Properties

Label 975.2.bo.h.626.19
Level $975$
Weight $2$
Character 975.626
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(176,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.176"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,24,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 626.19
Character \(\chi\) \(=\) 975.626
Dual form 975.2.bo.h.176.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.447071 - 1.66849i) q^{2} +(-1.69272 + 0.367032i) q^{3} +(-0.851938 - 0.491866i) q^{4} +(-0.144374 + 2.98837i) q^{6} +(-3.09993 + 0.830623i) q^{7} +(1.24129 - 1.24129i) q^{8} +(2.73057 - 1.24256i) q^{9} +(1.14830 + 0.307686i) q^{11} +(1.62262 + 0.519902i) q^{12} +(-3.19776 - 1.66563i) q^{13} +5.54355i q^{14} +(-2.49987 - 4.32990i) q^{16} +(-2.72229 + 4.71514i) q^{17} +(-0.852444 - 5.11145i) q^{18} +(-0.476790 - 1.77941i) q^{19} +(4.94243 - 2.54378i) q^{21} +(1.02674 - 1.77837i) q^{22} +(1.97237 + 3.41625i) q^{23} +(-1.64556 + 2.55674i) q^{24} +(-4.20871 + 4.59079i) q^{26} +(-4.16603 + 3.10551i) q^{27} +(3.04950 + 0.817112i) q^{28} +(-7.04243 + 4.06595i) q^{29} +(-0.148047 + 0.148047i) q^{31} +(-4.95075 + 1.32655i) q^{32} +(-2.05668 - 0.0993620i) q^{33} +(6.65011 + 6.65011i) q^{34} +(-2.93745 - 0.284492i) q^{36} +(-1.84876 + 6.89966i) q^{37} -3.18208 q^{38} +(6.02424 + 1.64575i) q^{39} +(-2.36667 + 8.83254i) q^{41} +(-2.03466 - 9.38365i) q^{42} +(-0.678803 - 0.391907i) q^{43} +(-0.826939 - 0.826939i) q^{44} +(6.58176 - 1.76358i) q^{46} +(6.23046 - 6.23046i) q^{47} +(5.82078 + 6.41176i) q^{48} +(2.85745 - 1.64975i) q^{49} +(2.87745 - 8.98056i) q^{51} +(1.90503 + 2.99188i) q^{52} +0.952426i q^{53} +(3.31901 + 8.33936i) q^{54} +(-2.81686 + 4.87895i) q^{56} +(1.46017 + 2.83703i) q^{57} +(3.63553 + 13.5680i) q^{58} +(2.09784 + 7.82924i) q^{59} +(-6.49787 + 11.2546i) q^{61} +(0.180828 + 0.313203i) q^{62} +(-7.43249 + 6.11993i) q^{63} -1.14613i q^{64} +(-1.08526 + 3.38712i) q^{66} +(-2.29493 - 0.614925i) q^{67} +(4.63844 - 2.67800i) q^{68} +(-4.59254 - 5.05881i) q^{69} +(1.72575 - 0.462414i) q^{71} +(1.84705 - 4.93181i) q^{72} +(-9.70845 - 9.70845i) q^{73} +(10.6855 + 6.16928i) q^{74} +(-0.469034 + 1.75046i) q^{76} -3.81522 q^{77} +(5.43918 - 9.31563i) q^{78} +0.0854873 q^{79} +(5.91208 - 6.78582i) q^{81} +(13.6789 + 7.89754i) q^{82} +(4.49219 + 4.49219i) q^{83} +(-5.46185 - 0.263872i) q^{84} +(-0.957366 + 0.957366i) q^{86} +(10.4285 - 9.46729i) q^{87} +(1.80730 - 1.04344i) q^{88} +(-5.10951 - 1.36909i) q^{89} +(11.2963 + 2.50718i) q^{91} -3.88057i q^{92} +(0.196264 - 0.304940i) q^{93} +(-7.61001 - 13.1809i) q^{94} +(7.89332 - 4.06255i) q^{96} +(0.498193 + 1.85928i) q^{97} +(-1.47511 - 5.50517i) q^{98} +(3.51784 - 0.586675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 24 q^{4} + 4 q^{9} - 16 q^{21} + 28 q^{24} - 40 q^{31} + 32 q^{34} - 60 q^{36} + 4 q^{39} - 128 q^{46} - 60 q^{54} - 48 q^{61} - 8 q^{66} - 72 q^{69} - 80 q^{76} + 80 q^{79} + 48 q^{81} + 132 q^{84}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.447071 1.66849i 0.316127 1.17980i −0.606809 0.794847i \(-0.707551\pi\)
0.922936 0.384953i \(-0.125783\pi\)
\(3\) −1.69272 + 0.367032i −0.977290 + 0.211906i
\(4\) −0.851938 0.491866i −0.425969 0.245933i
\(5\) 0 0
\(6\) −0.144374 + 2.98837i −0.0589404 + 1.22000i
\(7\) −3.09993 + 0.830623i −1.17166 + 0.313946i −0.791615 0.611021i \(-0.790759\pi\)
−0.380048 + 0.924967i \(0.624093\pi\)
\(8\) 1.24129 1.24129i 0.438862 0.438862i
\(9\) 2.73057 1.24256i 0.910192 0.414188i
\(10\) 0 0
\(11\) 1.14830 + 0.307686i 0.346225 + 0.0927708i 0.427741 0.903901i \(-0.359309\pi\)
−0.0815158 + 0.996672i \(0.525976\pi\)
\(12\) 1.62262 + 0.519902i 0.468410 + 0.150083i
\(13\) −3.19776 1.66563i −0.886900 0.461961i
\(14\) 5.54355i 1.48158i
\(15\) 0 0
\(16\) −2.49987 4.32990i −0.624967 1.08247i
\(17\) −2.72229 + 4.71514i −0.660251 + 1.14359i 0.320298 + 0.947317i \(0.396217\pi\)
−0.980549 + 0.196272i \(0.937116\pi\)
\(18\) −0.852444 5.11145i −0.200923 1.20478i
\(19\) −0.476790 1.77941i −0.109383 0.408224i 0.889422 0.457086i \(-0.151107\pi\)
−0.998806 + 0.0488627i \(0.984440\pi\)
\(20\) 0 0
\(21\) 4.94243 2.54378i 1.07853 0.555099i
\(22\) 1.02674 1.77837i 0.218902 0.379150i
\(23\) 1.97237 + 3.41625i 0.411268 + 0.712337i 0.995029 0.0995889i \(-0.0317528\pi\)
−0.583761 + 0.811926i \(0.698419\pi\)
\(24\) −1.64556 + 2.55674i −0.335898 + 0.521893i
\(25\) 0 0
\(26\) −4.20871 + 4.59079i −0.825395 + 0.900327i
\(27\) −4.16603 + 3.10551i −0.801752 + 0.597657i
\(28\) 3.04950 + 0.817112i 0.576302 + 0.154420i
\(29\) −7.04243 + 4.06595i −1.30775 + 0.755027i −0.981720 0.190333i \(-0.939043\pi\)
−0.326026 + 0.945361i \(0.605710\pi\)
\(30\) 0 0
\(31\) −0.148047 + 0.148047i −0.0265900 + 0.0265900i −0.720277 0.693687i \(-0.755985\pi\)
0.693687 + 0.720277i \(0.255985\pi\)
\(32\) −4.95075 + 1.32655i −0.875177 + 0.234503i
\(33\) −2.05668 0.0993620i −0.358021 0.0172967i
\(34\) 6.65011 + 6.65011i 1.14048 + 1.14048i
\(35\) 0 0
\(36\) −2.93745 0.284492i −0.489576 0.0474154i
\(37\) −1.84876 + 6.89966i −0.303934 + 1.13430i 0.629925 + 0.776656i \(0.283086\pi\)
−0.933859 + 0.357642i \(0.883581\pi\)
\(38\) −3.18208 −0.516202
\(39\) 6.02424 + 1.64575i 0.964651 + 0.263531i
\(40\) 0 0
\(41\) −2.36667 + 8.83254i −0.369612 + 1.37941i 0.491448 + 0.870907i \(0.336468\pi\)
−0.861060 + 0.508504i \(0.830199\pi\)
\(42\) −2.03466 9.38365i −0.313955 1.44793i
\(43\) −0.678803 0.391907i −0.103517 0.0597653i 0.447348 0.894360i \(-0.352369\pi\)
−0.550864 + 0.834595i \(0.685702\pi\)
\(44\) −0.826939 0.826939i −0.124666 0.124666i
\(45\) 0 0
\(46\) 6.58176 1.76358i 0.970428 0.260025i
\(47\) 6.23046 6.23046i 0.908806 0.908806i −0.0873702 0.996176i \(-0.527846\pi\)
0.996176 + 0.0873702i \(0.0278463\pi\)
\(48\) 5.82078 + 6.41176i 0.840157 + 0.925457i
\(49\) 2.85745 1.64975i 0.408207 0.235678i
\(50\) 0 0
\(51\) 2.87745 8.98056i 0.402924 1.25753i
\(52\) 1.90503 + 2.99188i 0.264180 + 0.414899i
\(53\) 0.952426i 0.130826i 0.997858 + 0.0654129i \(0.0208365\pi\)
−0.997858 + 0.0654129i \(0.979164\pi\)
\(54\) 3.31901 + 8.33936i 0.451660 + 1.13484i
\(55\) 0 0
\(56\) −2.81686 + 4.87895i −0.376419 + 0.651977i
\(57\) 1.46017 + 2.83703i 0.193404 + 0.375774i
\(58\) 3.63553 + 13.5680i 0.477369 + 1.78156i
\(59\) 2.09784 + 7.82924i 0.273115 + 1.01928i 0.957094 + 0.289778i \(0.0935814\pi\)
−0.683979 + 0.729502i \(0.739752\pi\)
\(60\) 0 0
\(61\) −6.49787 + 11.2546i −0.831967 + 1.44101i 0.0645090 + 0.997917i \(0.479452\pi\)
−0.896476 + 0.443092i \(0.853881\pi\)
\(62\) 0.180828 + 0.313203i 0.0229651 + 0.0397768i
\(63\) −7.43249 + 6.11993i −0.936405 + 0.771039i
\(64\) 1.14613i 0.143267i
\(65\) 0 0
\(66\) −1.08526 + 3.38712i −0.133587 + 0.416926i
\(67\) −2.29493 0.614925i −0.280370 0.0751250i 0.115894 0.993262i \(-0.463027\pi\)
