0 0
\(706\) −9270.14 −0.494173
\(707\) −7871.37 −0.418718
\(708\) 919.718 0.0488208
\(709\) −8350.50 −0.442327 −0.221163 0.975237i \(-0.570985\pi\)
−0.221163 + 0.975237i \(0.570985\pi\)
\(710\) 0 0
\(711\) −3841.48 −0.202625
\(712\) −31900.2 −1.67909
\(713\) 5129.24 0.269413
\(714\) 4742.44 0.248573
\(715\) 0 0
\(716\) −2571.62 −0.134226
\(717\) 9499.47 0.494790
\(718\) 22438.9 1.16631
\(719\) −4163.60 −0.215961 −0.107980 0.994153i \(-0.534438\pi\)
−0.107980 + 0.994153i \(0.534438\pi\)
\(720\) 0 0
\(721\) −981.739 −0.0507100
\(722\) −4004.93 −0.206438
\(723\) −10159.9 −0.522614
\(724\) 825.844 0.0423926
\(725\) 0 0
\(726\) −10737.8 −0.548921
\(727\) −3086.79 −0.157473 −0.0787365 0.996895i \(-0.525089\pi\)
−0.0787365 + 0.996895i \(0.525089\pi\)
\(728\) −1652.83 −0.0841454
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 46464.6 2.35097
\(732\) 1454.74 0.0734547
\(733\) 19694.1 0.992387 0.496194 0.868212i \(-0.334731\pi\)
0.496194 + 0.868212i \(0.334731\pi\)
\(734\) −15019.3 −0.755274
\(735\) 0 0
\(736\) −4222.02 −0.211448
\(737\) −709.423 −0.0354572
\(738\) 5628.47 0.280741
\(739\) 30767.8 1.53155 0.765773 0.643111i \(-0.222357\pi\)
0.765773 + 0.643111i \(0.222357\pi\)
\(740\) 0 0
\(741\) −3561.14 −0.176548
\(742\) −5456.15 −0.269948
\(743\) −18338.7 −0.905494 −0.452747 0.891639i \(-0.649556\pi\)
−0.452747 + 0.891639i \(0.649556\pi\)
\(744\) −2566.90 −0.126488
\(745\) 0 0
\(746\) −34216.4 −1.67929
\(747\) 4502.70 0.220542
\(748\) 219.932 0.0107507
\(749\) −5560.49 −0.271263
\(750\) 0 0
\(751\) 28944.7 1.40640 0.703199 0.710993i \(-0.251754\pi\)
0.703199 + 0.710993i \(0.251754\pi\)
\(752\) 27461.3 1.33166
\(753\) −1280.56 −0.0619735
\(754\) −7251.54 −0.350246
\(755\) 0 0
\(756\) −97.2665 −0.00467930
\(757\) 19155.4 0.919704 0.459852 0.887996i \(-0.347903\pi\)
0.459852 + 0.887996i \(0.347903\pi\)
\(758\) −2244.48 −0.107550
\(759\) −1295.68 −0.0619634
\(760\) 0 0
\(761\) −7064.25 −0.336503 −0.168252 0.985744i \(-0.553812\pi\)
−0.168252 + 0.985744i \(0.553812\pi\)
\(762\) 8859.66 0.421196
\(763\) −8059.61 −0.382408
\(764\) −3024.58 −0.143227
\(765\) 0 0
\(766\) −11805.6 −0.556858
\(767\) 5993.69 0.282164
\(768\) 3042.29 0.142942
\(769\) 31907.6 1.49625 0.748126 0.663556i \(-0.230954\pi\)
0.748126 + 0.663556i \(0.230954\pi\)
\(770\) 0 0
\(771\) −17833.5 −0.833018
\(772\) −1037.83 −0.0483839
\(773\) −4714.82 −0.219379 −0.109690 0.993966i \(-0.534986\pi\)
−0.109690 + 0.993966i \(0.534986\pi\)
\(774\) 10512.5 0.488195
\(775\) 0 0
\(776\) −24244.9 −1.12157
\(777\) 484.099 0.0223513
\(778\) −19228.4 −0.886081
\(779\) −21084.9 −0.969760
\(780\) 0 0
\(781\) −521.491 −0.0238930
