Properties

Label 975.2.bo.h.626.8
Level $975$
Weight $2$
Character 975.626
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(176,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.176"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,24,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 626.8
Character \(\chi\) \(=\) 975.626
Dual form 975.2.bo.h.176.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.335598 + 1.25247i) q^{2} +(-0.518148 + 1.65273i) q^{3} +(0.276000 + 0.159349i) q^{4} +(-1.89610 - 1.20362i) q^{6} +(2.20132 - 0.589843i) q^{7} +(-2.12594 + 2.12594i) q^{8} +(-2.46304 - 1.71272i) q^{9} +(2.74441 + 0.735363i) q^{11} +(-0.406369 + 0.373587i) q^{12} +(-2.40830 + 2.68330i) q^{13} +2.95504i q^{14} +(-1.63052 - 2.82414i) q^{16} +(-2.27079 + 3.93313i) q^{17} +(2.97172 - 2.51010i) q^{18} +(-0.775797 - 2.89531i) q^{19} +(-0.165760 + 3.94382i) q^{21} +(-1.84204 + 3.19050i) q^{22} +(-0.223746 - 0.387540i) q^{23} +(-2.41206 - 4.61517i) q^{24} +(-2.55253 - 3.91682i) q^{26} +(4.10689 - 3.18331i) q^{27} +(0.701555 + 0.187981i) q^{28} +(-4.98037 + 2.87542i) q^{29} +(-4.62601 + 4.62601i) q^{31} +(-1.72384 + 0.461902i) q^{32} +(-2.63737 + 4.15475i) q^{33} +(-4.16405 - 4.16405i) q^{34} +(-0.406880 - 0.865193i) q^{36} +(-2.75740 + 10.2908i) q^{37} +3.88664 q^{38} +(-3.18693 - 5.37061i) q^{39} +(-0.217322 + 0.811058i) q^{41} +(-4.88389 - 1.53115i) q^{42} +(4.12924 + 2.38402i) q^{43} +(0.640278 + 0.640278i) q^{44} +(0.560470 - 0.150177i) q^{46} +(3.06335 - 3.06335i) q^{47} +(5.51240 - 1.23149i) q^{48} +(-1.56426 + 0.903128i) q^{49} +(-5.32380 - 5.79096i) q^{51} +(-1.09227 + 0.356833i) q^{52} -8.28713i q^{53} +(2.60873 + 6.21206i) q^{54} +(-3.42592 + 5.93387i) q^{56} +(5.18715 + 0.218017i) q^{57} +(-1.92997 - 7.20275i) q^{58} +(1.67660 + 6.25715i) q^{59} +(5.66303 - 9.80865i) q^{61} +(-4.24145 - 7.34641i) q^{62} +(-6.43220 - 2.31744i) q^{63} -8.83615i q^{64} +(-4.31860 - 4.69755i) q^{66} +(-8.96003 - 2.40083i) q^{67} +(-1.25348 + 0.723695i) q^{68} +(0.756433 - 0.168989i) q^{69} +(12.8138 - 3.43344i) q^{71} +(8.87745 - 1.59515i) q^{72} +(1.56653 + 1.56653i) q^{73} +(-11.9635 - 6.90712i) q^{74} +(0.247244 - 0.922728i) q^{76} +6.47509 q^{77} +(7.79605 - 2.18916i) q^{78} +9.74173 q^{79} +(3.13318 + 8.43701i) q^{81} +(-0.942892 - 0.544379i) q^{82} +(-0.856250 - 0.856250i) q^{83} +(-0.674192 + 1.06208i) q^{84} +(-4.37167 + 4.37167i) q^{86} +(-2.17173 - 9.72112i) q^{87} +(-7.39781 + 4.27113i) q^{88} +(1.64453 + 0.440650i) q^{89} +(-3.71871 + 7.32734i) q^{91} -0.142614i q^{92} +(-5.24860 - 10.0425i) q^{93} +(2.80869 + 4.86480i) q^{94} +(0.129806 - 3.08838i) q^{96} +(-2.62855 - 9.80988i) q^{97} +(-0.606176 - 2.26228i) q^{98} +(-5.50014 - 6.51164i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 24 q^{4} + 4 q^{9} - 16 q^{21} + 28 q^{24} - 40 q^{31} + 32 q^{34} - 60 q^{36} + 4 q^{39} - 128 q^{46} - 60 q^{54} - 48 q^{61} - 8 q^{66} - 72 q^{69} - 80 q^{76} + 80 q^{79} + 48 q^{81} + 132 q^{84}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.335598 + 1.25247i −0.237304 + 0.885629i 0.739793 + 0.672834i \(0.234923\pi\)
−0.977097 + 0.212795i \(0.931743\pi\)
\(3\) −0.518148 + 1.65273i −0.299153 + 0.954205i
\(4\) 0.276000 + 0.159349i 0.138000 + 0.0796743i
\(5\) 0 0
\(6\) −1.89610 1.20362i −0.774082 0.491375i
\(7\) 2.20132 0.589843i 0.832022 0.222940i 0.182427 0.983219i \(-0.441605\pi\)
0.649596 + 0.760280i \(0.274938\pi\)
\(8\) −2.12594 + 2.12594i −0.751635 + 0.751635i
\(9\) −2.46304 1.71272i −0.821015 0.570907i
\(10\) 0 0
\(11\) 2.74441 + 0.735363i 0.827472 + 0.221720i 0.647610 0.761972i \(-0.275768\pi\)
0.179861 + 0.983692i \(0.442435\pi\)
\(12\) −0.406369 + 0.373587i −0.117309 + 0.107845i
\(13\) −2.40830 + 2.68330i −0.667941 + 0.744214i
\(14\) 2.95504i 0.789767i
\(15\) 0 0
\(16\) −1.63052 2.82414i −0.407630 0.706035i
\(17\) −2.27079 + 3.93313i −0.550748 + 0.953924i 0.447473 + 0.894298i \(0.352324\pi\)
−0.998221 + 0.0596262i \(0.981009\pi\)
\(18\) 2.97172 2.51010i 0.700441 0.591636i
\(19\) −0.775797 2.89531i −0.177980 0.664230i −0.996025 0.0890759i \(-0.971609\pi\)
0.818045 0.575154i \(-0.195058\pi\)
\(20\) 0 0
\(21\) −0.165760 + 3.94382i −0.0361718 + 0.860613i
\(22\) −1.84204 + 3.19050i −0.392724 + 0.680218i
\(23\) −0.223746 0.387540i −0.0466543 0.0808076i 0.841755 0.539859i \(-0.181523\pi\)
−0.888410 + 0.459052i \(0.848189\pi\)
\(24\) −2.41206 4.61517i −0.492360 0.942068i
\(25\) 0 0
\(26\) −2.55253 3.91682i −0.500593 0.768152i
\(27\) 4.10689 3.18331i 0.790371 0.612628i
\(28\) 0.701555 + 0.187981i 0.132582 + 0.0355251i
\(29\) −4.98037 + 2.87542i −0.924832 + 0.533952i −0.885173 0.465261i \(-0.845960\pi\)
−0.0396587 + 0.999213i \(0.512627\pi\)
\(30\) 0 0
\(31\) −4.62601 + 4.62601i −0.830856 + 0.830856i −0.987634 0.156778i \(-0.949889\pi\)
0.156778 + 0.987634i \(0.449889\pi\)
\(32\) −1.72384 + 0.461902i −0.304735 + 0.0816535i
\(33\) −2.63737 + 4.15475i −0.459107 + 0.723249i
\(34\) −4.16405 4.16405i −0.714128 0.714128i
\(35\) 0 0
\(36\) −0.406880 0.865193i −0.0678134 0.144199i
\(37\) −2.75740 + 10.2908i −0.453315 + 1.69179i 0.239682 + 0.970852i \(0.422957\pi\)
−0.692996 + 0.720941i \(0.743710\pi\)
\(38\) 3.88664 0.630497
\(39\) −3.18693 5.37061i −0.510317 0.859987i
\(40\) 0 0
\(41\) −0.217322 + 0.811058i −0.0339401 + 0.126666i −0.980817 0.194929i \(-0.937552\pi\)
0.946877 + 0.321595i \(0.104219\pi\)
\(42\) −4.88389 1.53115i −0.753600 0.236261i
\(43\) 4.12924 + 2.38402i 0.629703 + 0.363559i 0.780637 0.624985i \(-0.214895\pi\)
−0.150934 + 0.988544i \(0.548228\pi\)
\(44\) 0.640278 + 0.640278i 0.0965256 + 0.0965256i
\(45\) 0 0
\(46\) 0.560470 0.150177i 0.0826368 0.0221425i
\(47\) 3.06335 3.06335i 0.446835 0.446835i −0.447466 0.894301i \(-0.647673\pi\)
0.894301 + 0.447466i \(0.147673\pi\)
\(48\) 5.51240 1.23149i 0.795646 0.177750i
\(49\) −1.56426 + 0.903128i −0.223466 + 0.129018i
\(50\) 0 0
\(51\) −5.32380 5.79096i −0.745481 0.810896i
\(52\) −1.09227 + 0.356833i −0.151470 + 0.0494838i
\(53\) 8.28713i 1.13832i −0.822225 0.569162i \(-0.807268\pi\)
0.822225 0.569162i \(-0.192732\pi\)
\(54\) 2.60873 + 6.21206i 0.355003 + 0.845354i
\(55\) 0 0
\(56\) −3.42592 + 5.93387i −0.457808 + 0.792946i
\(57\) 5.18715 + 0.218017i 0.687055 + 0.0288771i
\(58\) −1.92997 7.20275i −0.253417 0.945767i
\(59\) 1.67660 + 6.25715i 0.218275 + 0.814612i 0.984988 + 0.172622i \(0.0552240\pi\)
−0.766714 + 0.641989i \(0.778109\pi\)
\(60\) 0 0
\(61\) 5.66303 9.80865i 0.725077 1.25587i −0.233866 0.972269i \(-0.575138\pi\)
0.958942 0.283601i \(-0.0915290\pi\)
\(62\) −4.24145 7.34641i −0.538665 0.932995i
\(63\) −6.43220 2.31744i −0.810381 0.291970i
\(64\) 8.83615i 1.10452i
\(65\) 0 0
\(66\) −4.31860 4.69755i −0.531583 0.578228i
\(67\) −8.96003 2.40083i −1.09464 0.293308i −0.334061 0.942552i \(-0.608419\pi\)
−0.760581 + 0.649243i \(0.775086\pi\)
\(68\) −1.25348 + 0.723695i −0.152006 + 0.0877609i
\(69\) 0.756433 0.168989i 0.0910638 0.0203439i
\(70\) 0 0
\(71\) 12.8138 3.43344i 1.52072 0.407474i 0.600738 0.799446i \(-0.294873\pi\)