−0.396264 + 0.918137i \(0.629693\pi\)
\(68\) 4.63844 2.67800i 0.562493 0.324756i
\(69\) −4.59254 5.05881i −0.552876 0.609009i
\(70\) 0 0
\(71\) 1.72575 0.462414i 0.204809 0.0548784i −0.154956 0.987921i \(-0.549524\pi\)
0.359765 + 0.933043i \(0.382857\pi\)
\(72\) 1.84705 4.93181i 0.217677 0.581219i
\(73\) −9.70845 9.70845i −1.13629 1.13629i −0.989110 0.147177i \(-0.952981\pi\)
−0.147177 0.989110i \(-0.547019\pi\)
\(74\) 10.6855 + 6.16928i 1.24216 + 0.717164i
\(75\) 0 0
\(76\) −0.469034 + 1.75046i −0.0538019 + 0.200792i
\(77\) −3.81522 −0.434785
\(78\) 5.43918 9.31563i 0.615866 1.05479i
\(79\) 0.0854873 0.00961807 0.00480903 0.999988i \(-0.498469\pi\)
0.00480903 + 0.999988i \(0.498469\pi\)
\(80\) 0 0
\(81\) 5.91208 6.78582i 0.656897 0.753980i
\(82\) 13.6789 + 7.89754i 1.51059 + 0.872137i
\(83\) 4.49219 + 4.49219i 0.493082 + 0.493082i 0.909276 0.416194i \(-0.136636\pi\)
−0.416194 + 0.909276i \(0.636636\pi\)
\(84\) −5.46185 0.263872i −0.595936 0.0287908i
\(85\) 0 0
\(86\) −0.957366 + 0.957366i −0.103235 + 0.103235i
\(87\) 10.4285 9.46729i 1.11805 1.01500i
\(88\) 1.80730 1.04344i 0.192659 0.111232i
\(89\) −5.10951 1.36909i −0.541607 0.145123i −0.0223639 0.999750i \(-0.507119\pi\)
−0.519243 + 0.854627i \(0.673786\pi\)
\(90\) 0 0
\(91\) 11.2963 + 2.50718i 1.18418 + 0.262824i
\(92\) 3.88057i 0.404578i
\(93\) 0.196264 0.304940i 0.0203516 0.0316208i
\(94\) −7.61001 13.1809i −0.784912 1.35951i
\(95\) 0 0
\(96\) 7.89332 4.06255i 0.805609 0.414633i
\(97\) 0.498193 + 1.85928i 0.0505838 + 0.188781i 0.986595 0.163190i \(-0.0521782\pi\)
−0.936011 + 0.351971i \(0.885512\pi\)
\(98\) −1.47511 5.50517i −0.149008 0.556107i
\(99\) 3.51784 0.586675i 0.353556 0.0589630i
\(100\) 0 0
\(101\) −5.91840 10.2510i −0.588903 1.02001i −0.994377 0.105903i \(-0.966227\pi\)
0.405474 0.914107i \(-0.367107\pi\)
\(102\) −13.6976 8.81594i −1.35626 0.872908i
\(103\) 6.77628i 0.667686i 0.942629 + 0.333843i \(0.108346\pi\)
−0.942629 + 0.333843i \(0.891654\pi\)
\(104\) −6.03687 + 1.90183i −0.591964 + 0.186489i
\(105\) 0 0
\(106\) 1.58911 + 0.425802i 0.154348 + 0.0413575i
\(107\) 4.52298 2.61134i 0.437253 0.252448i −0.265179 0.964199i \(-0.585431\pi\)
0.702432 + 0.711751i \(0.252098\pi\)
\(108\) 5.07669 0.596576i 0.488505 0.0574055i
\(109\) 1.57960 1.57960i 0.151298 0.151298i −0.627399 0.778698i \(-0.715881\pi\)
0.778698 + 0.627399i \(0.215881\pi\)
\(110\) 0 0
\(111\) 0.597026 12.3577i 0.0566672 1.17294i
\(112\) 11.3459 + 11.3459i 1.07209 + 1.07209i
\(113\) −4.05939 2.34369i −0.381875 0.220476i 0.296759 0.954953i \(-0.404094\pi\)
−0.678634 + 0.734477i \(0.737428\pi\)
\(114\) 5.38636 1.16793i 0.504479 0.109386i
\(115\) 0 0
\(116\) 7.99961 0.742745
\(117\) −10.8014 0.574694i −0.998588 0.0531305i
\(118\) 14.0009 1.28889
\(119\) 4.52239 16.8778i 0.414567 1.54718i
\(120\) 0 0
\(121\) −8.30236 4.79337i −0.754760 0.435761i
\(122\) 15.8733 + 15.8733i 1.43710 + 1.43710i
\(123\) 0.764277 15.8196i 0.0689125 1.42641i
\(124\) 0.198946 0.0533075i 0.0178659 0.00478715i
\(125\) 0 0
\(126\) 6.88821 + 15.1371i 0.613650 + 1.34852i
\(127\) 13.7710 7.95071i 1.22198 0.705512i 0.256642 0.966507i \(-0.417384\pi\)
0.965340 + 0.260995i \(0.0840506\pi\)
\(128\) −11.8138 3.16550i −1.04420 0.279793i
\(129\) 1.29286 + 0.414245i 0.113830 + 0.0364722i
\(130\) 0 0
\(131\) 2.54531i 0.222385i −0.993799 0.111192i \(-0.964533\pi\)
0.993799 0.111192i \(-0.0354670\pi\)
\(132\) 1.70329 + 1.09626i 0.148252 + 0.0954172i
\(133\) 2.95603 + 5.12000i 0.256321 + 0.443960i
\(134\) −2.05199 + 3.55415i −0.177265 + 0.307032i
\(135\) 0 0
\(136\) 2.47370 + 9.23199i 0.212118 + 0.791637i
\(137\) −0.986463 3.68153i −0.0842792 0.314534i 0.910898 0.412633i \(-0.135391\pi\)
−0.995177 + 0.0980984i \(0.968724\pi\)
\(138\) −10.4938 + 5.40096i −0.893289 + 0.459760i
\(139\) −10.0439 + 17.3966i −0.851915 + 1.47556i 0.0275635 + 0.999620i \(0.491225\pi\)
−0.879478 + 0.475939i \(0.842108\pi\)
\(140\) 0 0
\(141\) −8.25962 + 12.8332i −0.695585 + 1.08075i
\(142\) 3.08613i 0.258982i
\(143\) −3.15950 2.89654i −0.264211 0.242221i
\(144\) −12.2062 8.71687i −1.01719 0.726406i
\(145\) 0 0
\(146\) −20.5388 + 11.8581i −1.69980 + 0.981382i
\(147\) −4.23133 + 3.84133i −0.348995 + 0.316827i
\(148\) 4.96874 4.96874i 0.408428 0.408428i
\(149\) −2.43030 + 0.651196i −0.199098 + 0.0533481i −0.356990 0.934108i \(-0.616197\pi\)
0.157892 + 0.987456i \(0.449530\pi\)
\(150\) 0 0
\(151\) −13.6575 13.6575i −1.11143 1.11143i −0.992957 0.118477i \(-0.962199\pi\)
−0.118477 0.992957i \(-0.537801\pi\)
\(152\) −2.80059 1.61692i −0.227158 0.131150i
\(153\) −1.57455 + 16.2576i −0.127295 + 1.31435i
\(154\) −1.70567 + 6.36566i −0.137447 + 0.512959i
\(155\) 0 0
\(156\) −4.32279 4.36520i −0.346100 0.349496i
\(157\) 5.38756 0.429974 0.214987 0.976617i \(-0.431029\pi\)
0.214987 + 0.976617i \(0.431029\pi\)
\(158\) 0.0382189 0.142635i 0.00304053 0.0113474i
\(159\) −0.349571 1.61219i −0.0277228 0.127855i
\(160\) 0 0
\(161\) −8.95182 8.95182i −0.705503 0.705503i
\(162\) −8.67896 12.8980i −0.681883 1.01336i
\(163\) 12.0398 3.22604i 0.943027 0.252683i 0.245626 0.969365i \(-0.421007\pi\)
0.697401 + 0.716681i \(0.254340\pi\)
\(164\) 6.36068 6.36068i 0.496686 0.496686i
\(165\) 0 0
\(166\) 9.50350 5.48685i 0.737615 0.425862i
\(167\) −10.1406 2.71716i −0.784702 0.210260i −0.155845 0.987781i \(-0.549810\pi\)
−0.628857 + 0.777521i \(0.716477\pi\)
\(168\) 2.97742 9.29256i 0.229713 0.716936i
\(169\) 7.45138 + 10.6526i 0.573183 + 0.819427i
\(170\) 0 0
\(171\) −3.51293 4.26636i −0.268641 0.326257i
\(172\) 0.385532 + 0.667761i 0.0293965 + 0.0509163i
\(173\) −8.41484 + 14.5749i −0.639768 + 1.10811i 0.345715 + 0.938340i \(0.387636\pi\)
−0.985483 + 0.169772i \(0.945697\pi\)
\(174\) −11.1338 21.6324i −0.844052 1.63995i
\(175\) 0 0
\(176\) −1.53835 5.74120i −0.115957 0.432759i
\(177\) −6.42462 12.4827i −0.482904 0.938257i
\(178\) −4.56862 + 7.91308i −0.342433 + 0.593111i
\(179\) −9.06243 15.6966i −0.677358 1.17322i −0.975774 0.218783i \(-0.929791\pi\)
0.298415 0.954436i \(-0.403542\pi\)
\(180\) 0 0
\(181\) 0.330859i 0.0245925i −0.999924 0.0122963i \(-0.996086\pi\)
0.999924 0.0122963i \(-0.00391412\pi\)
\(182\) 9.23348 17.7270i 0.684431 1.31401i
\(183\) 6.86823 21.4358i 0.507714 1.58458i
\(184\) 6.68883 + 1.79227i 0.493107 + 0.132128i
\(185\) 0 0
\(186\) −0.421045 0.463793i −0.0308725 0.0340070i
\(187\) −4.57678 + 4.57678i −0.334688 + 0.334688i
\(188\) −8.37252 + 2.24341i −0.610628 + 0.163617i
\(189\) 10.3349 13.0873i 0.751751 0.951959i
\(190\) 0 0
\(191\) 10.9457 + 6.31949i 0.792001 + 0.457262i 0.840667 0.541553i \(-0.182163\pi\)
−0.0486655 + 0.998815i \(0.515497\pi\)
\(192\) 0.420668 + 1.94008i 0.0303591 + 0.140013i
\(193\) 1.74154 6.49950i 0.125359 0.467845i −0.874494 0.485037i \(-0.838806\pi\)
0.999852 + 0.0171925i \(0.00547280\pi\)