\(782\) 41048.4 1.87709
\(783\) −5560.94 −0.253808
\(784\) 18266.4 0.832104
\(785\) 0 0
\(786\) 12814.7 0.581533
\(787\) −13924.7 −0.630701 −0.315351 0.948975i \(-0.602122\pi\)
−0.315351 + 0.948975i \(0.602122\pi\)
\(788\) −22.7967 −0.00103058
\(789\) 422.194 0.0190501
\(790\) 0 0
\(791\) −346.517 −0.0155762
\(792\) 648.416 0.0290915
\(793\) 9480.38 0.424538
\(794\) −9987.14 −0.446386
\(795\) 0 0
\(796\) 3025.70 0.134727
\(797\) −3504.66 −0.155761 −0.0778805 0.996963i \(-0.524815\pi\)
−0.0778805 + 0.996963i \(0.524815\pi\)
\(798\) −4019.43 −0.178304
\(799\) 50801.2 2.24933
\(800\) 0 0
\(801\) −12234.0 −0.539660
\(802\) 13249.1 0.583344
\(803\) −454.026 −0.0199530
\(804\) −460.962 −0.0202200
\(805\) 0 0
\(806\) −1283.71 −0.0561000
\(807\) −1434.19 −0.0625597
\(808\) 34095.8 1.48451
\(809\) 34408.4 1.49534 0.747672 0.664068i \(-0.231172\pi\)
0.747672 + 0.664068i \(0.231172\pi\)
\(810\) 0 0
\(811\) 43517.1 1.88421 0.942104 0.335320i \(-0.108844\pi\)
0.942104 + 0.335320i \(0.108844\pi\)
\(812\) 741.966 0.0320664
\(813\) −9286.16 −0.400590
\(814\) −247.652 −0.0106636
\(815\) 0 0
\(816\) −18823.1 −0.807527
\(817\) −39380.8 −1.68637
\(818\) −34859.0 −1.49000
\(819\) −633.874 −0.0270444
\(820\) 0 0
\(821\) 22906.2 0.973728 0.486864 0.873478i \(-0.338141\pi\)
0.486864 + 0.873478i \(0.338141\pi\)
\(822\) 1627.99 0.0690787
\(823\) −19227.0 −0.814351 −0.407175 0.913350i \(-0.633486\pi\)
−0.407175 + 0.913350i \(0.633486\pi\)
\(824\) 4252.52 0.179786
\(825\) 0 0
\(826\) 6765.03 0.284970
\(827\) 11679.2 0.491082 0.245541 0.969386i \(-0.421034\pi\)
0.245541 + 0.969386i \(0.421034\pi\)
\(828\) −841.894 −0.0353356
\(829\) 6818.05 0.285646 0.142823 0.989748i \(-0.454382\pi\)
0.142823 + 0.989748i \(0.454382\pi\)
\(830\) 0 0
\(831\) 4317.06 0.180213
\(832\) 7113.44 0.296411
\(833\) 33791.3 1.40552
\(834\) −4088.99 −0.169772
\(835\) 0 0
\(836\) −186.402 −0.00771155
\(837\) −984.428 −0.0406533
\(838\) 36152.2 1.49028
\(839\) −9262.57 −0.381143 −0.190572 0.981673i \(-0.561034\pi\)
−0.190572 + 0.981673i \(0.561034\pi\)
\(840\) 0 0
\(841\) 18030.9 0.739304
\(842\) −32592.7 −1.33399
\(843\) 22923.9 0.936586
\(844\) 5.26050 0.000214542 0
\(845\) 0 0
\(846\) 11493.6 0.467090
\(847\) 7159.93 0.290458
\(848\) 21655.9 0.876966
\(849\) 6417.35 0.259415
\(850\) 0 0
\(851\) 4190.14 0.168785
\(852\) −338.849 −0.0136253
\(853\) 33963.4 1.36329 0.681644 0.731684i \(-0.261265\pi\)
0.681644 + 0.731684i \(0.261265\pi\)
\(854\) 10700.4 0.428760
\(855\) 0 0
\(856\) 24085.9 0.961729
\(857\) −28317.8 −1.12872 −0.564362 0.825527i \(-0.690878\pi\)
−0.564362 + 0.825527i \(0.690878\pi\)
\(858\) 324.273 0.0129027