0.919977 + 0.391971i \(0.128207\pi\)
\(72\) 8.87745 1.59515i 1.04622 0.187990i
\(73\) 1.56653 + 1.56653i 0.183349 + 0.183349i 0.792813 0.609464i \(-0.208615\pi\)
−0.609464 + 0.792813i \(0.708615\pi\)
\(74\) −11.9635 6.90712i −1.39073 0.802937i
\(75\) 0 0
\(76\) 0.247244 0.922728i 0.0283608 0.105844i
\(77\) 6.47509 0.737905
\(78\) 7.79605 2.18916i 0.882729 0.247873i
\(79\) 9.74173 1.09603 0.548015 0.836468i \(-0.315384\pi\)
0.548015 + 0.836468i \(0.315384\pi\)
\(80\) 0 0
\(81\) 3.13318 + 8.43701i 0.348131 + 0.937446i
\(82\) −0.942892 0.544379i −0.104125 0.0601166i
\(83\) −0.856250 0.856250i −0.0939856 0.0939856i 0.658551 0.752536i \(-0.271170\pi\)
−0.752536 + 0.658551i \(0.771170\pi\)
\(84\) −0.674192 + 1.06208i −0.0735604 + 0.115883i
\(85\) 0 0
\(86\) −4.37167 + 4.37167i −0.471409 + 0.471409i
\(87\) −2.17173 9.72112i −0.232833 1.04221i
\(88\) −7.39781 + 4.27113i −0.788609 + 0.455304i
\(89\) 1.64453 + 0.440650i 0.174320 + 0.0467088i 0.344923 0.938631i \(-0.387905\pi\)
−0.170603 + 0.985340i \(0.554572\pi\)
\(90\) 0 0
\(91\) −3.71871 + 7.32734i −0.389827 + 0.768114i
\(92\) 0.142614i 0.0148686i
\(93\) −5.24860 10.0425i −0.544254 1.04136i
\(94\) 2.80869 + 4.86480i 0.289695 + 0.501766i
\(95\) 0 0
\(96\) 0.129806 3.08838i 0.0132482 0.315207i
\(97\) −2.62855 9.80988i −0.266889 0.996042i −0.961084 0.276256i \(-0.910906\pi\)
0.694195 0.719787i \(-0.255760\pi\)
\(98\) −0.606176 2.26228i −0.0612330 0.228525i
\(99\) −5.50014 6.51164i −0.552785 0.654445i
\(100\) 0 0
\(101\) 6.55756 + 11.3580i 0.652502 + 1.13017i 0.982514 + 0.186189i \(0.0596138\pi\)
−0.330012 + 0.943977i \(0.607053\pi\)
\(102\) 9.03965 4.72446i 0.895058 0.467791i
\(103\) 5.12642i 0.505122i 0.967581 + 0.252561i \(0.0812728\pi\)
−0.967581 + 0.252561i \(0.918727\pi\)
\(104\) −0.584652 10.8245i −0.0573298 1.06143i
\(105\) 0 0
\(106\) 10.3794 + 2.78114i 1.00813 + 0.270129i
\(107\) 5.95164 3.43618i 0.575367 0.332188i −0.183923 0.982941i \(-0.558880\pi\)
0.759290 + 0.650752i \(0.225546\pi\)
\(108\) 1.64076 0.224166i 0.157882 0.0215704i
\(109\) 0.716943 0.716943i 0.0686706 0.0686706i −0.671937 0.740608i \(-0.734538\pi\)
0.740608 + 0.671937i \(0.234538\pi\)
\(110\) 0 0
\(111\) −15.5791 9.88940i −1.47871 0.938660i
\(112\) −5.25510 5.25510i −0.496560 0.496560i
\(113\) 5.13301 + 2.96354i 0.482873 + 0.278787i 0.721613 0.692297i \(-0.243401\pi\)
−0.238740 + 0.971083i \(0.576734\pi\)
\(114\) −2.01386 + 6.42358i −0.188615 + 0.601623i
\(115\) 0 0
\(116\) −1.83278 −0.170169
\(117\) 10.5275 2.48436i 0.973266 0.229679i
\(118\) −8.39955 −0.773241
\(119\) −2.67882 + 9.99750i −0.245567 + 0.916470i
\(120\) 0 0
\(121\) −2.53524 1.46372i −0.230476 0.133065i
\(122\) 10.3845 + 10.3845i 0.940171 + 0.940171i
\(123\) −1.22786 0.779424i −0.110712 0.0702783i
\(124\) −2.01393 + 0.539630i −0.180856 + 0.0484602i
\(125\) 0 0
\(126\) 5.06116 7.27839i 0.450884 0.648411i
\(127\) −10.6342 + 6.13964i −0.943630 + 0.544805i −0.891096 0.453814i \(-0.850063\pi\)
−0.0525335 + 0.998619i \(0.516730\pi\)
\(128\) 7.61931 + 2.04159i 0.673458 + 0.180453i
\(129\) −6.07970 + 5.58925i −0.535287 + 0.492106i
\(130\) 0 0
\(131\) 0.875714i 0.0765115i 0.999268 + 0.0382557i \(0.0121802\pi\)
−0.999268 + 0.0382557i \(0.987820\pi\)
\(132\) −1.38997 + 0.726449i −0.120981 + 0.0632293i
\(133\) −3.41556 5.91592i −0.296167 0.512976i
\(134\) 6.01393 10.4164i 0.519525 0.899843i
\(135\) 0 0
\(136\) −3.53403 13.1892i −0.303041 1.13096i
\(137\) −1.62972 6.08218i −0.139236 0.519636i −0.999944 0.0105378i \(-0.996646\pi\)
0.860708 0.509098i \(-0.170021\pi\)
\(138\) −0.0422035 + 1.00412i −0.00359260 + 0.0854764i
\(139\) −8.67597 + 15.0272i −0.735886 + 1.27459i 0.218447 + 0.975849i \(0.429901\pi\)
−0.954333 + 0.298744i \(0.903432\pi\)
\(140\) 0 0
\(141\) 3.47562 + 6.65016i 0.292700 + 0.560044i
\(142\) 17.2011i 1.44348i
\(143\) −8.58256 + 5.59312i −0.717710 + 0.467720i
\(144\) −0.820923 + 9.74861i −0.0684103 + 0.812384i
\(145\) 0 0
\(146\) −2.48776 + 1.43631i −0.205889 + 0.118870i
\(147\) −0.682108 3.05326i −0.0562593 0.251829i
\(148\) −2.40086 + 2.40086i −0.197350 + 0.197350i
\(149\) 21.4260 5.74107i 1.75528 0.470327i 0.769543 0.638595i \(-0.220484\pi\)
0.985741 + 0.168269i \(0.0538176\pi\)
\(150\) 0 0
\(151\) −0.495344 0.495344i −0.0403105 0.0403105i 0.686664 0.726975i \(-0.259074\pi\)
−0.726975 + 0.686664i \(0.759074\pi\)
\(152\) 7.80458 + 4.50597i 0.633035 + 0.365483i
\(153\) 12.3294 5.79824i 0.996774 0.468760i
\(154\) −2.17303 + 8.10985i −0.175108 + 0.653510i
\(155\) 0 0
\(156\) −0.0237913 1.99012i −0.00190483 0.159337i
\(157\) 21.4749 1.71388 0.856941 0.515414i \(-0.172362\pi\)
0.856941 + 0.515414i \(0.172362\pi\)
\(158\) −3.26930 + 12.2012i −0.260092 + 0.970676i
\(159\) 13.6964 + 4.29396i 1.08620 + 0.340533i
\(160\) 0 0
\(161\) −0.721125 0.721125i −0.0568326 0.0568326i
\(162\) −11.6186 + 1.09276i −0.912842 + 0.0858556i
\(163\) 10.6985 2.86667i 0.837975 0.224535i 0.185785 0.982590i \(-0.440517\pi\)
0.652190 + 0.758056i \(0.273851\pi\)
\(164\) −0.189222 + 0.189222i −0.0147757 + 0.0147757i
\(165\) 0 0
\(166\) 1.35978 0.785070i 0.105539 0.0609333i
\(167\) −23.3283 6.25081i −1.80520 0.483702i −0.810430 0.585835i \(-0.800767\pi\)
−0.994771 + 0.102133i \(0.967433\pi\)
\(168\) −8.03196 8.73675i −0.619679 0.674055i
\(169\) −1.40023 12.9244i −0.107710 0.994182i
\(170\) 0 0
\(171\) −3.04804 + 8.46001i −0.233089 + 0.646953i
\(172\) 0.759779 + 1.31598i 0.0579326 + 0.100342i
\(173\) −1.46268 + 2.53344i −0.111206 + 0.192614i −0.916257 0.400592i \(-0.868805\pi\)
0.805051 + 0.593206i \(0.202138\pi\)
\(174\) 12.9042 + 0.542368i 0.978266 + 0.0411168i
\(175\) 0 0
\(176\) −2.39805 8.94964i −0.180760 0.674604i
\(177\) −11.2101 0.471164i −0.842604 0.0354149i
\(178\) −1.10380 + 1.91184i −0.0827333 + 0.143298i
\(179\) 3.43112 + 5.94288i 0.256454 + 0.444192i 0.965290 0.261182i \(-0.0841124\pi\)
−0.708835 + 0.705374i \(0.750779\pi\)
\(180\) 0 0
\(181\) 22.0007i 1.63530i 0.575717 + 0.817649i \(0.304723\pi\)
−0.575717 + 0.817649i \(0.695277\pi\)
\(182\) −7.92927 7.11661i −0.587756 0.527518i
\(183\) 13.2768 + 14.4418i 0.981448 + 1.06757i
\(184\) 1.29956 + 0.348216i 0.0958048 + 0.0256708i
\(185\) 0 0
\(186\) 14.3394 3.20345i 1.05141 0.234889i
\(187\) −9.12427 + 9.12427i −0.667233 + 0.667233i
\(188\) 1.33362 0.357343i 0.0972644 0.0260619i
\(189\) 7.16294 9.42992i 0.521027 0.685925i
\(190\) 0 0
\(191\) 14.4065 + 8.31762i 1.04242 + 0.601842i 0.920518 0.390700i \(-0.127767\pi\)
0.121903 + 0.992542i \(0.461100\pi\)
\(192\) 14.6038 + 4.57843i 1.05394 + 0.330420i
\(193\) −1.72615 + 6.44208i −0.124251 + 0.463711i −0.999812 0.0193966i \(-0.993825\pi\)
0.875561 + 0.483108i \(0.160492\pi\)
\(194\) 13.1687 0.945457
\(195\) 0 0
\(196\) −0.575649 −0.0411178
\(197\) −2.97372 + 11.0981i −0.211869 + 0.790706i 0.775376 + 0.631499i \(0.217560\pi\)
−0.987245 + 0.159206i \(0.949106\pi\)
\(198\) 10.0015 4.70346i 0.710773 0.334260i
\(199\) 0.252420 + 0.145735i 0.0178936 + 0.0103309i 0.508920 0.860814i \(-0.330045\pi\)