\(194\) 3.32492 0.238715
\(195\) 0 0
\(196\) −3.24582 −0.231844
\(197\) −4.25210 + 15.8690i −0.302949 + 1.13062i 0.631747 + 0.775175i \(0.282338\pi\)
−0.934696 + 0.355447i \(0.884328\pi\)
\(198\) 0.593861 6.13176i 0.0422039 0.435765i
\(199\) −6.32168 3.64982i −0.448132 0.258729i 0.258909 0.965902i \(-0.416637\pi\)
−0.707041 + 0.707173i \(0.749970\pi\)
\(200\) 0 0
\(201\) 4.11036 + 0.198580i 0.289923 + 0.0140067i
\(202\) −19.7496 + 5.29188i −1.38958 + 0.372336i
\(203\) 18.4538 18.4538i 1.29520 1.29520i
\(204\) −6.86864 + 6.23555i −0.480901 + 0.436576i
\(205\) 0 0
\(206\) 11.3062 + 3.02948i 0.787737 + 0.211074i
\(207\) 9.63061 + 6.87752i 0.669373 + 0.478021i
\(208\) 0.781997 + 18.0098i 0.0542217 + 1.24876i
\(209\) 2.18999i 0.151485i
\(210\) 0 0
\(211\) −13.1703 22.8117i −0.906684 1.57042i −0.818641 0.574305i \(-0.805272\pi\)
−0.0880423 0.996117i \(-0.528061\pi\)
\(212\) 0.468467 0.811408i 0.0321744 0.0557277i
\(213\) −2.75149 + 1.41614i −0.188529 + 0.0970324i
\(214\) −2.33491 8.71401i −0.159611 0.595677i
\(215\) 0 0
\(216\) −1.31640 + 9.02608i −0.0895698 + 0.614147i
\(217\) 0.335964 0.581907i 0.0228067 0.0395024i
\(218\) −1.92936 3.34174i −0.130672 0.226331i
\(219\) 19.9970 + 12.8703i 1.35127 + 0.869696i
\(220\) 0 0
\(221\) 16.5589 10.5436i 1.11387 0.709238i
\(222\) −20.3518 6.52091i −1.36593 0.437655i
\(223\) −3.29955 0.884112i −0.220954 0.0592045i 0.146643 0.989189i \(-0.453153\pi\)
−0.367598 + 0.929985i \(0.619820\pi\)
\(224\) 14.2451 8.22441i 0.951791 0.549517i
\(225\) 0 0
\(226\) −5.72526 + 5.72526i −0.380838 + 0.380838i
\(227\) −11.8793 + 3.18305i −0.788456 + 0.211266i −0.630510 0.776181i \(-0.717154\pi\)
−0.157947 + 0.987448i \(0.550487\pi\)
\(228\) 0.151467 3.13518i 0.0100311 0.207633i
\(229\) −4.45823 4.45823i −0.294608 0.294608i 0.544289 0.838898i \(-0.316799\pi\)
−0.838898 + 0.544289i \(0.816799\pi\)
\(230\) 0 0
\(231\) 6.45808 1.40031i 0.424911 0.0921335i
\(232\) −3.69467 + 13.7887i −0.242567 + 0.905273i
\(233\) 7.44279 0.487594 0.243797 0.969826i \(-0.421607\pi\)
0.243797 + 0.969826i \(0.421607\pi\)
\(234\) −5.78785 + 17.7651i −0.378364 + 1.16134i
\(235\) 0 0
\(236\) 2.06371 7.70188i 0.134336 0.501349i
\(237\) −0.144706 + 0.0313766i −0.00939964 + 0.00203813i
\(238\) −26.1386 15.0911i −1.69431 0.978213i
\(239\) 13.3710 + 13.3710i 0.864899 + 0.864899i 0.991902 0.127003i \(-0.0405358\pi\)
−0.127003 + 0.991902i \(0.540536\pi\)
\(240\) 0 0
\(241\) 28.0098 7.50522i 1.80427 0.483453i 0.809640 0.586926i \(-0.199662\pi\)
0.994632 + 0.103473i \(0.0329955\pi\)
\(242\) −11.7094 + 11.7094i −0.752711 + 0.752711i
\(243\) −7.51685 + 13.6564i −0.482206 + 0.876058i
\(244\) 11.0716 6.39217i 0.708784 0.409217i
\(245\) 0 0
\(246\) −26.0532 8.34768i −1.66109 0.532228i
\(247\) −1.43916 + 6.48427i −0.0915716 + 0.412584i
\(248\) 0.367538i 0.0233387i
\(249\) −9.25278 5.95522i −0.586371 0.377397i
\(250\) 0 0
\(251\) 12.0103 20.8025i 0.758085 1.31304i −0.185741 0.982599i \(-0.559468\pi\)
0.943826 0.330443i \(-0.107198\pi\)
\(252\) 9.34221 1.55801i 0.588504 0.0981456i
\(253\) 1.21374 + 4.52975i 0.0763073 + 0.284783i
\(254\) −7.10906 26.5314i −0.446062 1.66473i
\(255\) 0 0
\(256\) −9.41708 + 16.3109i −0.588568 + 1.01943i
\(257\) 3.23213 + 5.59821i 0.201615 + 0.349207i 0.949049 0.315129i \(-0.102048\pi\)
−0.747434 + 0.664336i \(0.768714\pi\)
\(258\) 1.26917 1.97193i 0.0790148 0.122767i
\(259\) 22.9241i 1.42443i
\(260\) 0 0
\(261\) −14.1777 + 19.8530i −0.877576 + 1.22887i
\(262\) −4.24682 1.13793i −0.262370 0.0703018i
\(263\) −13.8940 + 8.02170i −0.856740 + 0.494639i −0.862919 0.505342i \(-0.831366\pi\)
0.00617933 + 0.999981i \(0.498033\pi\)
\(264\) −2.67627 + 2.42959i −0.164713 + 0.149531i
\(265\) 0 0
\(266\) 9.86422 2.64311i 0.604814 0.162060i
\(267\) 9.15144 + 0.442124i 0.560059 + 0.0270575i
\(268\) 1.65268 + 1.65268i 0.100953 + 0.100953i
\(269\) −9.95173 5.74563i −0.606767 0.350317i 0.164932 0.986305i \(-0.447260\pi\)
−0.771699 + 0.635988i \(0.780593\pi\)
\(270\) 0 0
\(271\) −3.04037 + 11.3468i −0.184690 + 0.689271i 0.810007 + 0.586420i \(0.199463\pi\)
−0.994697 + 0.102851i \(0.967204\pi\)
\(272\) 27.2214 1.65054
\(273\) −20.0417 0.0978270i −1.21298 0.00592076i
\(274\) −6.58362 −0.397731
\(275\) 0 0
\(276\) 1.42430 + 6.56871i 0.0857325 + 0.395390i
\(277\) −17.1100 9.87847i −1.02804 0.593540i −0.111618 0.993751i \(-0.535603\pi\)
−0.916423 + 0.400211i \(0.868937\pi\)
\(278\) 24.5357 + 24.5357i 1.47155 + 1.47155i
\(279\) −0.220296 + 0.588211i −0.0131888 + 0.0352153i
\(280\) 0 0
\(281\) 1.76652 1.76652i 0.105382 0.105382i −0.652450 0.757832i \(-0.726259\pi\)
0.757832 + 0.652450i \(0.226259\pi\)
\(282\) 17.7194 + 19.5184i 1.05517 + 1.16231i
\(283\) 6.29734 3.63577i 0.374338 0.216124i −0.301014 0.953620i \(-0.597325\pi\)
0.675352 + 0.737496i \(0.263992\pi\)
\(284\) −1.69768 0.454891i −0.100739 0.0269928i
\(285\) 0 0
\(286\) −6.24538 + 3.97664i −0.369297 + 0.235144i
\(287\) 29.3460i 1.73224i
\(288\) −11.8701 + 9.77385i −0.699450 + 0.575930i
\(289\) −6.32169 10.9495i −0.371864 0.644087i
\(290\) 0 0
\(291\) −1.52571 2.96438i −0.0894390 0.173775i
\(292\) 3.49573 + 13.0462i 0.204572 + 0.763474i
\(293\) 0.545330 + 2.03520i 0.0318585 + 0.118898i 0.980024 0.198880i \(-0.0637303\pi\)
−0.948165 + 0.317777i \(0.897064\pi\)
\(294\) 4.51751 + 8.77729i 0.263467 + 0.511902i
\(295\) 0 0
\(296\) 6.26963 + 10.8593i 0.364415 + 0.631185i
\(297\) −5.73937 + 2.28423i −0.333032 + 0.132545i
\(298\) 4.34606i 0.251760i
\(299\) −0.616988 14.2096i −0.0356813 0.821761i
\(300\) 0 0
\(301\) 2.42977 + 0.651055i 0.140050 + 0.0375262i
\(302\) −28.8933 + 16.6816i −1.66262 + 0.959917i
\(303\) 13.7806 + 15.1797i 0.791675 + 0.872053i
\(304\) −6.51273 + 6.51273i −0.373531 + 0.373531i
\(305\) 0 0
\(306\) 26.4218 + 9.89544i 1.51043 + 0.565685i
\(307\) 9.18929 + 9.18929i 0.524461 + 0.524461i 0.918915 0.394455i \(-0.129066\pi\)
−0.394455 + 0.918915i \(0.629066\pi\)
\(308\) 3.25033 + 1.87658i 0.185205 + 0.106928i
\(309\) −2.48711 11.4703i −0.141487 0.652523i
\(310\) 0 0
\(311\) −12.7422 −0.722542 −0.361271 0.932461i \(-0.617657\pi\)
−0.361271 + 0.932461i \(0.617657\pi\)
\(312\) 9.52068 5.43498i 0.539002 0.307695i
\(313\) −25.4351 −1.43768 −0.718838 0.695178i \(-0.755326\pi\)
−0.718838 + 0.695178i \(0.755326\pi\)
\(314\) 2.40862 8.98909i 0.135926 0.507284i
\(315\) 0 0
\(316\) −0.0728298 0.0420483i −0.00409700 0.00236540i
\(317\) 3.36120 + 3.36120i 0.188784 + 0.188784i 0.795170 0.606386i \(-0.207382\pi\)
−0.606386 + 0.795170i \(0.707382\pi\)
\(318\) −2.84620 0.137506i −0.159607 0.00771093i
\(319\) −9.33785 + 2.50207i −0.522819 + 0.140089i
\(320\) 0 0
\(321\) −6.69767 + 6.08034i −0.373828 + 0.339372i
\(322\) −18.9381 + 10.9339i −1.05538 + 0.609324i
\(323\) 9.68810 + 2.59592i 0.539061 + 0.144441i