\(859\) 5332.22 0.211796 0.105898 0.994377i \(-0.466228\pi\)
0.105898 + 0.994377i \(0.466228\pi\)
\(860\) 0 0
\(861\) −3753.05 −0.148552
\(862\) −19566.5 −0.773130
\(863\) −14812.3 −0.584261 −0.292131 0.956378i \(-0.594364\pi\)
−0.292131 + 0.956378i \(0.594364\pi\)
\(864\) 810.311 0.0319067
\(865\) 0 0
\(866\) −13022.8 −0.511009
\(867\) −20082.3 −0.786656
\(868\) 131.347 0.00513618
\(869\) −1310.39 −0.0511529
\(870\) 0 0
\(871\) −3004.03 −0.116863
\(872\) 34911.2 1.35578
\(873\) −9298.12 −0.360474
\(874\) −34790.3 −1.34645
\(875\) 0 0
\(876\) −295.013 −0.0113785
\(877\) −33819.1 −1.30216 −0.651078 0.759011i \(-0.725683\pi\)
−0.651078 + 0.759011i \(0.725683\pi\)
\(878\) 2203.87 0.0847120
\(879\) −26116.0 −1.00213
\(880\) 0 0
\(881\) −7929.69 −0.303244 −0.151622 0.988439i \(-0.548450\pi\)
−0.151622 + 0.988439i \(0.548450\pi\)
\(882\) 7645.17 0.291867
\(883\) −5420.80 −0.206596 −0.103298 0.994650i \(-0.532940\pi\)
−0.103298 + 0.994650i \(0.532940\pi\)
\(884\) 931.296 0.0354331
\(885\) 0 0
\(886\) 9582.43 0.363350
\(887\) −32323.1 −1.22357 −0.611784 0.791025i \(-0.709548\pi\)
−0.611784 + 0.791025i \(0.709548\pi\)
\(888\) −2096.93 −0.0792438
\(889\) −5907.60 −0.222873
\(890\) 0 0
\(891\) 248.673 0.00935002
\(892\) −2742.41 −0.102940
\(893\) −43056.3 −1.61346
\(894\) 25219.7 0.943483
\(895\) 0 0
\(896\) 6728.13 0.250861
\(897\) −5486.52 −0.204225
\(898\) 6839.08 0.254146
\(899\) 7509.39 0.278590
\(900\) 0 0
\(901\) 40061.7 1.48130
\(902\) 1919.96 0.0708733
\(903\) −7009.69 −0.258325
\(904\) 1500.98 0.0552234
\(905\) 0 0
\(906\) −13315.8 −0.488287
\(907\) −7275.07 −0.266334 −0.133167 0.991094i \(-0.542515\pi\)
−0.133167 + 0.991094i \(0.542515\pi\)
\(908\) 825.445 0.0301689
\(909\) 13076.0 0.477123
\(910\) 0 0
\(911\) −9811.78 −0.356837 −0.178419 0.983955i \(-0.557098\pi\)
−0.178419 + 0.983955i \(0.557098\pi\)
\(912\) 15953.4 0.579245
\(913\) 1535.94 0.0556760
\(914\) 18901.8 0.684043
\(915\) 0 0
\(916\) −63.0435 −0.00227404
\(917\) −8544.80 −0.307714
\(918\) −7878.21 −0.283246
\(919\) −34026.6 −1.22137 −0.610683 0.791875i \(-0.709105\pi\)
−0.610683 + 0.791875i \(0.709105\pi\)
\(920\) 0 0
\(921\) 23694.3 0.847723
\(922\) −37395.6 −1.33575
\(923\) −2208.24 −0.0787488
\(924\) −33.1791 −0.00118129
\(925\) 0 0
\(926\) 13762.1 0.488392
\(927\) 1630.88 0.0577833
\(928\) −6181.20 −0.218651
\(929\) 52275.9 1.84620 0.923098 0.384565i \(-0.125648\pi\)
0.923098 + 0.384565i \(0.125648\pi\)
\(930\) 0 0
\(931\) −28639.6 −1.00819
\(932\) −943.800 −0.0331708
\(933\) −12529.5 −0.439653
\(934\) −18257.4 −0.639616
\(935\) 0 0
\(936\) 2745.70 0.0958825
\(937\) 2069.73 0.0721613 0.0360807 0.999349i \(-0.488513\pi\)