−0.491027 + 0.871145i \(0.663378\pi\)
\(200\) 0 0
\(201\) 8.61055 13.5645i 0.607342 0.956768i
\(202\) −16.4263 + 4.40141i −1.15575 + 0.309682i
\(203\) −9.26737 + 9.26737i −0.650442 + 0.650442i
\(204\) −0.546587 2.44664i −0.0382687 0.171299i
\(205\) 0 0
\(206\) −6.42069 1.72042i −0.447350 0.119867i
\(207\) −0.112650 + 1.33774i −0.00782974 + 0.0929795i
\(208\) 11.5048 + 2.42619i 0.797714 + 0.168226i
\(209\) 8.51643i 0.589094i
\(210\) 0 0
\(211\) 7.95121 + 13.7719i 0.547384 + 0.948096i 0.998453 + 0.0556073i \(0.0177095\pi\)
−0.451069 + 0.892489i \(0.648957\pi\)
\(212\) 1.32054 2.28725i 0.0906952 0.157089i
\(213\) −0.964879 + 22.9568i −0.0661124 + 1.57297i
\(214\) 2.30635 + 8.60742i 0.157659 + 0.588391i
\(215\) 0 0
\(216\) −1.96348 + 15.4986i −0.133598 + 1.05454i
\(217\) −7.45473 + 12.9120i −0.506060 + 0.876522i
\(218\) 0.657343 + 1.13855i 0.0445209 + 0.0771125i
\(219\) −3.40076 + 1.77736i −0.229802 + 0.120103i
\(220\) 0 0
\(221\) −5.08504 15.5654i −0.342057 1.04704i
\(222\) 17.6145 16.1935i 1.18221 1.08684i
\(223\) −4.28509 1.14819i −0.286951 0.0768882i 0.112473 0.993655i \(-0.464123\pi\)
−0.399423 + 0.916767i \(0.630790\pi\)
\(224\) −3.52229 + 2.03359i −0.235343 + 0.135875i
\(225\) 0 0
\(226\) −5.43437 + 5.43437i −0.361489 + 0.361489i
\(227\) −12.9846 + 3.47922i −0.861820 + 0.230924i −0.662547 0.749020i \(-0.730525\pi\)
−0.199273 + 0.979944i \(0.563858\pi\)
\(228\) 1.39691 + 0.886738i 0.0925128 + 0.0587257i
\(229\) 8.40317 + 8.40317i 0.555297 + 0.555297i 0.927965 0.372668i \(-0.121557\pi\)
−0.372668 + 0.927965i \(0.621557\pi\)
\(230\) 0 0
\(231\) −3.35506 + 10.7016i −0.220747 + 0.704113i
\(232\) 4.47502 16.7010i 0.293799 1.09647i
\(233\) 12.1684 0.797175 0.398588 0.917130i \(-0.369500\pi\)
0.398588 + 0.917130i \(0.369500\pi\)
\(234\) −0.421420 + 14.0191i −0.0275491 + 0.916457i
\(235\) 0 0
\(236\) −0.534327 + 1.99414i −0.0347817 + 0.129807i
\(237\) −5.04766 + 16.1005i −0.327881 + 1.04584i
\(238\) −11.6226 6.71028i −0.753378 0.434963i
\(239\) 15.4524 + 15.4524i 0.999531 + 0.999531i 1.00000 0.000468754i \(-0.000149209\pi\)
−0.000468754 1.00000i \(0.500149\pi\)
\(240\) 0 0
\(241\) −24.0324 + 6.43947i −1.54806 + 0.414803i −0.928861 0.370428i \(-0.879211\pi\)
−0.619203 + 0.785231i \(0.712544\pi\)
\(242\) 2.68408 2.68408i 0.172539 0.172539i
\(243\) −15.5676 + 0.806681i −0.998660 + 0.0517486i
\(244\) 3.12599 1.80479i 0.200121 0.115540i
\(245\) 0 0
\(246\) 1.38827 1.27628i 0.0885129 0.0813726i
\(247\) 9.63735 + 4.89107i 0.613210 + 0.311211i
\(248\) 19.6693i 1.24900i
\(249\) 1.85882 0.971487i 0.117798 0.0615655i
\(250\) 0 0
\(251\) 1.55359 2.69089i 0.0980614 0.169847i −0.812821 0.582514i \(-0.802069\pi\)
0.910882 + 0.412666i \(0.135402\pi\)
\(252\) −1.40600 1.66457i −0.0885699 0.104858i
\(253\) −0.329069 1.22810i −0.0206884 0.0772102i
\(254\) −4.12090 15.3794i −0.258568 0.964990i
\(255\) 0 0
\(256\) 3.72210 6.44686i 0.232631 0.402929i
\(257\) 6.58997 + 11.4142i 0.411071 + 0.711996i 0.995007 0.0998036i \(-0.0318214\pi\)
−0.583936 + 0.811800i \(0.698488\pi\)
\(258\) −4.96002 9.49037i −0.308797 0.590844i
\(259\) 24.2798i 1.50867i
\(260\) 0 0
\(261\) 17.1917 + 1.44770i 1.06414 + 0.0896103i
\(262\) −1.09680 0.293888i −0.0677608 0.0181564i
\(263\) 2.74583 1.58530i 0.169315 0.0977540i −0.412948 0.910755i \(-0.635501\pi\)
0.582263 + 0.813001i \(0.302167\pi\)
\(264\) −3.22587 14.4397i −0.198538 0.888701i
\(265\) 0 0
\(266\) 8.55576 2.29251i 0.524588 0.140563i
\(267\) −1.58038 + 2.48964i −0.0967180 + 0.152364i
\(268\) −2.09040 2.09040i −0.127691 0.127691i
\(269\) −8.98175 5.18562i −0.547627 0.316173i 0.200537 0.979686i \(-0.435731\pi\)
−0.748164 + 0.663513i \(0.769065\pi\)
\(270\) 0 0
\(271\) 5.62575 20.9956i 0.341740 1.27539i −0.554635 0.832094i \(-0.687142\pi\)
0.896375 0.443297i \(-0.146191\pi\)
\(272\) 14.8103 0.898005
\(273\) −10.1833 9.94268i −0.616320 0.601758i
\(274\) 8.16467 0.493246
\(275\) 0 0
\(276\) 0.235703 + 0.0738954i 0.0141877 + 0.00444798i
\(277\) −2.06025 1.18949i −0.123789 0.0714694i 0.436827 0.899546i \(-0.356102\pi\)
−0.560616 + 0.828076i \(0.689436\pi\)
\(278\) −15.9095 15.9095i −0.954188 0.954188i
\(279\) 19.3171 3.47101i 1.15649 0.207804i
\(280\) 0 0
\(281\) 7.28271 7.28271i 0.434450 0.434450i −0.455689 0.890139i \(-0.650607\pi\)
0.890139 + 0.455689i \(0.150607\pi\)
\(282\) −9.49553 + 2.12133i −0.565450 + 0.126323i
\(283\) 12.0763 6.97223i 0.717859 0.414456i −0.0961049 0.995371i \(-0.530638\pi\)
0.813964 + 0.580915i \(0.197305\pi\)
\(284\) 4.08371 + 1.09423i 0.242324 + 0.0649305i
\(285\) 0 0
\(286\) −4.12492 12.6264i −0.243911 0.746616i
\(287\) 1.91359i 0.112956i
\(288\) 5.03701 + 1.81477i 0.296809 + 0.106937i
\(289\) −1.81300 3.14021i −0.106647 0.184718i
\(290\) 0 0
\(291\) 17.5751 + 0.738685i 1.03027 + 0.0433025i
\(292\) 0.182738 + 0.681988i 0.0106939 + 0.0399103i
\(293\) −7.12679 26.5976i −0.416352 1.55385i −0.782113 0.623137i \(-0.785858\pi\)
0.365761 0.930709i \(-0.380809\pi\)
\(294\) 4.05303 + 0.170350i 0.236378 + 0.00993501i
\(295\) 0 0
\(296\) −16.0155 27.7397i −0.930884 1.61234i
\(297\) 13.6119 5.71626i 0.789842 0.331691i
\(298\) 28.7620i 1.66614i
\(299\) 1.57873 + 0.332931i 0.0913005 + 0.0192539i
\(300\) 0 0
\(301\) 10.4960 + 2.81239i 0.604978 + 0.162103i
\(302\) 0.786639 0.454166i 0.0452660 0.0261343i
\(303\) −22.1696 + 4.95275i −1.27361 + 0.284528i
\(304\) −6.91182 + 6.91182i −0.396420 + 0.396420i
\(305\) 0 0
\(306\) 3.12439 + 17.3881i 0.178609 + 0.994010i
\(307\) 11.4213 + 11.4213i 0.651847 + 0.651847i 0.953437 0.301591i \(-0.0975177\pi\)
−0.301591 + 0.953437i \(0.597518\pi\)
\(308\) 1.78712 + 1.03180i 0.101831 + 0.0587920i
\(309\) −8.47261 2.65625i −0.481990 0.151109i
\(310\) 0 0
\(311\) −8.25099 −0.467871 −0.233935 0.972252i \(-0.575160\pi\)
−0.233935 + 0.972252i \(0.575160\pi\)
\(312\) 18.1929 + 4.64240i 1.02997 + 0.262824i
\(313\) 12.5949 0.711907 0.355954 0.934504i \(-0.384156\pi\)
0.355954 + 0.934504i \(0.384156\pi\)
\(314\) −7.20693 + 26.8966i −0.406710 + 1.51786i
\(315\) 0 0
\(316\) 2.68871 + 1.55233i 0.151252 + 0.0873254i
\(317\) −4.02879 4.02879i −0.226279 0.226279i 0.584857 0.811136i \(-0.301151\pi\)
−0.811136 + 0.584857i \(0.801151\pi\)
\(318\) −9.97453 + 15.7133i −0.559344 + 0.881156i
\(319\) −15.7827 + 4.22896i −0.883660 + 0.236776i
\(320\) 0 0
\(321\) 2.59526 + 11.6169i 0.144853 + 0.648393i
\(322\) 1.14520 0.661179i 0.0638192 0.0368460i
\(323\) 13.1493 + 3.52335i 0.731647 + 0.196044i
\(324\) −0.479669 + 2.82788i −0.0266483 + 0.157104i
\(325\) 0 0
\(326\) 14.3616i 0.795418i
\(327\) 0.813431 + 1.55640i 0.0449828 + 0.0860689i
\(328\) −1.26225 2.18628i −0.0696961 0.120717i
\(329\) 4.93653 8.55031i 0.272160 0.471394i
\(330\) 0 0
\(331\) 4.18246 + 15.6091i 0.229889 + 0.857956i 0.980387 + 0.197083i \(0.0631470\pi\)
−0.750498 + 0.660873i \(0.770186\pi\)
\(332\) −0.0998825 0.372767i −0.00548177 0.0204582i
\(333\) 24.4168 20.6240i 1.33803 1.13019i
\(334\) 15.6579 27.1202i 0.856761 1.48395i
\(335\) 0 0
\(336\) 11.4082 5.96235i 0.622368 0.325273i