\(324\) −8.37444 + 2.87314i −0.465247 + 0.159619i
\(325\) 0 0
\(326\) 21.5305i 1.19246i
\(327\) −2.09405 + 3.25358i −0.115801 + 0.179923i
\(328\) 8.02601 + 13.9015i 0.443162 + 0.767579i
\(329\) −14.1388 + 24.4891i −0.779498 + 1.35013i
\(330\) 0 0
\(331\) 5.30136 + 19.7850i 0.291389 + 1.08748i 0.944043 + 0.329823i \(0.106989\pi\)
−0.652653 + 0.757657i \(0.726344\pi\)
\(332\) −1.61751 6.03662i −0.0887723 0.331303i
\(333\) 3.52509 + 21.1372i 0.193174 + 1.15831i
\(334\) −9.06712 + 15.7047i −0.496131 + 0.859324i
\(335\) 0 0
\(336\) −23.3698 15.0411i −1.27492 0.820560i
\(337\) 23.0073i 1.25329i −0.779305 0.626644i \(-0.784428\pi\)
0.779305 0.626644i \(-0.215572\pi\)
\(338\) 21.1050 7.67012i 1.14796 0.417199i
\(339\) 7.73160 + 2.47727i 0.419923 + 0.134547i
\(340\) 0 0
\(341\) −0.215554 + 0.124450i −0.0116729 + 0.00673937i
\(342\) −8.68891 + 3.95393i −0.469842 + 0.213804i
\(343\) 8.39758 8.39758i 0.453427 0.453427i
\(344\) −1.32906 + 0.356121i −0.0716581 + 0.0192007i
\(345\) 0 0
\(346\) 20.5561 + 20.5561i 1.10510 + 1.10510i
\(347\) −4.34312 2.50750i −0.233151 0.134610i 0.378874 0.925448i \(-0.376311\pi\)
−0.612025 + 0.790839i \(0.709645\pi\)
\(348\) −13.5411 + 2.93612i −0.725878 + 0.157392i
\(349\) −0.823955 + 3.07504i −0.0441053 + 0.164603i −0.984466 0.175576i \(-0.943821\pi\)
0.940361 + 0.340179i \(0.110488\pi\)
\(350\) 0 0
\(351\) 18.4946 2.99166i 0.987168 0.159683i
\(352\) −6.09310 −0.324763
\(353\) 1.36681 5.10099i 0.0727477 0.271498i −0.919965 0.391999i \(-0.871784\pi\)
0.992713 + 0.120501i \(0.0384502\pi\)
\(354\) −23.6995 + 5.13878i −1.25962 + 0.273123i
\(355\) 0 0
\(356\) 3.67957 + 3.67957i 0.195017 + 0.195017i
\(357\) −1.46043 + 30.2292i −0.0772941 + 1.59990i
\(358\) −30.2412 + 8.10310i −1.59830 + 0.428262i
\(359\) 14.4070 14.4070i 0.760371 0.760371i −0.216018 0.976389i \(-0.569307\pi\)
0.976389 + 0.216018i \(0.0693070\pi\)
\(360\) 0 0
\(361\) 13.5155 7.80319i 0.711344 0.410694i
\(362\) −0.552035 0.147917i −0.0290143 0.00777436i
\(363\) 15.8129 + 5.06658i 0.829960 + 0.265926i
\(364\) −8.39058 7.69226i −0.439786 0.403184i
\(365\) 0 0
\(366\) −32.6949 21.0429i −1.70899 1.09993i
\(367\) 6.81696 + 11.8073i 0.355842 + 0.616337i 0.987262 0.159105i \(-0.0508607\pi\)
−0.631420 + 0.775441i \(0.717527\pi\)
\(368\) 9.86133 17.0803i 0.514058 0.890374i
\(369\) 4.51261 + 27.0586i 0.234917 + 1.40862i
\(370\) 0 0
\(371\) −0.791108 2.95245i −0.0410723 0.153284i
\(372\) −0.317194 + 0.163254i −0.0164457 + 0.00846433i
\(373\) 12.6759 21.9554i 0.656335 1.13681i −0.325222 0.945638i \(-0.605439\pi\)
0.981557 0.191169i \(-0.0612277\pi\)
\(374\) 5.59017 + 9.68247i 0.289061 + 0.500668i
\(375\) 0 0
\(376\) 15.4676i 0.797680i
\(377\) 29.2924 1.27189i 1.50863 0.0655057i
\(378\) −17.2156 23.0946i −0.885473 1.18786i
\(379\) 25.2089 + 6.75470i 1.29489 + 0.346966i 0.839517 0.543333i \(-0.182838\pi\)
0.455376 + 0.890299i \(0.349505\pi\)
\(380\) 0 0
\(381\) −20.3923 + 18.5127i −1.04473 + 0.948435i
\(382\) 15.4375 15.4375i 0.789851 0.789851i
\(383\) −12.5724 + 3.36875i −0.642417 + 0.172135i −0.565298 0.824887i \(-0.691239\pi\)
−0.0771191 + 0.997022i \(0.524572\pi\)
\(384\) 21.1593 + 1.02225i 1.07978 + 0.0521662i
\(385\) 0 0
\(386\) −10.0658 5.81148i −0.512334 0.295796i
\(387\) −2.34049 0.226676i −0.118974 0.0115226i
\(388\) 0.490089 1.82904i 0.0248805 0.0928552i
\(389\) −18.8047 −0.953438 −0.476719 0.879056i \(-0.658174\pi\)
−0.476719 + 0.879056i \(0.658174\pi\)
\(390\) 0 0
\(391\) −21.4774 −1.08616
\(392\) 1.49910 5.59473i 0.0757161 0.282576i
\(393\) 0.934211 + 4.30849i 0.0471247 + 0.217334i
\(394\) 24.5764 + 14.1892i 1.23814 + 0.714840i
\(395\) 0 0
\(396\) −3.28554 1.23050i −0.165105 0.0618348i
\(397\) 8.97652 2.40525i 0.450519 0.120716i −0.0264234 0.999651i \(-0.508412\pi\)
0.476942 + 0.878935i \(0.341745\pi\)
\(398\) −8.91594 + 8.91594i −0.446916 + 0.446916i
\(399\) −6.88293 7.58174i −0.344577 0.379562i
\(400\) 0 0
\(401\) 24.4394 + 6.54850i 1.22044 + 0.327017i 0.810851 0.585252i \(-0.199005\pi\)
0.409592 + 0.912269i \(0.365671\pi\)
\(402\) 2.16895 6.76932i 0.108177 0.337623i
\(403\) 0.720010 0.226828i 0.0358663 0.0112991i
\(404\) 11.6442i 0.579323i
\(405\) 0 0
\(406\) −22.5398 39.0400i −1.11863 1.93752i
\(407\) −4.24586 + 7.35405i −0.210459 + 0.364527i
\(408\) −7.57572 14.7192i −0.375054 0.728710i
\(409\) 2.15574 + 8.04533i 0.106595 + 0.397816i 0.998521 0.0543639i \(-0.0173131\pi\)
−0.891927 + 0.452180i \(0.850646\pi\)
\(410\) 0 0
\(411\) 3.02104 + 5.86972i 0.149017 + 0.289532i
\(412\) 3.33302 5.77297i 0.164206 0.284414i
\(413\) −13.0063 22.5276i −0.639998 1.10851i
\(414\) 15.7806 12.9938i 0.775576 0.638612i
\(415\) 0 0
\(416\) 18.0409 + 4.00410i 0.884526 + 0.196317i
\(417\) 10.6164 33.1339i 0.519888 1.62258i
\(418\) −3.65398 0.979082i −0.178722 0.0478885i
\(419\) −1.31380 + 0.758522i −0.0641833 + 0.0370562i −0.531748 0.846902i \(-0.678465\pi\)
0.467565 + 0.883959i \(0.345131\pi\)
\(420\) 0 0
\(421\) −12.6589 + 12.6589i −0.616955 + 0.616955i −0.944749 0.327794i \(-0.893695\pi\)
0.327794 + 0.944749i \(0.393695\pi\)
\(422\) −43.9492 + 11.7761i −2.13941 + 0.573254i
\(423\) 9.27100 24.7545i 0.450771 1.20360i
\(424\) 1.18224 + 1.18224i 0.0574145 + 0.0574145i
\(425\) 0 0
\(426\) 1.13271 + 5.22394i 0.0548799 + 0.253101i
\(427\) 10.7946 40.2859i 0.522386 1.94957i
\(428\) −5.13773 −0.248342
\(429\) 6.41126 + 3.74339i 0.309539 + 0.180733i
\(430\) 0 0
\(431\) 2.61881 9.77353i 0.126144 0.470775i −0.873734 0.486404i \(-0.838308\pi\)
0.999878 + 0.0156291i \(0.00497511\pi\)
\(432\) 23.8611 + 10.2751i 1.14802 + 0.494361i
\(433\) 31.8042 + 18.3621i 1.52841 + 0.882428i 0.999429 + 0.0337954i \(0.0107595\pi\)
0.528982 + 0.848633i \(0.322574\pi\)
\(434\) −0.820706 0.820706i −0.0393952 0.0393952i
\(435\) 0 0
\(436\) −2.12267 + 0.568769i −0.101658 + 0.0272391i
\(437\) 5.13848 5.13848i 0.245807 0.245807i
\(438\) 30.4141 27.6108i 1.45324 1.31929i
\(439\) −5.63717 + 3.25462i −0.269048 + 0.155335i −0.628455 0.777846i \(-0.716312\pi\)
0.359407 + 0.933181i \(0.382979\pi\)
\(440\) 0 0
\(441\) 5.75256 8.05531i 0.273931 0.383586i
\(442\) −10.1889 32.3421i −0.484636 1.53836i
\(443\) 17.2761i 0.820814i 0.911902 + 0.410407i \(0.134613\pi\)
−0.911902 + 0.410407i \(0.865387\pi\)
\(444\) −6.58698 + 10.2344i −0.312604 + 0.485701i
\(445\) 0 0
\(446\) −2.95026 + 5.11001i −0.139699 + 0.241966i
\(447\) 3.87479 1.99429i 0.183271 0.0943266i
\(448\) 0.952006 + 3.55294i 0.0449781 + 0.167860i
\(449\) 4.49179 + 16.7636i 0.211980 + 0.791122i 0.987208 + 0.159439i \(0.0509687\pi\)
−0.775227 + 0.631682i \(0.782365\pi\)
\(450\) 0 0
\(451\) −5.43530 + 9.41421i −0.255938 + 0.443298i
\(452\) 2.30556 + 3.99335i 0.108445 + 0.187832i
\(453\) 28.1311 + 18.1056i 1.32171 + 0.850673i
\(454\) 21.2435i 0.997008i
\(455\) 0 0
\(456\) 5.33407 + 1.70908i 0.249791 + 0.0800351i