0.0360807 + 0.999349i \(0.488513\pi\)
\(938\) −3390.63 −0.118025
\(939\) −16891.7 −0.587048
\(940\) 0 0
\(941\) 37728.9 1.30704 0.653522 0.756908i \(-0.273291\pi\)
0.653522 + 0.756908i \(0.273291\pi\)
\(942\) −8017.07 −0.277293
\(943\) −32484.7 −1.12179
\(944\) −26851.0 −0.925767
\(945\) 0 0
\(946\) 3585.97 0.123245
\(947\) 33141.5 1.13723 0.568614 0.822604i \(-0.307480\pi\)
0.568614 + 0.822604i \(0.307480\pi\)
\(948\) −851.450 −0.0291707
\(949\) −1922.56 −0.0657629
\(950\) 0 0
\(951\) −17461.6 −0.595406
\(952\) 13697.7 0.466327
\(953\) −17146.0 −0.582807 −0.291403 0.956600i \(-0.594122\pi\)
−0.291403 + 0.956600i \(0.594122\pi\)
\(954\) 9063.83 0.307602
\(955\) 0 0
\(956\) 2105.53 0.0712318
\(957\) −1896.92 −0.0640741
\(958\) −8833.47 −0.297909
\(959\) −1085.54 −0.0365525
\(960\) 0 0
\(961\) −28461.6 −0.955377
\(962\) −1048.68 −0.0351462
\(963\) 9237.16 0.309100
\(964\) −2251.90 −0.0752375
\(965\) 0 0
\(966\) −6192.60 −0.206256
\(967\) 26129.9 0.868957 0.434478 0.900682i \(-0.356933\pi\)
0.434478 + 0.900682i \(0.356933\pi\)
\(968\) −31014.1 −1.02978
\(969\) 29512.6 0.978412
\(970\) 0 0
\(971\) −4062.76 −0.134274 −0.0671371 0.997744i \(-0.521386\pi\)
−0.0671371 + 0.997744i \(0.521386\pi\)
\(972\) 161.580 0.00533199
\(973\) 2726.53 0.0898340
\(974\) 16580.3 0.545447
\(975\) 0 0
\(976\) −42470.9 −1.39289
\(977\) 11364.6 0.372146 0.186073 0.982536i \(-0.440424\pi\)
0.186073 + 0.982536i \(0.440424\pi\)
\(978\) −1335.64 −0.0436697
\(979\) −4173.21 −0.136237
\(980\) 0 0
\(981\) 13388.7 0.435748
\(982\) 36059.5 1.17180
\(983\) 23502.7 0.762585 0.381293 0.924454i \(-0.375479\pi\)
0.381293 + 0.924454i \(0.375479\pi\)
\(984\) 16256.8 0.526675
\(985\) 0 0
\(986\) 60096.4 1.94103
\(987\) −7663.91 −0.247158
\(988\) −789.315 −0.0254164
\(989\) −60672.7 −1.95074
\(990\) 0 0
\(991\) 15653.1 0.501752 0.250876 0.968019i \(-0.419281\pi\)
0.250876 + 0.968019i \(0.419281\pi\)
\(992\) −1094.23 −0.0350220
\(993\) −2875.56 −0.0918965
\(994\) −2492.42 −0.0795320
\(995\) 0 0
\(996\) 998.008 0.0317501
\(997\) 12714.3 0.403876 0.201938 0.979398i \(-0.435276\pi\)
0.201938 + 0.979398i \(0.435276\pi\)
\(998\) 42595.1 1.35103
\(999\) −804.192 −0.0254690
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.4.a.bc.1.3 11
5.2 odd 4 195.4.c.c.79.7 22
5.3 odd 4 195.4.c.c.79.16 yes 22
5.4 even 2 975.4.a.bb.1.9 11
15.2 even 4 585.4.c.e.469.16 22
15.8 even 4 585.4.c.e.469.7 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.4.c.c.79.7 22 5.2 odd 4
195.4.c.c.79.16 yes 22 5.3 odd 4
585.4.c.e.469.7 22 15.8 even 4
585.4.c.e.469.16 22 15.2 even 4
975.4.a.bb.1.9 11 5.4 even 2
975.4.a.bc.1.3 11 1.1 even 1 trivial