\(337\) 7.02217i 0.382522i −0.981539 0.191261i \(-0.938742\pi\)
0.981539 0.191261i \(-0.0612577\pi\)
\(338\) 16.6573 + 2.58365i 0.906037 + 0.140532i
\(339\) −7.55760 + 6.94793i −0.410473 + 0.377360i
\(340\) 0 0
\(341\) −16.0975 + 9.29389i −0.871728 + 0.503292i
\(342\) −9.57298 6.65673i −0.517647 0.359955i
\(343\) −14.1911 + 14.1911i −0.766248 + 0.766248i
\(344\) −13.8468 + 3.71024i −0.746570 + 0.200043i
\(345\) 0 0
\(346\) −2.68218 2.68218i −0.144195 0.144195i
\(347\) 28.1095 + 16.2290i 1.50900 + 0.871221i 0.999945 + 0.0104862i \(0.00333792\pi\)
0.509054 + 0.860735i \(0.329995\pi\)
\(348\) 0.949649 3.02909i 0.0509066 0.162376i
\(349\) 2.92829 10.9285i 0.156748 0.584990i −0.842202 0.539162i \(-0.818741\pi\)
0.998949 0.0458273i \(-0.0145924\pi\)
\(350\) 0 0
\(351\) −1.34882 + 18.6864i −0.0719946 + 0.997405i
\(352\) −5.07060 −0.270264
\(353\) −3.66208 + 13.6671i −0.194913 + 0.727425i 0.797376 + 0.603482i \(0.206221\pi\)
−0.992289 + 0.123943i \(0.960446\pi\)
\(354\) 4.35221 13.8822i 0.231317 0.737831i
\(355\) 0 0
\(356\) 0.383672 + 0.383672i 0.0203346 + 0.0203346i
\(357\) −15.1352 9.60757i −0.801038 0.508486i
\(358\) −8.59475 + 2.30296i −0.454247 + 0.121715i
\(359\) −18.3546 + 18.3546i −0.968720 + 0.968720i −0.999525 0.0308058i \(-0.990193\pi\)
0.0308058 + 0.999525i \(0.490193\pi\)
\(360\) 0 0
\(361\) 8.67351 5.00765i 0.456500 0.263561i
\(362\) −27.5552 7.38338i −1.44827 0.388062i
\(363\) 3.73276 3.43164i 0.195919 0.180114i
\(364\) −2.19396 + 1.42977i −0.114995 + 0.0749404i
\(365\) 0 0
\(366\) −22.5436 + 11.7821i −1.17837 + 0.615861i
\(367\) −6.60945 11.4479i −0.345010 0.597575i 0.640345 0.768087i \(-0.278791\pi\)
−0.985356 + 0.170512i \(0.945458\pi\)
\(368\) −0.729645 + 1.26378i −0.0380354 + 0.0658792i
\(369\) 1.92439 1.62546i 0.100180 0.0846181i
\(370\) 0 0
\(371\) −4.88811 18.2427i −0.253778 0.947112i
\(372\) 0.151649 3.60809i 0.00786263 0.187071i
\(373\) 7.54312 13.0651i 0.390568 0.676483i −0.601957 0.798529i \(-0.705612\pi\)
0.992525 + 0.122045i \(0.0389453\pi\)
\(374\) −8.36578 14.4900i −0.432584 0.749257i
\(375\) 0 0
\(376\) 13.0250i 0.671714i
\(377\) 4.27859 20.2887i 0.220358 1.04492i
\(378\) 9.40680 + 12.1360i 0.483834 + 0.624209i
\(379\) 4.41475 + 1.18293i 0.226771 + 0.0607630i 0.370415 0.928866i \(-0.379215\pi\)
−0.143644 + 0.989629i \(0.545882\pi\)
\(380\) 0 0
\(381\) −4.63710 20.7567i −0.237566 1.06340i
\(382\) −15.2524 + 15.2524i −0.780379 + 0.780379i
\(383\) −14.6214 + 3.91778i −0.747117 + 0.200189i −0.612239 0.790673i \(-0.709731\pi\)
−0.134878 + 0.990862i \(0.543064\pi\)
\(384\) −7.32213 + 11.5348i −0.373656 + 0.588634i
\(385\) 0 0
\(386\) −7.48921 4.32390i −0.381191 0.220081i
\(387\) −6.08734 12.9442i −0.309437 0.657989i
\(388\) 0.837711 3.12638i 0.0425283 0.158718i
\(389\) −20.3601 −1.03230 −0.516150 0.856498i \(-0.672635\pi\)
−0.516150 + 0.856498i \(0.672635\pi\)
\(390\) 0 0
\(391\) 2.03232 0.102779
\(392\) 1.40554 5.24554i 0.0709904 0.264940i
\(393\) −1.44732 0.453750i −0.0730077 0.0228886i
\(394\) −12.9020 7.44899i −0.649995 0.375275i
\(395\) 0 0
\(396\) −0.480416 2.67365i −0.0241418 0.134356i
\(397\) 30.2688 8.11051i 1.51915 0.407055i 0.599688 0.800234i \(-0.295291\pi\)
0.919462 + 0.393179i \(0.128625\pi\)
\(398\) −0.267240 + 0.267240i −0.0133955 + 0.0133955i
\(399\) 11.5472 2.57968i 0.578083 0.129146i
\(400\) 0 0
\(401\) −13.7202 3.67631i −0.685154 0.183586i −0.100582 0.994929i \(-0.532071\pi\)
−0.584571 + 0.811342i \(0.698737\pi\)
\(402\) 14.0995 + 15.3367i 0.703217 + 0.764924i
\(403\) −1.27219 23.5538i −0.0633723 1.17330i
\(404\) 4.17975i 0.207950i
\(405\) 0 0
\(406\) −8.49698 14.7172i −0.421698 0.730402i
\(407\) −15.1349 + 26.2144i −0.750210 + 1.29940i
\(408\) 23.6294 + 0.993148i 1.16983 + 0.0491682i
\(409\) −5.33224 19.9002i −0.263662 0.984001i −0.963064 0.269273i \(-0.913217\pi\)
0.699402 0.714729i \(-0.253450\pi\)
\(410\) 0 0
\(411\) 10.8967 + 0.457989i 0.537492 + 0.0225909i
\(412\) −0.816888 + 1.41489i −0.0402452 + 0.0697067i
\(413\) 7.38148 + 12.7851i 0.363219 + 0.629113i
\(414\) −1.63767 0.590034i −0.0804873 0.0289986i
\(415\) 0 0
\(416\) 2.91210 5.73799i 0.142777 0.281328i
\(417\) −20.3405 22.1254i −0.996080 1.08348i
\(418\) 10.6666 + 2.85810i 0.521718 + 0.139794i
\(419\) 11.6759 6.74109i 0.570405 0.329324i −0.186906 0.982378i \(-0.559846\pi\)
0.757311 + 0.653054i \(0.226513\pi\)
\(420\) 0 0
\(421\) 11.4321 11.4321i 0.557166 0.557166i −0.371333 0.928500i \(-0.621099\pi\)
0.928500 + 0.371333i \(0.121099\pi\)
\(422\) −19.9173 + 5.33682i −0.969558 + 0.259792i
\(423\) −12.7918 + 2.29850i −0.621959 + 0.111757i
\(424\) 17.6180 + 17.6180i 0.855605 + 0.855605i
\(425\) 0 0
\(426\) −28.4288 8.91272i −1.37738 0.431823i
\(427\) 6.68060 24.9323i 0.323297 1.20656i
\(428\) 2.19020 0.105867
\(429\) −4.79689 17.0827i −0.231596 0.824762i
\(430\) 0 0
\(431\) −3.16022 + 11.7941i −0.152222 + 0.568102i 0.847105 + 0.531426i \(0.178344\pi\)
−0.999327 + 0.0366759i \(0.988323\pi\)
\(432\) −15.6865 6.40799i −0.754716 0.308305i
\(433\) 14.6584 + 8.46304i 0.704439 + 0.406708i 0.808999 0.587811i \(-0.200010\pi\)
−0.104560 + 0.994519i \(0.533343\pi\)
\(434\) −13.6700 13.6700i −0.656183 0.656183i
\(435\) 0 0
\(436\) 0.312120 0.0836322i 0.0149478 0.00400526i
\(437\) −0.948467 + 0.948467i −0.0453713 + 0.0453713i
\(438\) −1.08481 4.85582i −0.0518340 0.232020i
\(439\) −2.43013 + 1.40303i −0.115984 + 0.0669631i −0.556870 0.830600i \(-0.687998\pi\)
0.440886 + 0.897563i \(0.354664\pi\)
\(440\) 0 0
\(441\) 5.39966 + 0.454701i 0.257127 + 0.0216524i
\(442\) 21.2017 1.14515i 1.00846 0.0544690i
\(443\) 27.4864i 1.30592i −0.757393 0.652960i \(-0.773527\pi\)
0.757393 0.652960i \(-0.226473\pi\)
\(444\) −2.72398 5.21198i −0.129274 0.247350i
\(445\) 0 0
\(446\) 2.87613 4.98160i 0.136189 0.235886i
\(447\) −1.61338 + 38.3861i −0.0763102 + 1.81560i
\(448\) −5.21194 19.4512i −0.246241 0.918984i
\(449\) −1.90550 7.11141i −0.0899260 0.335608i 0.906275 0.422688i \(-0.138913\pi\)
−0.996201 + 0.0870794i \(0.972247\pi\)
\(450\) 0 0
\(451\) −1.19285 + 2.06607i −0.0561689 + 0.0972874i
\(452\) 0.944472 + 1.63587i 0.0444242 + 0.0769450i
\(453\) 1.07533 0.562009i 0.0505235 0.0264055i
\(454\) 17.4304i 0.818051i
\(455\) 0 0
\(456\) −11.4911 + 10.5641i −0.538120 + 0.494710i
\(457\) 0.231621 + 0.0620628i 0.0108348 + 0.00290317i 0.264232 0.964459i \(-0.414881\pi\)
−0.253398 + 0.967362i \(0.581548\pi\)
\(458\) −13.3448 + 7.70462i −0.623561 + 0.360013i
\(459\) 3.19447 + 23.3816i 0.149105 + 1.09136i
\(460\) 0 0
\(461\) −16.4008 + 4.39457i −0.763860 + 0.204676i −0.619657 0.784872i \(-0.712728\pi\)
−0.144203 + 0.989548i \(0.546062\pi\)
\(462\) −12.2775 7.79353i −0.571199 0.362588i
\(463\) −13.0393 13.0393i −0.605988 0.605988i 0.335907 0.941895i \(-0.390957\pi\)
−0.941895 + 0.335907i \(0.890957\pi\)
\(464\) 16.2412 + 9.37685i 0.753978 + 0.435310i
\(465\) 0 0
\(466\) −4.08367 + 15.2405i −0.189173 + 0.706002i
\(467\) 15.8095 0.731575 0.365788 0.930698i \(-0.380800\pi\)
0.365788 + 0.930698i \(0.380800\pi\)
\(468\) 3.30146 + 0.991857i 0.152610 + 0.0458486i