\(457\) 21.1527 + 5.66785i 0.989481 + 0.265131i 0.717033 0.697040i \(-0.245500\pi\)
0.272449 + 0.962170i \(0.412167\pi\)
\(458\) −9.43166 + 5.44537i −0.440713 + 0.254446i
\(459\) −3.30181 28.0975i −0.154115 1.31148i
\(460\) 0 0
\(461\) −31.4414 + 8.42468i −1.46437 + 0.392377i −0.900997 0.433826i \(-0.857163\pi\)
−0.563373 + 0.826203i \(0.690497\pi\)
\(462\) 0.550818 11.4013i 0.0256264 0.530436i
\(463\) 3.35500 + 3.35500i 0.155920 + 0.155920i 0.780756 0.624836i \(-0.214834\pi\)
−0.624836 + 0.780756i \(0.714834\pi\)
\(464\) 35.2103 + 20.3287i 1.63460 + 0.943734i
\(465\) 0 0
\(466\) 3.32745 12.4182i 0.154141 0.575263i
\(467\) 16.4147 0.759584 0.379792 0.925072i \(-0.375996\pi\)
0.379792 + 0.925072i \(0.375996\pi\)
\(468\) 8.91943 + 5.80244i 0.412301 + 0.268218i
\(469\) 7.62489 0.352085
\(470\) 0 0
\(471\) −9.11961 + 1.97741i −0.420209 + 0.0911142i
\(472\) 12.3224 + 7.11432i 0.567183 + 0.327463i
\(473\) −0.658885 0.658885i −0.0302956 0.0302956i
\(474\) −0.0123421 + 0.255468i −0.000566893 + 0.0117340i
\(475\) 0 0
\(476\) −12.1544 + 12.1544i −0.557097 + 0.557097i
\(477\) 1.18345 + 2.60067i 0.0541864 + 0.119077i
\(478\) 28.2872 16.3316i 1.29383 0.746991i
\(479\) 2.62410 + 0.703124i 0.119898 + 0.0321266i 0.318269 0.948000i \(-0.396898\pi\)
−0.198371 + 0.980127i \(0.563565\pi\)
\(480\) 0 0
\(481\) 17.4042 18.9842i 0.793561 0.865603i
\(482\) 50.0895i 2.28152i
\(483\) 18.4385 + 11.8673i 0.838981 + 0.539980i
\(484\) 4.71539 + 8.16730i 0.214336 + 0.371241i
\(485\) 0 0
\(486\) 19.4250 + 18.6472i 0.881135 + 0.845853i
\(487\) 3.56046 + 13.2878i 0.161340 + 0.602129i 0.998479 + 0.0551382i \(0.0175599\pi\)
−0.837139 + 0.546990i \(0.815773\pi\)
\(488\) 5.90453 + 22.0360i 0.267285 + 0.997523i
\(489\) −19.1958 + 9.87975i −0.868065 + 0.446778i
\(490\) 0 0
\(491\) 9.72844 + 16.8501i 0.439038 + 0.760436i 0.997616 0.0690160i \(-0.0219860\pi\)
−0.558577 + 0.829452i \(0.688653\pi\)
\(492\) −8.43226 + 13.1014i −0.380155 + 0.590657i
\(493\) 44.2747i 1.99403i
\(494\) 10.1755 + 5.30016i 0.457819 + 0.238465i
\(495\) 0 0
\(496\) 1.01113 + 0.270931i 0.0454009 + 0.0121651i
\(497\) −4.96561 + 2.86690i −0.222738 + 0.128598i
\(498\) −14.0729 + 12.7758i −0.630621 + 0.572496i
\(499\) 18.7585 18.7585i 0.839745 0.839745i −0.149080 0.988825i \(-0.547631\pi\)
0.988825 + 0.149080i \(0.0476311\pi\)
\(500\) 0 0
\(501\) 18.1624 + 0.877462i 0.811437 + 0.0392021i
\(502\) −29.3393 29.3393i −1.30948 1.30948i
\(503\) −34.3040 19.8054i −1.52954 0.883081i −0.999381 0.0351832i \(-0.988799\pi\)
−0.530160 0.847898i \(-0.677868\pi\)
\(504\) −1.62925 + 16.8225i −0.0725728 + 0.749332i
\(505\) 0 0
\(506\) 8.10047 0.360110
\(507\) −16.5229 15.2969i −0.733808 0.679357i
\(508\) −15.6428 −0.694035
\(509\) −6.03174 + 22.5108i −0.267352 + 0.997772i 0.693442 + 0.720512i \(0.256093\pi\)
−0.960795 + 0.277260i \(0.910574\pi\)
\(510\) 0 0
\(511\) 38.1596 + 22.0314i 1.68808 + 0.974613i
\(512\) 5.70780 + 5.70780i 0.252252 + 0.252252i
\(513\) 7.51229 + 5.93237i 0.331676 + 0.261921i
\(514\) 10.7856 2.88998i 0.475730 0.127472i
\(515\) 0 0
\(516\) −0.897686 0.988827i −0.0395184 0.0435307i
\(517\) 9.07146 5.23741i 0.398962 0.230341i
\(518\) −38.2486 10.2487i −1.68055 0.450302i
\(519\) 8.89446 27.7597i 0.390424 1.21852i
\(520\) 0 0
\(521\) 0.498625i 0.0218452i 0.999940 + 0.0109226i \(0.00347683\pi\)
−0.999940 + 0.0109226i \(0.996523\pi\)
\(522\) 26.7862 + 32.5310i 1.17240 + 1.42384i
\(523\) −10.5230 18.2263i −0.460138 0.796983i 0.538829 0.842415i \(-0.318867\pi\)
−0.998967 + 0.0454324i \(0.985533\pi\)
\(524\) −1.25195 + 2.16845i −0.0546918 + 0.0947290i
\(525\) 0 0
\(526\) 7.17253 + 26.7682i 0.312737 + 1.16715i
\(527\) −0.295036 1.10109i −0.0128520 0.0479642i
\(528\) 4.71119 + 9.15359i 0.205028 + 0.398359i
\(529\) 3.71951 6.44237i 0.161718 0.280103i
\(530\) 0 0
\(531\) 15.4566 + 18.7716i 0.670760 + 0.814619i
\(532\) 5.81589i 0.252151i
\(533\) 22.2798 24.3024i 0.965043 1.05265i
\(534\) 4.82902 15.0714i 0.208972 0.652205i
\(535\) 0 0
\(536\) −3.61197 + 2.08537i −0.156013 + 0.0900744i
\(537\) 21.1013 + 23.2437i 0.910588 + 1.00304i
\(538\) −14.0357 + 14.0357i −0.605120 + 0.605120i
\(539\) 3.78881 1.01521i 0.163196 0.0437281i
\(540\) 0 0
\(541\) −9.37270 9.37270i −0.402964 0.402964i 0.476312 0.879276i \(-0.341973\pi\)
−0.879276 + 0.476312i \(0.841973\pi\)
\(542\) 17.5728 + 10.1457i 0.754817 + 0.435794i
\(543\) 0.121436 + 0.560050i 0.00521131 + 0.0240340i
\(544\) 7.22249 26.9547i 0.309662 1.15567i
\(545\) 0 0
\(546\) −9.12329 + 33.3957i −0.390441 + 1.42920i
\(547\) −27.7702 −1.18737 −0.593685 0.804698i \(-0.702327\pi\)
−0.593685 + 0.804698i \(0.702327\pi\)
\(548\) −0.970416 + 3.62164i −0.0414541 + 0.154709i
\(549\) −3.75832 + 38.8057i −0.160401 + 1.65618i
\(550\) 0 0
\(551\) 10.5927 + 10.5927i 0.451266 + 0.451266i
\(552\) −11.9801 0.578782i −0.509907 0.0246346i
\(553\) −0.265004 + 0.0710077i −0.0112691 + 0.00301956i
\(554\) −24.1315 + 24.1315i −1.02525 + 1.02525i
\(555\) 0 0
\(556\) 17.1136 9.88054i 0.725778 0.419028i
\(557\) 20.6607 + 5.53600i 0.875420 + 0.234568i 0.668430 0.743775i \(-0.266967\pi\)
0.206990 + 0.978343i \(0.433633\pi\)
\(558\) 0.882937 + 0.630533i 0.0373777 + 0.0266926i
\(559\) 1.51788 + 2.38386i 0.0641995 + 0.100826i
\(560\) 0 0
\(561\) 6.06737 9.42702i 0.256164 0.398009i
\(562\) −2.15766 3.73718i −0.0910154 0.157643i
\(563\) 0.827364 1.43304i 0.0348692 0.0603953i −0.848064 0.529894i \(-0.822232\pi\)
0.882933 + 0.469498i \(0.155565\pi\)
\(564\) 13.3489 6.87044i 0.562090 0.289298i
\(565\) 0 0
\(566\) −3.25089 12.1325i −0.136645 0.509967i
\(567\) −12.6906 + 25.9463i −0.532953 + 1.08964i
\(568\) 1.56817 2.71614i 0.0657988 0.113967i
\(569\) 15.9653 + 27.6527i 0.669300 + 1.15926i 0.978100 + 0.208134i \(0.0667391\pi\)
−0.308800 + 0.951127i \(0.599928\pi\)
\(570\) 0 0
\(571\) 2.79633i 0.117023i −0.998287 0.0585113i \(-0.981365\pi\)
0.998287 0.0585113i \(-0.0186354\pi\)
\(572\) 1.26699 + 4.02173i 0.0529753 + 0.168157i
\(573\) −20.8474 6.67968i −0.870911 0.279048i
\(574\) −48.9636 13.1198i −2.04370 0.547608i
\(575\) 0 0
\(576\) −1.42414 3.12961i −0.0593393 0.130400i
\(577\) 13.0485 13.0485i 0.543215 0.543215i −0.381255 0.924470i \(-0.624508\pi\)
0.924470 + 0.381255i \(0.124508\pi\)
\(578\) −21.0953 + 5.65248i −0.877451 + 0.235112i
\(579\) −0.562400 + 11.6410i −0.0233725 + 0.483784i
\(580\) 0 0
\(581\) −17.6568 10.1942i −0.732527 0.422925i
\(582\) −5.62814 + 1.22035i −0.233294 + 0.0505852i
\(583\) −0.293048 + 1.09367i −0.0121368 + 0.0452952i
\(584\) −24.1020 −0.997347
\(585\) 0 0
\(586\) 3.63951 0.150347
\(587\) −9.06530 + 33.8321i −0.374165 + 1.39640i 0.480396 + 0.877052i \(0.340493\pi\)
−0.854561 + 0.519351i \(0.826174\pi\)
\(588\) 5.49425 1.19132i 0.226579 0.0491292i
\(589\) 0.334023 + 0.192848i 0.0137632 + 0.00794618i
\(590\) 0 0
\(591\) 1.37314 28.4224i 0.0564835 1.16914i
\(592\) 34.4965 9.24331i 1.41780 0.379898i
\(593\) 21.8499 21.8499i 0.897267 0.897267i −0.0979268 0.995194i \(-0.531221\pi\)
0.995194 + 0.0979268i \(0.0312211\pi\)
\(594\) 1.24532 + 10.5973i 0.0510960 + 0.434813i
\(595\) 0 0
\(596\) 2.39076 + 0.640603i 0.0979295 + 0.0262401i
\(597\) 12.0404 + 3.85786i 0.492781 + 0.157892i
\(598\) −23.9844 5.32325i −0.980795 0.217684i
\(599\) 32.0326i 1.30882i 0.756142 + 0.654408i \(0.227082\pi\)
−0.756142 + 0.654408i \(0.772918\pi\)
\(600\) 0 0
\(601\) −1.29184 2.23753i −0.0526953 0.0912709i 0.838475 0.544941i \(-0.183448\pi\)
−0.891170 + 0.453670i \(0.850115\pi\)
\(602\) 2.17256 3.76298i 0.0885468 0.153368i
\(603\) −7.03056 + 1.17250i −0.286307 + 0.0477477i
\(604\) 4.91768 + 18.3530i 0.200098 + 0.746775i
\(605\) 0 0
\(606\) 31.4881 16.2064i 1.27912 0.658340i
\(607\) −24.5886 + 42.5887i −0.998020 + 1.72862i −0.444540 + 0.895759i \(0.646633\pi\)
−0.553480 + 0.832862i \(0.686701\pi\)
\(608\) 4.72094 + 8.17690i 0.191459 + 0.331617i
\(609\) −24.4638 + 38.0101i −0.991325 + 1.54025i
\(610\) 0 0
\(611\) −30.3011 + 9.54592i −1.22585 + 0.386187i
\(612\) 9.33801 13.0760i 0.377467 0.528567i
\(613\) 18.1986 + 4.87630i 0.735035 + 0.196952i 0.606870 0.794801i \(-0.292425\pi\)
0.128165 + 0.991753i \(0.459091\pi\)
\(614\) 19.4405 11.2240i 0.784555 0.452963i
\(615\) 0 0
\(616\) −4.73579 + 4.73579i −0.190810 + 0.190810i
\(617\) −15.0853 + 4.04209i −0.607310 + 0.162728i −0.549352 0.835591i \(-0.685126\pi\)
−0.0579578 + 0.998319i \(0.518459\pi\)
\(618\) −20.2500 0.978318i −0.814575 0.0393537i
\(619\) −30.0941 30.0941i −1.20958 1.20958i −0.971161 0.238423i \(-0.923370\pi\)
−0.238423 0.971161i \(-0.576630\pi\)
\(620\) 0 0
\(621\) −18.8262 8.10695i −0.755468 0.325321i
\(622\) −5.69665 + 21.2602i −0.228415 + 0.852455i
\(623\) 16.9763 0.680141
\(624\) −7.93389 30.1985i −0.317610 1.20891i
\(625\) 0 0
\(626\) −11.3713 + 42.4382i −0.454488 + 1.69617i
\(627\) 0.803798 + 3.70704i 0.0321006 + 0.148045i
\(628\) −4.58987 2.64996i −0.183156 0.105745i
\(629\) −27.5000 27.5000i −1.09650 1.09650i
\(630\) 0 0
\(631\) −46.4467 + 12.4453i −1.84901 + 0.495441i −0.999485 0.0321033i \(-0.989779\pi\)
−0.849527 + 0.527545i \(0.823113\pi\)
\(632\) 0.106114 0.106114i 0.00422100 0.00422100i
\(633\) 30.6663 + 33.7798i 1.21887 + 1.34263i
\(634\) 7.11082 4.10543i 0.282407 0.163048i
\(635\) 0 0
\(636\) −0.495168 + 1.54543i −0.0196347 + 0.0612801i
\(637\) −11.8853 + 0.516066i −0.470913 + 0.0204473i
\(638\) 16.6987i 0.661109i
\(639\) 4.13771 3.40701i 0.163685 0.134779i
\(640\) 0 0
\(641\) −5.90025 + 10.2195i −0.233046 + 0.403647i −0.958703 0.284409i \(-0.908203\pi\)
0.725657 + 0.688057i \(0.241536\pi\)
\(642\) 7.15066 + 13.8933i 0.282214 + 0.548327i
\(643\) −6.11802 22.8328i −0.241271 0.900436i −0.975221 0.221232i \(-0.928992\pi\)
0.733950 0.679203i \(-0.237675\pi\)
\(644\) 3.22329 + 12.0295i 0.127016 + 0.474029i
\(645\) 0 0
\(646\) 8.66254 15.0040i 0.340823 0.590323i
\(647\) −13.0793 22.6540i −0.514200 0.890620i −0.999864 0.0164751i \(-0.994756\pi\)
0.485664 0.874145i \(-0.338578\pi\)
\(648\) −1.08457 15.7618i −0.0426058 0.619180i
\(649\) 9.63578i 0.378238i
\(650\) 0 0
\(651\) −0.355113 + 1.10831i −0.0139180 + 0.0434382i
\(652\) −11.8439 3.17356i −0.463843 0.124286i
\(653\) 6.39610 3.69279i 0.250299 0.144510i −0.369602 0.929190i \(-0.620506\pi\)
0.619901 + 0.784680i \(0.287173\pi\)
\(654\) 4.49238 + 4.94848i 0.175666 + 0.193501i
\(655\) 0 0
\(656\) 44.1603 11.8327i 1.72417 0.461990i
\(657\) −38.5730 14.4463i −1.50488 0.563603i
\(658\) 34.5389 + 34.5389i 1.34646 + 1.34646i
\(659\) 1.23199 + 0.711291i 0.0479916 + 0.0277079i 0.523804 0.851839i \(-0.324512\pi\)
−0.475812 + 0.879547i \(0.657846\pi\)
\(660\) 0 0
\(661\) −6.72014 + 25.0799i −0.261383 + 0.975496i 0.703044 + 0.711147i \(0.251824\pi\)
−0.964427 + 0.264349i \(0.914843\pi\)
\(662\) 35.3811 1.37513
\(663\) −24.1597 + 23.9249i −0.938283 + 0.929168i
\(664\) 11.1522 0.432790
\(665\) 0 0
\(666\) 36.8433 + 3.56827i 1.42765 + 0.138268i
\(667\) −27.7806 16.0391i −1.07567 0.621037i
\(668\) 7.30267 + 7.30267i 0.282549 + 0.282549i
\(669\) 5.90970 + 0.285509i 0.228482 + 0.0110384i
\(670\) 0 0
\(671\) −10.9244 + 10.9244i −0.421732 + 0.421732i
\(672\) −21.0943 + 19.1500i −0.813730 + 0.738728i
\(673\) −29.0538 + 16.7742i −1.11994 + 0.646599i −0.941386 0.337331i \(-0.890476\pi\)
−0.178556 + 0.983930i \(0.557143\pi\)
\(674\) −38.3875 10.2859i −1.47863 0.396198i
\(675\) 0 0
\(676\) −1.10848 12.7404i −0.0426338 0.490015i
\(677\) 7.62559i 0.293075i 0.989205 + 0.146538i \(0.0468130\pi\)
−0.989205 + 0.146538i \(0.953187\pi\)
\(678\) 7.58988 11.7926i 0.291488 0.452892i
\(679\) −3.08872 5.34983i −0.118534 0.205307i
\(680\) 0 0
\(681\) 18.9400 9.74807i 0.725782 0.373547i
\(682\) 0.111276 + 0.415289i 0.00426099 + 0.0159022i
\(683\) 5.30911 + 19.8139i 0.203147 + 0.758157i 0.990006 + 0.141024i \(0.0450393\pi\)
−0.786859 + 0.617133i \(0.788294\pi\)
\(684\) 0.894323 + 5.36257i 0.0341953 + 0.205043i
\(685\) 0 0
\(686\) −10.2570 17.7656i −0.391613 0.678293i
\(687\) 9.18283 + 5.91020i 0.350347 + 0.225488i
\(688\) 3.91886i 0.149405i
\(689\) 1.58639 3.04563i 0.0604365 0.116029i
\(690\) 0 0
\(691\) 9.87914 + 2.64711i 0.375820 + 0.100701i 0.441784 0.897121i \(-0.354346\pi\)
−0.0659642 + 0.997822i \(0.521012\pi\)
\(692\) 14.3378 8.27795i 0.545043 0.314681i
\(693\) −10.4177 + 4.74065i −0.395737 + 0.180082i
\(694\) −6.12543 + 6.12543i −0.232518 + 0.232518i
\(695\) 0 0
\(696\) 1.19313 24.6964i 0.0452255 0.936115i
\(697\) −35.2039 35.2039i −1.33344 1.33344i
\(698\) 4.76231 + 2.74952i 0.180256 + 0.104071i
\(699\) −12.5985 + 2.73174i −0.476520 + 0.103324i
\(700\) 0 0
\(701\) −38.7093 −1.46203 −0.731016 0.682360i \(-0.760954\pi\)
−0.731016 + 0.682360i \(0.760954\pi\)
\(702\) 3.27684 32.1955i 0.123676 1.21514i
\(703\) 13.1588 0.496293
\(704\) 0.352650 1.31611i 0.0132910 0.0496026i
\(705\) 0 0
\(706\) −7.89989 4.56100i −0.297316 0.171656i
\(707\) 26.8613 + 26.8613i 1.01022 + 1.01022i
\(708\) −0.666441 + 13.7945i −0.0250464 + 0.518430i
\(709\) −0.577806 + 0.154823i −0.0216999 + 0.00581448i −0.269653 0.962958i \(-0.586909\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(710\) 0 0
\(711\) 0.233429 0.106223i 0.00875428 0.00398368i
\(712\) −8.04181 + 4.64294i −0.301379 + 0.174001i
\(713\) −0.797769 0.213762i −0.0298767 0.00800543i
\(714\) 49.7842 + 15.9513i 1.86313 + 0.596962i
\(715\) 0 0
\(716\) 17.8300i 0.666340i
\(717\) −27.5409 17.7257i −1.02853 0.661980i
\(718\) −17.5970 30.4788i −0.656713 1.13746i
\(719\) 19.5460 33.8547i 0.728944 1.26257i −0.228385 0.973571i \(-0.573345\pi\)
0.957330 0.288998i \(-0.0933221\pi\)
\(720\) 0 0
\(721\) −5.62853 21.0060i −0.209618 0.782304i
\(722\) −6.97716 26.0391i −0.259663 0.969075i