\(469\) −21.1400 −0.976156
\(470\) 0 0
\(471\) −11.1272 + 35.4922i −0.512713 + 1.63540i
\(472\) −16.8667 9.73800i −0.776354 0.448228i
\(473\) 9.57921 + 9.57921i 0.440453 + 0.440453i
\(474\) −18.4713 11.7253i −0.848417 0.538562i
\(475\) 0 0
\(476\) −2.33244 + 2.33244i −0.106907 + 0.106907i
\(477\) −14.1935 + 20.4116i −0.649877 + 0.934582i
\(478\) −24.5394 + 14.1678i −1.12241 + 0.648021i
\(479\) −4.26159 1.14189i −0.194717 0.0521742i 0.160143 0.987094i \(-0.448805\pi\)
−0.354859 + 0.934920i \(0.615471\pi\)
\(480\) 0 0
\(481\) −20.9726 32.1822i −0.956269 1.46738i
\(482\) 32.2609i 1.46944i
\(483\) 1.56548 0.818177i 0.0712317 0.0372283i
\(484\) −0.466483 0.807972i −0.0212038 0.0367260i
\(485\) 0 0
\(486\) 4.21410 19.7686i 0.191156 0.896722i
\(487\) −10.3589 38.6598i −0.469405 1.75184i −0.641855 0.766826i \(-0.721835\pi\)
0.172450 0.985018i \(-0.444832\pi\)
\(488\) 8.81337 + 32.8919i 0.398963 + 1.48895i
\(489\) −0.805602 + 19.1672i −0.0364306 + 0.866770i
\(490\) 0 0
\(491\) 7.03573 + 12.1862i 0.317518 + 0.549957i 0.979970 0.199147i \(-0.0638173\pi\)
−0.662452 + 0.749105i \(0.730484\pi\)
\(492\) −0.214688 0.410778i −0.00967888 0.0185193i
\(493\) 26.1179i 1.17629i
\(494\) −9.36018 + 10.4290i −0.421135 + 0.469225i
\(495\) 0 0
\(496\) 20.6073 + 5.52171i 0.925296 + 0.247932i
\(497\) 26.1821 15.1162i 1.17443 0.678056i
\(498\) 0.592942 + 2.65414i 0.0265704 + 0.118935i
\(499\) 12.8997 12.8997i 0.577470 0.577470i −0.356735 0.934206i \(-0.616110\pi\)
0.934206 + 0.356735i \(0.116110\pi\)
\(500\) 0 0
\(501\) 22.4184 35.3166i 1.00158 1.57783i
\(502\) 2.84887 + 2.84887i 0.127151 + 0.127151i
\(503\) 20.0990 + 11.6042i 0.896172 + 0.517405i 0.875956 0.482391i \(-0.160231\pi\)
0.0202156 + 0.999796i \(0.493565\pi\)
\(504\) 18.6013 8.74774i 0.828566 0.389655i
\(505\) 0 0
\(506\) 1.64860 0.0732890
\(507\) 22.0860 + 4.38254i 0.980876 + 0.194635i
\(508\) −3.91337 −0.173628
\(509\) 2.71529 10.1336i 0.120353 0.449165i −0.879278 0.476308i \(-0.841975\pi\)
0.999632 + 0.0271439i \(0.00864124\pi\)
\(510\) 0 0
\(511\) 4.37246 + 2.52444i 0.193426 + 0.111675i
\(512\) 17.9808 + 17.9808i 0.794647 + 0.794647i
\(513\) −12.4028 9.42113i −0.547597 0.415953i
\(514\) −16.5075 + 4.42316i −0.728113 + 0.195097i
\(515\) 0 0
\(516\) −2.56863 + 0.573840i −0.113078 + 0.0252619i
\(517\) 10.6598 6.15442i 0.468816 0.270671i
\(518\) −30.4096 8.14824i −1.33612 0.358013i
\(519\) −3.42921 3.73011i −0.150525 0.163734i
\(520\) 0 0
\(521\) 28.1221i 1.23205i 0.787726 + 0.616026i \(0.211259\pi\)
−0.787726 + 0.616026i \(0.788741\pi\)
\(522\) −7.58269 + 21.0462i −0.331885 + 0.921166i
\(523\) 17.3704 + 30.0865i 0.759556 + 1.31559i 0.943077 + 0.332574i \(0.107917\pi\)
−0.183521 + 0.983016i \(0.558749\pi\)
\(524\) −0.139544 + 0.241697i −0.00609600 + 0.0105586i
\(525\) 0 0
\(526\) 1.06405 + 3.97109i 0.0463948 + 0.173148i
\(527\) −7.68998 28.6994i −0.334981 1.25017i
\(528\) 16.0339 + 0.673909i 0.697786 + 0.0293281i
\(529\) 11.3999 19.7452i 0.495647 0.858485i
\(530\) 0 0
\(531\) 6.58721 18.2832i 0.285861 0.793423i
\(532\) 2.17706i 0.0943874i
\(533\) −1.65294 2.53641i −0.0715967 0.109864i
\(534\) −2.58782 2.81490i −0.111986 0.121813i
\(535\) 0 0
\(536\) 24.1526 13.9445i 1.04323 0.602310i
\(537\) −11.5998 + 2.59143i −0.500569 + 0.111829i
\(538\) 9.50908 9.50908i 0.409965 0.409965i
\(539\) −4.95711 + 1.32825i −0.213518 + 0.0572120i
\(540\) 0 0
\(541\) −17.6269 17.6269i −0.757839 0.757839i 0.218090 0.975929i \(-0.430017\pi\)
−0.975929 + 0.218090i \(0.930017\pi\)
\(542\) 24.4083 + 14.0922i 1.04843 + 0.605310i
\(543\) −36.3612 11.3996i −1.56041 0.489204i
\(544\) 2.09777 7.82898i 0.0899411 0.335665i
\(545\) 0 0
\(546\) 15.8704 9.41749i 0.679189 0.403031i
\(547\) 7.60825 0.325305 0.162653 0.986683i \(-0.447995\pi\)
0.162653 + 0.986683i \(0.447995\pi\)
\(548\) 0.519386 1.93837i 0.0221871 0.0828032i
\(549\) −30.7478 + 14.4600i −1.31228 + 0.617136i
\(550\) 0 0
\(551\) 12.1890 + 12.1890i 0.519269 + 0.519269i
\(552\) −1.24887 + 1.96740i −0.0531555 + 0.0837380i
\(553\) 21.4447 5.74609i 0.911922 0.244349i
\(554\) 2.18121 2.18121i 0.0926709 0.0926709i
\(555\) 0 0
\(556\) −4.78913 + 2.76501i −0.203104 + 0.117262i
\(557\) −3.10705 0.832532i −0.131650 0.0352755i 0.192392 0.981318i \(-0.438375\pi\)
−0.324042 + 0.946043i \(0.605042\pi\)
\(558\) −2.13546 + 25.3590i −0.0904012 + 1.07353i
\(559\) −16.3415 + 5.33858i −0.691170 + 0.225798i
\(560\) 0 0
\(561\) −10.3522 19.8077i −0.437072 0.836282i
\(562\) 6.67730 + 11.5654i 0.281665 + 0.487858i
\(563\) 9.27874 16.0712i 0.391052 0.677322i −0.601536 0.798845i \(-0.705445\pi\)
0.992589 + 0.121523i \(0.0387779\pi\)
\(564\) −0.100422 + 2.38928i −0.00422853 + 0.100607i
\(565\) 0 0
\(566\) 4.67973 + 17.4650i 0.196704 + 0.734109i
\(567\) 11.8737 + 16.7245i 0.498647 + 0.702364i
\(568\) −19.9421 + 34.5407i −0.836751 + 1.44930i
\(569\) 10.2020 + 17.6703i 0.427688 + 0.740778i 0.996667 0.0815741i \(-0.0259947\pi\)
−0.568979 + 0.822352i \(0.692661\pi\)
\(570\) 0 0
\(571\) 0.850329i 0.0355852i −0.999842 0.0177926i \(-0.994336\pi\)
0.999842 0.0177926i \(-0.00566385\pi\)
\(572\) −3.26004 + 0.176082i −0.136309 + 0.00736234i
\(573\) −21.2115 + 19.5004i −0.886124 + 0.814640i
\(574\) −2.39671 0.642196i −0.100037 0.0268048i
\(575\) 0 0
\(576\) −15.1338 + 21.7638i −0.630577 + 0.906826i
\(577\) −8.23663 + 8.23663i −0.342896 + 0.342896i −0.857455 0.514559i \(-0.827956\pi\)
0.514559 + 0.857455i \(0.327956\pi\)
\(578\) 4.54146 1.21688i 0.188900 0.0506155i
\(579\) −9.75264 6.19082i −0.405306 0.257282i
\(580\) 0 0
\(581\) −2.38994 1.37983i −0.0991513 0.0572450i
\(582\) −6.82334 + 21.7643i −0.282836 + 0.902160i
\(583\) 6.09405 22.7433i 0.252390 0.941932i
\(584\) −6.66073 −0.275623
\(585\) 0 0
\(586\) 35.7043 1.47493
\(587\) 0.0218800 0.0816572i 0.000903083 0.00337035i −0.965473 0.260504i \(-0.916111\pi\)
0.966376 + 0.257133i \(0.0827780\pi\)
\(588\) 0.298271 0.951393i 0.0123005 0.0392348i
\(589\) 16.9826 + 9.80491i 0.699756 + 0.404004i
\(590\) 0 0
\(591\) −16.8013 10.6652i −0.691114 0.438709i
\(592\) 33.5586 8.99200i 1.37925 0.369569i
\(593\) −29.3266 + 29.3266i −1.20430 + 1.20430i −0.231451 + 0.972847i \(0.574347\pi\)
−0.972847 + 0.231451i \(0.925653\pi\)
\(594\) 2.59131 + 18.9668i 0.106323 + 0.778218i
\(595\) 0 0
\(596\) 6.82839 + 1.82966i 0.279702 + 0.0749459i
\(597\) −0.371652 + 0.341671i −0.0152107 + 0.0139837i
\(598\) −0.946805 + 1.86558i −0.0387178 + 0.0762893i
\(599\) 35.3223i 1.44323i −0.692294 0.721615i \(-0.743400\pi\)
0.692294 0.721615i \(-0.256600\pi\)
\(600\) 0 0
\(601\) −5.49445 9.51667i −0.224123 0.388193i 0.731933 0.681377i \(-0.238619\pi\)
−0.956056 + 0.293184i \(0.905285\pi\)
\(602\) −7.04486 + 12.2021i −0.287127 + 0.497319i
\(603\) 17.9570 + 21.2594i 0.731265 + 0.865749i
\(604\) −0.0577824 0.215647i −0.00235113 0.00877455i
\(605\) 0 0
\(606\) 1.23690 29.4288i 0.0502456 1.19546i
\(607\) 7.49947 12.9895i 0.304394 0.527226i −0.672732 0.739886i \(-0.734879\pi\)
0.977126 + 0.212660i \(0.0682127\pi\)