\(723\) −44.6581 + 22.9847i −1.66085 + 0.854811i
\(724\) −0.162738 + 0.281871i −0.00604812 + 0.0104757i
\(725\) 0 0
\(726\) 15.5230 24.1185i 0.576113 0.895121i
\(727\) 0.507235i 0.0188123i −0.999956 0.00940616i \(-0.997006\pi\)
0.999956 0.00940616i \(-0.00299412\pi\)
\(728\) 17.1342 10.9099i 0.635035 0.404347i
\(729\) 7.71156 25.8753i 0.285613 0.958345i
\(730\) 0 0
\(731\) 3.69579 2.13377i 0.136694 0.0789202i
\(732\) −16.3949 + 14.8837i −0.605972 + 0.550119i
\(733\) −34.1906 + 34.1906i −1.26286 + 1.26286i −0.313158 + 0.949701i \(0.601387\pi\)
−0.949701 + 0.313158i \(0.898613\pi\)
\(734\) 22.7481 6.09532i 0.839646 0.224982i
\(735\) 0 0
\(736\) −14.2965 14.2965i −0.526977 0.526977i
\(737\) −2.44606 1.41224i −0.0901019 0.0520204i
\(738\) 47.1645 + 4.56788i 1.73615 + 0.168146i
\(739\) −3.71733 + 13.8733i −0.136744 + 0.510337i 0.863240 + 0.504793i \(0.168431\pi\)
−0.999985 + 0.00554351i \(0.998235\pi\)
\(740\) 0 0
\(741\) 0.0561542 11.5043i 0.00206288 0.422619i
\(742\) −5.27982 −0.193828
\(743\) −10.4502 + 39.0006i −0.383380 + 1.43079i 0.457326 + 0.889299i \(0.348807\pi\)
−0.840705 + 0.541493i \(0.817859\pi\)
\(744\) −0.134898 0.622138i −0.00494561 0.0228087i
\(745\) 0 0
\(746\) −30.9653 30.9653i −1.13372 1.13372i
\(747\) 17.8481 + 6.68443i 0.653027 + 0.244571i
\(748\) 6.15030 1.64797i 0.224877 0.0602557i
\(749\) −11.8519 + 11.8519i −0.433058 + 0.433058i
\(750\) 0 0
\(751\) 11.0569 6.38370i 0.403472 0.232945i −0.284509 0.958673i \(-0.591831\pi\)
0.687981 + 0.725729i \(0.258497\pi\)
\(752\) −42.5526 11.4019i −1.55173 0.415785i
\(753\) −12.6949 + 39.6209i −0.462627 + 1.44387i
\(754\) 10.9736 49.4427i 0.399636 1.80060i
\(755\) 0 0
\(756\) −15.2419 + 6.06616i −0.554341 + 0.220624i
\(757\) −4.53645 7.85737i −0.164880 0.285581i 0.771733 0.635947i \(-0.219390\pi\)
−0.936613 + 0.350366i \(0.886057\pi\)
\(758\) 22.5403 39.0410i 0.818701 1.41803i
\(759\) −3.71708 7.22209i −0.134922 0.262145i
\(760\) 0 0
\(761\) 3.24132 + 12.0968i 0.117498 + 0.438507i 0.999462 0.0328095i \(-0.0104455\pi\)
−0.881964 + 0.471317i \(0.843779\pi\)
\(762\) 21.7715 + 42.3008i 0.788698 + 1.53240i
\(763\) −3.58460 + 6.20870i −0.129771 + 0.224770i
\(764\) −6.21669 10.7676i −0.224912 0.389559i
\(765\) 0 0
\(766\) 22.4829i 0.812341i
\(767\) 6.33219 28.5303i 0.228642 1.03017i
\(768\) 9.95383 31.0660i 0.359178 1.12100i
\(769\) 44.6938 + 11.9757i 1.61170 + 0.431854i 0.948548 0.316632i \(-0.102552\pi\)
0.663151 + 0.748486i \(0.269219\pi\)
\(770\) 0 0
\(771\) −7.52580 8.28989i −0.271035 0.298553i
\(772\) −4.68057 + 4.68057i −0.168457 + 0.168457i
\(773\) −43.5070 + 11.6577i −1.56484 + 0.419297i −0.934191 0.356772i \(-0.883877\pi\)
−0.630647 + 0.776069i \(0.717211\pi\)
\(774\) −1.42457 + 3.80375i −0.0512052 + 0.136723i
\(775\) 0 0
\(776\) 2.92630 + 1.68950i 0.105048 + 0.0606496i
\(777\) 8.41388 + 38.8040i 0.301846 + 1.39208i
\(778\) −8.40705 + 31.3755i −0.301407 + 1.12487i
\(779\) 16.8451 0.603537
\(780\) 0 0
\(781\) 2.12396 0.0760012
\(782\) −9.60193 + 35.8349i −0.343364 + 1.28145i
\(783\) 16.7121 38.8092i 0.597241 1.38693i
\(784\) −14.2865 8.24830i −0.510231 0.294582i
\(785\) 0 0
\(786\) 7.60633 + 0.367476i 0.271309 + 0.0131074i
\(787\) −39.8293 + 10.6722i −1.41976 + 0.380424i −0.885399 0.464831i \(-0.846115\pi\)
−0.534362 + 0.845255i \(0.679448\pi\)
\(788\) 11.4280 11.4280i 0.407105 0.407105i
\(789\) 20.5744 18.6780i 0.732466 0.664954i
\(790\) 0 0
\(791\) 14.5305 + 3.89345i 0.516646 + 0.138435i
\(792\) 3.63842 5.09489i 0.129286 0.181039i
\(793\) 39.5247 25.1667i 1.40356 0.893694i
\(794\) 16.0526i 0.569684i
\(795\) 0 0
\(796\) 3.59045 + 6.21885i 0.127260 + 0.220421i
\(797\) −10.1010 + 17.4955i −0.357796 + 0.619721i −0.987592 0.157039i \(-0.949805\pi\)
0.629796 + 0.776761i \(0.283138\pi\)
\(798\) −15.7272 + 8.09452i −0.556738 + 0.286543i
\(799\) 12.4164 + 46.3386i 0.439260 + 1.63934i
\(800\) 0 0
\(801\) −15.6531 + 2.61048i −0.553074 + 0.0922369i
\(802\) 21.8522 37.8492i 0.771629 1.33650i
\(803\) −8.16105 14.1354i −0.287997 0.498826i
\(804\) −3.40410 2.19093i −0.120053 0.0772680i
\(805\) 0 0
\(806\) −0.0565656 1.30274i −0.00199244 0.0458870i
\(807\) 18.9543 + 6.07312i 0.667222 + 0.213784i
\(808\) −20.0708 5.37797i −0.706090 0.189196i
\(809\) 16.6563 9.61653i 0.585605 0.338099i −0.177753 0.984075i \(-0.556883\pi\)
0.763358 + 0.645976i \(0.223549\pi\)
\(810\) 0 0
\(811\) 6.34354 6.34354i 0.222752 0.222752i −0.586904 0.809656i \(-0.699654\pi\)
0.809656 + 0.586904i \(0.199654\pi\)
\(812\) −24.7982 + 6.64467i −0.870247 + 0.233182i
\(813\) 0.981838 20.3229i 0.0344346 0.712755i
\(814\) 10.3720 + 10.3720i 0.363537 + 0.363537i
\(815\) 0 0
\(816\) −46.0781 + 9.99114i −1.61306 + 0.349760i
\(817\) −0.373715 + 1.39472i −0.0130746 + 0.0487952i
\(818\) 14.3873 0.503041
\(819\) 33.9609 7.19036i 1.18669 0.251252i
\(820\) 0 0
\(821\) −9.41992 + 35.1556i −0.328757 + 1.22694i 0.581723 + 0.813387i \(0.302379\pi\)
−0.910480 + 0.413553i \(0.864288\pi\)
\(822\) 11.1442 2.41640i 0.388698 0.0842816i
\(823\) −4.56162 2.63365i −0.159008 0.0918034i 0.418385 0.908270i \(-0.362596\pi\)
−0.577393 + 0.816467i \(0.695930\pi\)
\(824\) 8.41132 + 8.41132i 0.293022 + 0.293022i
\(825\) 0 0
\(826\) −43.4018 + 11.6295i −1.51014 + 0.404641i
\(827\) −7.14407 + 7.14407i −0.248424 + 0.248424i −0.820323 0.571900i \(-0.806207\pi\)
0.571900 + 0.820323i \(0.306207\pi\)
\(828\) −4.82185 10.5962i −0.167571 0.368243i
\(829\) −19.7203 + 11.3855i −0.684915 + 0.395436i −0.801704 0.597721i \(-0.796073\pi\)
0.116789 + 0.993157i \(0.462740\pi\)
\(830\) 0 0
\(831\) 32.5881 + 10.4415i 1.13047 + 0.362212i
\(832\) −1.90903 + 3.66507i −0.0661838 + 0.127063i
\(833\) 17.9643i 0.622427i
\(834\) −50.5374 32.5266i −1.74997 1.12630i
\(835\) 0 0
\(836\) −1.07718 + 1.86574i −0.0372552 + 0.0645279i
\(837\) 0.157006 1.07653i 0.00542691 0.0372103i
\(838\) 0.678226 + 2.53118i 0.0234289 + 0.0874380i
\(839\) −3.27587 12.2257i −0.113096 0.422079i 0.886042 0.463606i \(-0.153445\pi\)
−0.999137 + 0.0415267i \(0.986778\pi\)
\(840\) 0 0
\(841\) 18.5639 32.1535i 0.640133 1.10874i
\(842\) 15.4618 + 26.7806i 0.532848 + 0.922920i
\(843\) −2.34184 + 3.63858i −0.0806574 + 0.125319i
\(844\) 25.9122i 0.891934i
\(845\) 0 0
\(846\) −37.1578 26.5356i −1.27751 0.912312i
\(847\) 29.7182 + 7.96297i 1.02113 + 0.273611i
\(848\) 4.12391 2.38094i 0.141616 0.0817618i
\(849\) −9.32516 + 8.46565i −0.320039 + 0.290540i
\(850\) 0 0
\(851\) −27.2174 + 7.29288i −0.933000 + 0.249997i
\(852\) 3.04065 + 0.146900i 0.104171 + 0.00503269i
\(853\) −7.79992 7.79992i −0.267064 0.267064i 0.560852 0.827916i \(-0.310474\pi\)
−0.827916 + 0.560852i \(0.810474\pi\)
\(854\) −62.3907 36.0213i −2.13496 1.23262i
\(855\) 0 0
\(856\) 2.37289 8.85576i 0.0811038 0.302684i
\(857\) −20.1264 −0.687503 −0.343752 0.939061i \(-0.611698\pi\)