\(608\) 2.67470 + 4.63272i 0.108474 + 0.187882i
\(609\) −10.5146 20.1184i −0.426073 0.815237i
\(610\) 0 0
\(611\) 0.842445 + 15.5973i 0.0340817 + 0.631001i
\(612\) 4.32686 + 0.364361i 0.174903 + 0.0147284i
\(613\) 6.71663 + 1.79972i 0.271282 + 0.0726898i 0.391895 0.920010i \(-0.371819\pi\)
−0.120613 + 0.992700i \(0.538486\pi\)
\(614\) −18.1377 + 10.4718i −0.731980 + 0.422609i
\(615\) 0 0
\(616\) −13.7657 + 13.7657i −0.554635 + 0.554635i
\(617\) 3.80094 1.01846i 0.153020 0.0410017i −0.181496 0.983392i \(-0.558094\pi\)
0.334516 + 0.942390i \(0.391427\pi\)
\(618\) 6.17026 9.72024i 0.248204 0.391005i
\(619\) −21.4563 21.4563i −0.862401 0.862401i 0.129216 0.991617i \(-0.458754\pi\)
−0.991617 + 0.129216i \(0.958754\pi\)
\(620\) 0 0
\(621\) −2.15256 0.879330i −0.0863792 0.0352863i
\(622\) 2.76901 10.3341i 0.111027 0.414360i
\(623\) 3.88005 0.155451
\(624\) −9.97103 + 17.7572i −0.399161 + 0.710858i
\(625\) 0 0
\(626\) −4.22683 + 15.7747i −0.168938 + 0.630486i
\(627\) 14.0754 + 4.41277i 0.562116 + 0.176229i
\(628\) 5.92706 + 3.42199i 0.236516 + 0.136552i
\(629\) −34.2134 34.2134i −1.36418 1.36418i
\(630\) 0 0
\(631\) −21.8951 + 5.86676i −0.871628 + 0.233552i −0.666792 0.745244i \(-0.732333\pi\)
−0.204837 + 0.978796i \(0.565666\pi\)
\(632\) −20.7104 + 20.7104i −0.823815 + 0.823815i
\(633\) −26.8812 + 6.00533i −1.06843 + 0.238690i
\(634\) 6.39798 3.69388i 0.254096 0.146703i
\(635\) 0 0
\(636\) 3.09597 + 3.36763i 0.122763 + 0.133535i
\(637\) 1.34384 6.37239i 0.0532450 0.252483i
\(638\) 21.1865i 0.838783i
\(639\) −37.4414 13.4897i −1.48116 0.533644i
\(640\) 0 0
\(641\) 0.623490 1.07992i 0.0246264 0.0426542i −0.853450 0.521175i \(-0.825494\pi\)
0.878076 + 0.478521i \(0.158827\pi\)
\(642\) −15.4208 0.648140i −0.608610 0.0255800i
\(643\) 0.781568 + 2.91685i 0.0308220 + 0.115029i 0.979623 0.200845i \(-0.0643688\pi\)
−0.948801 + 0.315875i \(0.897702\pi\)
\(644\) −0.0841202 0.313941i −0.00331480 0.0123710i
\(645\) 0 0
\(646\) −8.82576 + 15.2867i −0.347245 + 0.601446i
\(647\) −2.52686 4.37664i −0.0993410 0.172064i 0.812071 0.583559i \(-0.198340\pi\)
−0.911412 + 0.411495i \(0.865007\pi\)
\(648\) −24.5976 11.2757i −0.966285 0.442950i
\(649\) 18.4051i 0.722464i
\(650\) 0 0
\(651\) −17.4774 19.0110i −0.684992 0.745099i
\(652\) 3.40959 + 0.913598i 0.133530 + 0.0357793i
\(653\) 7.72146 4.45799i 0.302164 0.174454i −0.341251 0.939972i \(-0.610850\pi\)
0.643415 + 0.765518i \(0.277517\pi\)
\(654\) −2.22232 + 0.496474i −0.0868997 + 0.0194137i
\(655\) 0 0
\(656\) 2.64489 0.708697i 0.103266 0.0276700i
\(657\) −1.17541 6.54148i −0.0458571 0.255208i
\(658\) 9.05231 + 9.05231i 0.352896 + 0.352896i
\(659\) 26.8813 + 15.5199i 1.04715 + 0.604570i 0.921849 0.387549i \(-0.126678\pi\)
0.125297 + 0.992119i \(0.460012\pi\)
\(660\) 0 0
\(661\) −3.97807 + 14.8464i −0.154729 + 0.577456i 0.844399 + 0.535714i \(0.179958\pi\)
−0.999128 + 0.0417423i \(0.986709\pi\)
\(662\) −20.9536 −0.814384
\(663\) 28.3602 0.339038i 1.10142 0.0131671i
\(664\) 3.64068 0.141286
\(665\) 0 0
\(666\) 17.6366 + 37.5027i 0.683406 + 1.45320i
\(667\) 2.22868 + 1.28673i 0.0862948 + 0.0498223i
\(668\) −5.44256 5.44256i −0.210579 0.210579i
\(669\) 4.11795 6.48717i 0.159209 0.250808i
\(670\) 0 0
\(671\) 22.7546 22.7546i 0.878432 0.878432i
\(672\) −1.53592 6.87510i −0.0592493 0.265213i
\(673\) 9.13640 5.27490i 0.352182 0.203333i −0.313464 0.949600i \(-0.601489\pi\)
0.665646 + 0.746268i \(0.268156\pi\)
\(674\) 8.79505 + 2.35663i 0.338773 + 0.0907739i
\(675\) 0 0
\(676\) 1.67302 3.79025i 0.0643468 0.145779i
\(677\) 39.8150i 1.53021i −0.643904 0.765107i \(-0.722686\pi\)
0.643904 0.765107i \(-0.277314\pi\)
\(678\) −6.16575 11.7974i −0.236794 0.453075i
\(679\) −11.5726 20.0443i −0.444115 0.769229i
\(680\) 0 0
\(681\) 0.977744 23.2628i 0.0374672 0.891434i
\(682\) −6.23802 23.2806i −0.238866 0.891460i
\(683\) −3.05980 11.4193i −0.117080 0.436949i 0.882354 0.470586i \(-0.155958\pi\)
−0.999434 + 0.0336375i \(0.989291\pi\)
\(684\) −2.18935 + 1.84926i −0.0837118 + 0.0707082i
\(685\) 0 0
\(686\) −13.0114 22.5364i −0.496778 0.860445i
\(687\) −18.2423 + 9.53410i −0.695986 + 0.363748i
\(688\) 15.5487i 0.592790i
\(689\) 22.2369 + 19.9579i 0.847158 + 0.760334i
\(690\) 0 0
\(691\) −13.1578 3.52563i −0.500547 0.134121i −0.000293354 1.00000i \(-0.500093\pi\)
−0.500254 + 0.865879i \(0.666760\pi\)
\(692\) −0.807399 + 0.466152i −0.0306927 + 0.0177204i
\(693\) −15.9484 11.0900i −0.605831 0.421275i
\(694\) −29.7599 + 29.7599i −1.12967 + 1.12967i
\(695\) 0 0
\(696\) 25.2835 + 16.0496i 0.958370 + 0.608358i
\(697\) −2.69650 2.69650i −0.102137 0.102137i
\(698\) 12.7049 + 7.33517i 0.480887 + 0.277640i
\(699\) −6.30501 + 20.1110i −0.238477 + 0.760669i
\(700\) 0 0
\(701\) −30.0152 −1.13366 −0.566829 0.823836i \(-0.691830\pi\)
−0.566829 + 0.823836i \(0.691830\pi\)
\(702\) −22.9514 7.96046i −0.866246 0.300448i
\(703\) 31.9342 1.20442
\(704\) 6.49778 24.2500i 0.244894 0.913958i
\(705\) 0 0
\(706\) −15.8886 9.17328i −0.597975 0.345241i
\(707\) 21.1348 + 21.1348i 0.794855 + 0.794855i
\(708\) −3.01891 1.91636i −0.113458 0.0720211i
\(709\) 35.0441 9.39004i 1.31611 0.352650i 0.468590 0.883416i \(-0.344762\pi\)
0.847519 + 0.530765i \(0.178095\pi\)
\(710\) 0 0
\(711\) −23.9943 16.6849i −0.899857 0.625731i
\(712\) −4.43297 + 2.55938i −0.166133 + 0.0959167i
\(713\) 2.82782 + 0.757711i 0.105903 + 0.0283765i
\(714\) 17.1125 15.7320i 0.640419 0.588757i
\(715\) 0 0
\(716\) 2.18698i 0.0817312i
\(717\) −33.5453 + 17.5320i −1.25277 + 0.654745i
\(718\) −16.8288 29.1483i −0.628045 1.08781i
\(719\) −23.2174 + 40.2137i −0.865863 + 1.49972i 0.000324371 1.00000i \(0.499897\pi\)
−0.866188 + 0.499719i \(0.833437\pi\)
\(720\) 0 0
\(721\) 3.02379 + 11.2849i 0.112612 + 0.420273i
\(722\) 3.36111 + 12.5438i 0.125088 + 0.466834i
\(723\) 1.80964 43.0557i 0.0673014 1.60126i
\(724\) −3.50578 + 6.07218i −0.130291 + 0.225671i
\(725\) 0 0
\(726\) 3.04531 + 5.82682i 0.113022 + 0.216254i
\(727\) 51.6317i 1.91491i 0.288575 + 0.957457i \(0.406819\pi\)
−0.288575 + 0.957457i \(0.593181\pi\)
\(728\) −7.67174 23.4833i −0.284334 0.870348i
\(729\) 6.73308 26.1470i 0.249373 0.968407i
\(730\) 0 0
\(731\) −18.7533 + 10.8272i −0.693615 + 0.400459i
\(732\) 1.36311 + 6.10157i 0.0503820 + 0.225521i
\(733\) 6.10483 6.10483i 0.225487 0.225487i −0.585317 0.810804i \(-0.699030\pi\)
0.810804 + 0.585317i \(0.199030\pi\)
\(734\) 16.5562 4.43623i 0.611102 0.163744i
\(735\) 0 0
\(736\) 0.564708 + 0.564708i 0.0208154 + 0.0208154i
\(737\) −22.8245 13.1777i −0.840752 0.485409i
\(738\) 1.39002 + 2.95574i 0.0511672 + 0.108802i
\(739\) −4.11405 + 15.3538i −0.151338 + 0.564800i 0.848054 + 0.529911i \(0.177775\pi\)
−0.999391 + 0.0348893i \(0.988892\pi\)
\(740\) 0 0
\(741\) −13.0772 + 13.3937i −0.480403 + 0.492028i
\(742\) 24.4888 0.899012
\(743\) 2.08870 7.79514i 0.0766270 0.285976i −0.916970 0.398955i \(-0.869373\pi\)
0.993597 + 0.112980i \(0.0360395\pi\)
\(744\) 32.5081 + 10.1916i 1.19180 + 0.373642i
\(745\) 0 0
\(746\) 13.8321 + 13.8321i 0.506430 + 0.506430i
\(747\) 0.642465 + 3.57550i 0.0235066 + 0.130821i
\(748\) −3.97224 + 1.06436i −0.145239 + 0.0389168i
\(749\) 11.0747 11.0747i 0.404660 0.404660i
\(750\) 0 0
\(751\) 26.3089 15.1894i 0.960025 0.554271i 0.0638441 0.997960i \(-0.479664\pi\)
0.896181 + 0.443689i \(0.146331\pi\)
\(752\) −13.6462 3.65648i −0.497625 0.133338i
\(753\) 3.64233 + 3.96194i 0.132734 + 0.144381i
\(754\) 23.9751 + 12.1676i 0.873121 + 0.443119i
\(755\) 0 0
\(756\) 3.47961 1.46125i 0.126552 0.0531451i
\(757\) 14.4995 + 25.1140i 0.526995 + 0.912782i 0.999505 + 0.0314569i \(0.0100147\pi\)
−0.472510 + 0.881325i \(0.656652\pi\)
\(758\) −2.96316 + 5.13235i −0.107627 + 0.186415i
\(759\) 2.20023 + 0.0924764i 0.0798634 + 0.00335668i
\(760\) 0 0
\(761\) −1.91474 7.14590i −0.0694092 0.259039i 0.922498 0.386001i \(-0.126144\pi\)
−0.991908 + 0.126962i \(0.959477\pi\)
\(762\) 27.5533 + 1.15807i 0.998150 + 0.0419525i
\(763\) 1.15534 2.00111i 0.0418261 0.0724449i
\(764\) 2.65080 + 4.59132i 0.0959026 + 0.166108i
\(765\) 0 0
\(766\) 19.6276i 0.709174i
\(767\) −20.8276 10.5702i −0.752040 0.381669i
\(768\) 8.72634 + 9.49206i 0.314885 + 0.342515i
\(769\) 39.8453 + 10.6765i 1.43686 + 0.385005i 0.891433 0.453153i \(-0.149701\pi\)
0.545427 + 0.838158i \(0.316368\pi\)
\(770\) 0 0
\(771\) −22.2791 + 4.97723i −0.802364 + 0.179250i
\(772\) −1.50295 + 1.50295i −0.0540925 + 0.0540925i
\(773\) 20.0566 5.37414i 0.721385 0.193294i 0.120595 0.992702i \(-0.461520\pi\)
0.600789 + 0.799407i \(0.294853\pi\)
\(774\) 18.2551 3.28017i 0.656164 0.117903i
\(775\) 0 0
\(776\) 26.4434 + 15.2671i 0.949263 + 0.548057i
\(777\) −40.1279 12.5805i −1.43958 0.451324i
\(778\) 6.83282 25.5004i 0.244968 0.914235i
\(779\) 2.51687 0.0901761
\(780\) 0 0
\(781\) 37.6911 1.34869
\(782\) −0.682044 + 2.54542i −0.0243898 + 0.0910241i
\(783\) −11.3005 + 27.6631i −0.403847 + 0.988599i
\(784\) 5.10113 + 2.94514i 0.182183 + 0.105183i
\(785\) 0 0
\(786\) 1.05402 1.66045i 0.0375958 0.0592261i
\(787\) −14.5265 + 3.89237i −0.517815 + 0.138748i −0.508256 0.861206i \(-0.669710\pi\)
−0.00955922 + 0.999954i \(0.503043\pi\)
\(788\) −2.58921 + 2.58921i −0.0922368 + 0.0922368i
\(789\) 1.19734 + 5.35954i 0.0426263 + 0.190805i
\(790\) 0 0
\(791\) 13.0474 + 3.49605i 0.463913 + 0.124305i
\(792\) 25.5364 + 2.15040i 0.907396 + 0.0764112i
\(793\) 12.6813 + 38.8178i 0.450328 + 1.37846i
\(794\) 40.6326i 1.44200i
\(795\) 0 0
\(796\) 0.0464453 + 0.0804456i 0.00164621 + 0.00285132i
\(797\) −14.4534 + 25.0339i −0.511964 + 0.886748i 0.487940 + 0.872877i \(0.337749\pi\)
−0.999904 + 0.0138705i \(0.995585\pi\)
\(798\) −0.644250 + 15.3282i −0.0228062 + 0.542614i
\(799\) 5.09231 + 19.0048i 0.180153 + 0.672340i
\(800\) 0 0
\(801\) −3.29583 3.90195i −0.116453 0.137869i
\(802\) 9.20894 15.9503i 0.325179 0.563226i
\(803\) 3.14725 + 5.45119i 0.111064 + 0.192368i
\(804\) 4.53800 2.37173i 0.160043 0.0836444i
\(805\) 0 0
\(806\) 29.9273 + 6.31122i 1.05414 + 0.222303i
\(807\) 13.2243 12.1575i 0.465518 0.427964i
\(808\) −38.0875 10.2055i −1.33992 0.359029i
\(809\) 6.32927 3.65421i 0.222525 0.128475i −0.384594 0.923086i \(-0.625658\pi\)
0.607119 + 0.794611i \(0.292325\pi\)
\(810\) 0 0
\(811\) −21.0431 + 21.0431i −0.738922 + 0.738922i −0.972369 0.233447i \(-0.924999\pi\)
0.233447 + 0.972369i \(0.424999\pi\)
\(812\) −4.03453 + 1.08105i −0.141584 + 0.0379374i
\(813\) 31.7851 + 20.1767i 1.11475 + 0.707627i
\(814\) −27.7535 27.7535i −0.972760 0.972760i
\(815\) 0 0
\(816\) −7.67392 + 24.4774i −0.268641 + 0.856881i
\(817\) 3.69902 13.8049i 0.129412 0.482974i
\(818\) 26.7139 0.934028
\(819\) 21.7090 11.6784i 0.758575 0.408078i
\(820\) 0 0
\(821\) 13.1364 49.0257i 0.458464 1.71101i −0.219236 0.975672i \(-0.570357\pi\)
0.677700 0.735339i \(-0.262977\pi\)
\(822\) −4.23051 + 13.4940i −0.147556 + 0.470658i
\(823\) −35.7712 20.6525i −1.24690 0.719901i −0.276414 0.961039i \(-0.589146\pi\)
−0.970491 + 0.241138i \(0.922479\pi\)
\(824\) −10.8985 10.8985i −0.379667 0.379667i
\(825\) 0 0
\(826\) −18.4901 + 4.95442i −0.643354 + 0.172386i
\(827\) 1.56771 1.56771i 0.0545146 0.0545146i −0.679324 0.733839i \(-0.737727\pi\)
0.733839 + 0.679324i \(0.237727\pi\)
\(828\) −0.244259 + 0.351266i −0.00848858 + 0.0122073i
\(829\) 40.6816 23.4875i 1.41293 0.815756i 0.417267 0.908784i \(-0.362988\pi\)
0.995663 + 0.0930281i \(0.0296546\pi\)
\(830\) 0 0
\(831\) 3.03342 2.78872i 0.105228 0.0967395i
\(832\) 23.7101 + 21.2801i 0.821998 + 0.737753i
\(833\) 8.20327i 0.284226i
\(834\) 34.5376 18.0506i 1.19594 0.625043i
\(835\) 0 0
\(836\) 1.35708 2.35053i 0.0469356 0.0812948i
\(837\) −4.27249 + 33.7245i −0.147679 + 1.16569i
\(838\) 4.52459 + 16.8860i 0.156299 + 0.583317i
\(839\) 2.91462 + 10.8775i 0.100624 + 0.375534i 0.997812 0.0661149i \(-0.0210604\pi\)
−0.897188 + 0.441649i \(0.854394\pi\)
\(840\) 0 0
\(841\) 2.03608 3.52660i 0.0702097 0.121607i
\(842\) 10.4818 + 18.1549i 0.361225 + 0.625660i
\(843\) 8.26284 + 15.8099i 0.284587 + 0.544521i
\(844\) 5.06805i 0.174450i
\(845\) 0 0
\(846\) 1.41410 16.7927i 0.0486179 0.577346i
\(847\) −6.44424 1.72673i −0.221427 0.0593311i
\(848\) −23.4040 + 13.5123i −0.803698 + 0.464015i
\(849\) 5.26594 + 23.5715i 0.180727 + 0.808971i
\(850\) 0 0
\(851\) 4.60504 1.23392i 0.157859 0.0422981i
\(852\) −3.92443 + 6.18231i −0.134449 + 0.211802i
\(853\) 21.6293 + 21.6293i 0.740573 + 0.740573i 0.972688 0.232115i \(-0.0745646\pi\)
−0.232115 + 0.972688i \(0.574565\pi\)
\(854\) 28.9850 + 16.7345i 0.991845 + 0.572642i
\(855\) 0 0
\(856\) −5.34773 + 19.9580i −0.182782 + 0.682151i
\(857\) 27.4580 0.937948 0.468974 0.883212i \(-0.344624\pi\)
0.468974 + 0.883212i \(0.344624\pi\)
\(858\) 23.0054 0.275023i 0.785392 0.00938914i
\(859\) −27.6237 −0.942508 −0.471254 0.881998i \(-0.656198\pi\)
−0.471254 + 0.881998i \(0.656198\pi\)
\(860\) 0 0
\(861\) −3.16265 0.991523i −0.107783 0.0337910i
\(862\) −13.7112 7.91615i −0.467004 0.269625i
\(863\) −14.7595 14.7595i −0.502418 0.502418i 0.409771 0.912188i \(-0.365609\pi\)
−0.912188 + 0.409771i \(0.865609\pi\)
\(864\) −5.60925 + 7.38450i −0.190831 + 0.251226i
\(865\) 0 0
\(866\) −15.5190 + 15.5190i −0.527358 + 0.527358i
\(867\) 6.12933 1.36931i 0.208163 0.0465042i
\(868\) −4.11501 + 2.37580i −0.139672 + 0.0806399i
\(869\) 26.7353 + 7.16371i 0.906934 + 0.243012i
\(870\) 0 0
\(871\) 28.0205 18.2606i 0.949440 0.618735i
\(872\) 3.04836i 0.103231i
\(873\) −10.3273 + 28.6641i −0.349528 + 0.970134i
\(874\) −0.869622 1.50623i −0.0294154 0.0509490i
\(875\) 0 0
\(876\) −1.22183 0.0513538i −0.0412818 0.00173508i
\(877\) −3.75997 14.0324i −0.126965 0.473841i 0.872937 0.487833i \(-0.162213\pi\)
−0.999902 + 0.0139924i \(0.995546\pi\)
\(878\) −0.941710 3.51451i −0.0317812 0.118609i
\(879\) 47.6514 + 2.00280i 1.60724 + 0.0675527i
\(880\) 0 0
\(881\) 19.4302 + 33.6541i 0.654619 + 1.13383i 0.981989 + 0.188938i \(0.0605045\pi\)
−0.327370 + 0.944896i \(0.606162\pi\)
\(882\) −2.38161 + 6.61031i −0.0801931 + 0.222581i
\(883\) 8.78225i 0.295546i 0.989021 + 0.147773i \(0.0472106\pi\)
−0.989021 + 0.147773i \(0.952789\pi\)
\(884\) 1.07685 5.10633i 0.0362183 0.171744i
\(885\) 0 0
\(886\) 34.4259 + 9.22439i 1.15656 + 0.309899i
\(887\) −29.4578 + 17.0075i −0.989097 + 0.571055i −0.905004 0.425403i \(-0.860132\pi\)
−0.0840926 + 0.996458i \(0.526799\pi\)
\(888\) 54.1447 12.0961i 1.81698 0.405918i
\(889\) −19.7878 + 19.7878i −0.663662 + 0.663662i
\(890\) 0 0
\(891\) 2.39447 + 25.4587i 0.0802177 + 0.852898i
\(892\) −0.999721 0.999721i −0.0334731 0.0334731i
\(893\) −11.2459 6.49281i −0.376329 0.217274i
\(894\) −47.5359 14.9030i −1.58984 0.498431i
\(895\) 0 0
\(896\) 17.9768 0.600562
\(897\) −1.36826 + 2.43671i −0.0456850 + 0.0813595i
\(898\) 9.54630 0.318564
\(899\) 9.73754 36.3410i 0.324765 1.21204i
\(900\) 0 0
\(901\) 32.5943 + 18.8184i 1.08588 + 0.626930i
\(902\) −2.18737 2.18737i −0.0728314 0.0728314i
\(903\) −10.0866 + 15.8898i −0.335661 + 0.528780i
\(904\) −17.2128 + 4.61216i −0.572490 + 0.153398i
\(905\) 0 0
\(906\) 0.343019 + 1.53543i 0.0113961 + 0.0510112i
\(907\) 33.7449 19.4826i 1.12048 0.646911i 0.178958 0.983857i \(-0.442727\pi\)
0.941524 + 0.336946i \(0.109394\pi\)
\(908\) −4.13816 1.10882i −0.137330 0.0367974i
\(909\) 3.30156 39.2066i 0.109506 1.30040i
\(910\) 0 0
\(911\) 54.4600i 1.80434i −0.431379 0.902171i \(-0.641973\pi\)
0.431379 0.902171i \(-0.358027\pi\)
\(912\) −7.84204 15.0047i −0.259676 0.496857i
\(913\) −1.72025 2.97956i −0.0569319 0.0986090i
\(914\) −0.155463 + 0.269270i −0.00514227 + 0.00890667i
\(915\) 0 0
\(916\) 0.980240 + 3.65830i 0.0323880 + 0.120874i
\(917\) 0.516534 + 1.92773i 0.0170574 + 0.0636593i
\(918\) −30.3567 3.84583i −1.00192 0.126931i
\(919\) −15.1481 + 26.2373i −0.499690 + 0.865488i −1.00000 0.000358010i \(-0.999886\pi\)
0.500310 + 0.865846i \(0.333219\pi\)
\(920\) 0 0
\(921\) −24.7942 + 12.9584i −0.816997 + 0.426993i
\(922\) 22.0163i 0.725067i
\(923\) −21.6464 + 42.6520i −0.712500 + 1.40391i
\(924\) −2.63128 + 2.41901i −0.0865627 + 0.0795797i
\(925\) 0 0
\(926\) 20.7073 11.9553i 0.680483 0.392877i
\(927\) 8.78013 12.6266i 0.288377 0.414712i
\(928\) 7.25722 7.25722i 0.238230 0.238230i
\(929\) −47.5492 + 12.7408i −1.56004 + 0.418011i −0.932675 0.360717i \(-0.882532\pi\)
−0.627362 + 0.778728i \(0.715865\pi\)
\(930\) 0 0
\(931\) 3.82839 + 3.82839i 0.125470 + 0.125470i
\(932\) 3.35846 + 1.93901i 0.110010 + 0.0635144i
\(933\) 4.27524 13.6367i 0.139965 0.446445i
\(934\) −5.30563 + 19.8009i −0.173605 + 0.647904i
\(935\) 0 0
\(936\) −17.0992 + 27.6625i −0.558906 + 0.904176i
\(937\) 36.4014 1.18918 0.594590 0.804029i \(-0.297314\pi\)
0.594590 + 0.804029i \(0.297314\pi\)
\(938\) 7.09455 26.4772i 0.231645 0.864512i
\(939\) −6.52604 + 20.8160i −0.212969 + 0.679306i
\(940\) 0 0
\(941\) −0.425527 0.425527i −0.0138718 0.0138718i 0.700137 0.714009i \(-0.253122\pi\)
−0.714009 + 0.700137i \(0.753122\pi\)
\(942\) −40.7186 25.8476i −1.32669 0.842159i
\(943\) 0.362942 0.0972501i 0.0118190 0.00316690i
\(944\) 14.9374 14.9374i 0.486170 0.486170i
\(945\) 0 0
\(946\) −15.2124 + 8.78290i −0.494599 + 0.285557i
\(947\) 33.3137 + 8.92637i 1.08255 + 0.290068i 0.755640 0.654988i \(-0.227326\pi\)
0.326909 + 0.945056i \(0.393993\pi\)
\(948\) −3.95874 + 3.63939i −0.128574 + 0.118202i
\(949\) −7.97617 + 0.430810i −0.258917 + 0.0139847i
\(950\) 0 0
\(951\) 8.74601 4.57100i 0.283609 0.148225i
\(952\) −15.5591 26.9492i −0.504274 0.873428i
\(953\) −25.8040 + 44.6938i −0.835873 + 1.44778i 0.0574438 + 0.998349i \(0.481705\pi\)
−0.893317 + 0.449427i \(0.851628\pi\)
\(954\) −20.8015 24.6270i −0.673474 0.797330i
\(955\) 0 0
\(956\) 1.80254 + 6.72716i 0.0582983 + 0.217572i
\(957\) 1.18844 28.2758i 0.0384167 0.914026i
\(958\) 2.86036 4.95429i 0.0924140 0.160066i
\(959\) −7.17507 12.4276i −0.231695 0.401308i
\(960\) 0 0
\(961\) 11.8000i 0.380644i
\(962\) 47.3455 15.4673i 1.52648 0.498685i
\(963\) −20.5444 1.73003i −0.662034 0.0557494i
\(964\) −7.65906 2.05224i −0.246682 0.0660982i
\(965\) 0 0
\(966\) 0.499370 + 2.23529i 0.0160670 + 0.0719192i
\(967\) 13.6221 13.6221i 0.438057 0.438057i −0.453300 0.891358i \(-0.649754\pi\)
0.891358 + 0.453300i \(0.149754\pi\)
\(968\) 8.50156 2.27799i 0.273250 0.0732172i
\(969\) −12.6364 + 19.9067i −0.405941 + 0.639494i
\(970\) 0 0
\(971\) −34.7333 20.0533i −1.11465 0.643541i −0.174617 0.984637i \(-0.555869\pi\)
−0.940029 + 0.341096i \(0.889202\pi\)
\(972\) −4.42519 2.25803i −0.141938 0.0724262i
\(973\) −10.2349 + 38.1973i −0.328117 + 1.22455i
\(974\) 51.8966 1.66288
\(975\) 0 0
\(976\) −36.9347 −1.18225
\(977\) −0.401205 + 1.49732i −0.0128357 + 0.0479034i −0.972047 0.234788i \(-0.924560\pi\)
0.959211 + 0.282691i \(0.0912272\pi\)
\(978\) −23.7359 7.44146i −0.758992 0.237952i
\(979\) 4.18922 + 2.41865i 0.133888 + 0.0773004i
\(980\) 0 0
\(981\) −2.99378 + 0.537940i −0.0955842 + 0.0171751i
\(982\) −17.6241 + 4.72235i −0.562406 + 0.150696i
\(983\) 7.26168 7.26168i 0.231611 0.231611i −0.581754 0.813365i \(-0.697633\pi\)
0.813365 + 0.581754i \(0.197633\pi\)
\(984\) 4.26737 0.953343i 0.136039 0.0303915i
\(985\) 0 0
\(986\) 32.7119 + 8.76512i 1.04176 + 0.279138i
\(987\) 11.5735 + 12.5891i 0.368389 + 0.400715i
\(988\) 1.88052 + 2.88563i 0.0598273 + 0.0918042i
\(989\) 2.13366i 0.0678464i
\(990\) 0 0
\(991\) −26.1268 45.2530i −0.829946 1.43751i −0.898080 0.439832i \(-0.855038\pi\)
0.0681339 0.997676i \(-0.478295\pi\)
\(992\) 5.83775 10.1113i 0.185349 0.321033i
\(993\) −27.9649 1.17537i −0.887438 0.0372992i
\(994\) 10.1460 + 37.8652i 0.321810 + 1.20101i
\(995\) 0 0
\(996\) 0.667837 + 0.0280694i 0.0211612 + 0.000889412i
\(997\) −0.181069 + 0.313621i −0.00573451 + 0.00993247i −0.868878 0.495026i \(-0.835159\pi\)
0.863144 + 0.504958i \(0.168492\pi\)
\(998\) 11.8274 + 20.4856i 0.374389 + 0.648460i
\(999\) 21.4344 + 51.0407i 0.678153 + 1.61486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bo.h.626.8 96
3.2 odd 2 inner 975.2.bo.h.626.18 96
5.2 odd 4 195.2.bh.a.119.8 yes 96
5.3 odd 4 195.2.bh.a.119.17 yes 96
5.4 even 2 inner 975.2.bo.h.626.17 96
13.7 odd 12 inner 975.2.bo.h.176.18 96
15.2 even 4 195.2.bh.a.119.18 yes 96
15.8 even 4 195.2.bh.a.119.7 yes 96
15.14 odd 2 inner 975.2.bo.h.626.7 96
39.20 even 12 inner 975.2.bo.h.176.8 96
65.7 even 12 195.2.bh.a.59.7 96
65.33 even 12 195.2.bh.a.59.18 yes 96
65.59 odd 12 inner 975.2.bo.h.176.7 96
195.59 even 12 inner 975.2.bo.h.176.17 96
195.98 odd 12 195.2.bh.a.59.8 yes 96
195.137 odd 12 195.2.bh.a.59.17 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bh.a.59.7 96 65.7 even 12
195.2.bh.a.59.8 yes 96 195.98 odd 12
195.2.bh.a.59.17 yes 96 195.137 odd 12
195.2.bh.a.59.18 yes 96 65.33 even 12
195.2.bh.a.119.7 yes 96 15.8 even 4
195.2.bh.a.119.8 yes 96 5.2 odd 4
195.2.bh.a.119.17 yes 96 5.3 odd 4
195.2.bh.a.119.18 yes 96 15.2 even 4
975.2.bo.h.176.7 96 65.59 odd 12 inner
975.2.bo.h.176.8 96 39.20 even 12 inner
975.2.bo.h.176.17 96 195.59 even 12 inner
975.2.bo.h.176.18 96 13.7 odd 12 inner
975.2.bo.h.626.7 96 15.14 odd 2 inner
975.2.bo.h.626.8 96 1.1 even 1 trivial
975.2.bo.h.626.17 96 5.4 even 2 inner
975.2.bo.h.626.18 96 3.2 odd 2 inner