−0.343752 + 0.939061i \(0.611698\pi\)
\(858\) 9.11210 9.02357i 0.311082 0.308060i
\(859\) −21.9355 −0.748428 −0.374214 0.927342i \(-0.622087\pi\)
−0.374214 + 0.927342i \(0.622087\pi\)
\(860\) 0 0
\(861\) 10.7709 + 49.6745i 0.367073 + 1.69290i
\(862\) −15.1363 8.73892i −0.515543 0.297649i
\(863\) 25.0532 + 25.0532i 0.852822 + 0.852822i 0.990480 0.137658i \(-0.0439573\pi\)
−0.137658 + 0.990480i \(0.543957\pi\)
\(864\) 16.5053 20.9011i 0.561523 0.711068i
\(865\) 0 0
\(866\) 44.8558 44.8558i 1.52426 1.52426i
\(867\) 14.7196 + 16.2141i 0.499905 + 0.550660i
\(868\) −0.572441 + 0.330499i −0.0194299 + 0.0112179i
\(869\) 0.0981650 + 0.0263032i 0.00333002 + 0.000892276i
\(870\) 0 0
\(871\) 6.31441 + 5.78888i 0.213956 + 0.196149i
\(872\) 3.92148i 0.132798i
\(873\) 3.67062 + 4.45787i 0.124232 + 0.150876i
\(874\) −6.27624 10.8708i −0.212297 0.367709i
\(875\) 0 0
\(876\) −10.7057 20.8005i −0.361711 0.702785i
\(877\) −4.34785 16.2264i −0.146816 0.547926i −0.999668 0.0257727i \(-0.991795\pi\)
0.852851 0.522154i \(-0.174871\pi\)
\(878\) 2.91009 + 10.8606i 0.0982109 + 0.366528i
\(879\) −1.67007 3.24486i −0.0563301 0.109446i
\(880\) 0 0
\(881\) −16.3359 28.2946i −0.550370 0.953269i −0.998248 0.0591738i \(-0.981153\pi\)
0.447878 0.894095i \(-0.352180\pi\)
\(882\) −10.8684 13.1994i −0.365959 0.444446i
\(883\) 15.0338i 0.505929i 0.967476 + 0.252964i \(0.0814056\pi\)
−0.967476 + 0.252964i \(0.918594\pi\)
\(884\) −19.2932 + 0.837720i −0.648900 + 0.0281756i
\(885\) 0 0
\(886\) 28.8251 + 7.72365i 0.968397 + 0.259481i
\(887\) 13.1511 7.59276i 0.441569 0.254940i −0.262694 0.964879i \(-0.584611\pi\)
0.704263 + 0.709939i \(0.251278\pi\)
\(888\) −14.5984 16.0806i −0.489891 0.539629i
\(889\) −36.0852 + 36.0852i −1.21026 + 1.21026i
\(890\) 0 0
\(891\) 8.87674 5.97309i 0.297382 0.200106i
\(892\) 2.37615 + 2.37615i 0.0795593 + 0.0795593i
\(893\) −14.0571 8.11589i −0.470404 0.271588i
\(894\) −1.59514 7.35664i −0.0533496 0.246043i
\(895\) 0 0
\(896\) 39.2513 1.31129
\(897\) 6.25976 + 23.8263i 0.209007 + 0.795538i
\(898\) 29.9780 1.00038
\(899\) 0.440659 1.64456i 0.0146968 0.0548492i
\(900\) 0 0
\(901\) −4.49082 2.59278i −0.149611 0.0863779i
\(902\) 13.2776 + 13.2776i 0.442094 + 0.442094i
\(903\) −4.35187 0.210247i −0.144821 0.00699658i
\(904\) −7.94807 + 2.12968i −0.264349 + 0.0708321i
\(905\) 0 0
\(906\) 42.7855 38.8419i 1.42145 1.29044i
\(907\) −13.0097 + 7.51117i −0.431981 + 0.249404i −0.700190 0.713956i \(-0.746901\pi\)
0.268209 + 0.963361i \(0.413568\pi\)
\(908\) 11.6860 + 3.13127i 0.387815 + 0.103915i
\(909\) −28.8981 20.6370i −0.958489 0.684488i
\(910\) 0 0
\(911\) 20.7385i 0.687097i 0.939135 + 0.343548i \(0.111629\pi\)
−0.939135 + 0.343548i \(0.888371\pi\)
\(912\) 8.63382 13.4146i 0.285894 0.444201i
\(913\) 3.77620 + 6.54057i 0.124974 + 0.216461i
\(914\) 18.9135 32.7591i 0.625603 1.08358i
\(915\) 0 0
\(916\) 1.60528 + 5.99099i 0.0530400 + 0.197948i
\(917\) 2.11419 + 7.89028i 0.0698168 + 0.260560i
\(918\) −48.3565 7.05253i −1.59600 0.232768i
\(919\) 27.2006 47.1128i 0.897264 1.55411i 0.0662866 0.997801i \(-0.478885\pi\)
0.830977 0.556306i \(-0.187782\pi\)
\(920\) 0 0
\(921\) −18.9276 12.1821i −0.623687 0.401414i
\(922\) 56.2260i 1.85171i
\(923\) −6.28875 1.39577i −0.206997 0.0459422i
\(924\) −6.19065 1.98354i −0.203657 0.0652536i
\(925\) 0 0
\(926\) 7.09771 4.09787i 0.233245 0.134664i
\(927\) 8.41995 + 18.5031i 0.276547 + 0.607723i
\(928\) 29.4716 29.4716i 0.967453 0.967453i
\(929\) −25.6186 + 6.86447i −0.840518 + 0.225216i −0.653297 0.757102i \(-0.726615\pi\)
−0.187221 + 0.982318i \(0.559948\pi\)
\(930\) 0 0
\(931\) −4.29797 4.29797i −0.140860 0.140860i
\(932\) −6.34080 3.66086i −0.207700 0.119915i
\(933\) 21.5689 4.67678i 0.706133 0.153111i
\(934\) 7.33855 27.3879i 0.240125 0.896158i
\(935\) 0 0
\(936\) −14.1210 + 12.6943i −0.461559 + 0.414925i
\(937\) 12.6619 0.413645 0.206822 0.978378i \(-0.433688\pi\)
0.206822 + 0.978378i \(0.433688\pi\)
\(938\) 3.40887 12.7221i 0.111303 0.415390i
\(939\) 43.0544 9.33549i 1.40503 0.304652i
\(940\) 0 0
\(941\) 35.2291 + 35.2291i 1.14844 + 1.14844i 0.986860 + 0.161576i \(0.0516576\pi\)
0.161576 + 0.986860i \(0.448342\pi\)
\(942\) −0.777823 + 16.1000i −0.0253429 + 0.524567i
\(943\) −34.8421 + 9.33591i −1.13461 + 0.304019i
\(944\) 28.6555 28.6555i 0.932656 0.932656i
\(945\) 0 0
\(946\) −1.39391 + 0.804775i −0.0453200 + 0.0261655i
\(947\) −30.1697 8.08395i −0.980384 0.262693i −0.267178 0.963647i \(-0.586091\pi\)
−0.713206 + 0.700954i \(0.752758\pi\)
\(948\) 0.138713 + 0.0444450i 0.00450520 + 0.00144351i
\(949\) 14.8747 + 47.2159i 0.482852 + 1.53269i
\(950\) 0 0
\(951\) −6.92322 4.45588i −0.224501 0.144492i
\(952\) −15.3366 26.5638i −0.497063 0.860938i
\(953\) −24.6186 + 42.6407i −0.797475 + 1.38127i 0.123781 + 0.992310i \(0.460498\pi\)
−0.921256 + 0.388957i \(0.872835\pi\)
\(954\) 4.86828 0.811890i 0.157616 0.0262859i
\(955\) 0 0
\(956\) −4.81452 17.9680i −0.155713 0.581128i
\(957\) 14.8880 7.66259i 0.481260 0.247696i
\(958\) 2.34631 4.06393i 0.0758059 0.131300i
\(959\) 6.11593 + 10.5931i 0.197494 + 0.342069i
\(960\) 0 0
\(961\) 30.9562i 0.998586i
\(962\) −23.8940 37.5259i −0.770373 1.20988i
\(963\) 9.10558 12.7506i 0.293423 0.410881i
\(964\) −27.5542 7.38313i −0.887461 0.237795i
\(965\) 0 0
\(966\) 28.0438 25.4590i 0.902294 0.819128i
\(967\) 21.5311 21.5311i 0.692393 0.692393i −0.270365 0.962758i \(-0.587144\pi\)
0.962758 + 0.270365i \(0.0871444\pi\)
\(968\) −16.2556 + 4.35567i −0.522474 + 0.139997i
\(969\) −17.3520 0.838309i −0.557426 0.0269304i
\(970\) 0 0
\(971\) 5.70966 + 3.29647i 0.183232 + 0.105789i 0.588810 0.808271i \(-0.299597\pi\)
−0.405578 + 0.914060i \(0.632930\pi\)
\(972\) 13.1210 7.93710i 0.420857 0.254583i
\(973\) 16.6854 62.2709i 0.534911 1.99631i
\(974\) 23.7624 0.761396
\(975\) 0 0
\(976\) 64.9753 2.07981
\(977\) 2.75795 10.2928i 0.0882347 0.329297i −0.907672 0.419680i \(-0.862142\pi\)
0.995907 + 0.0903830i \(0.0288091\pi\)
\(978\) 7.90238 + 36.4450i 0.252690 + 1.16538i
\(979\) −5.44600 3.14425i −0.174055 0.100491i
\(980\) 0 0
\(981\) 2.35047 6.27597i 0.0750446 0.200376i
\(982\) 32.4636 8.69860i 1.03596 0.277583i
\(983\) 22.6666 22.6666i 0.722952 0.722952i −0.246254 0.969205i \(-0.579200\pi\)
0.969205 + 0.246254i \(0.0791996\pi\)
\(984\) −18.6880 20.5854i −0.595753 0.656239i
\(985\) 0 0
\(986\) −73.8719 19.7939i −2.35256 0.630367i
\(987\) 14.9447 46.6426i 0.475695 1.48465i
\(988\) 4.41547 4.81632i 0.140475 0.153228i
\(989\) 3.09195i 0.0983181i
\(990\) 0 0
\(991\) 10.6554 + 18.4558i 0.338481 + 0.586266i 0.984147 0.177353i \(-0.0567536\pi\)
−0.645666 + 0.763620i \(0.723420\pi\)
\(992\) 0.536552 0.929335i 0.0170355 0.0295064i
\(993\) −16.2354 31.5446i −0.515216 1.00104i
\(994\) 2.56341 + 9.56678i 0.0813065 + 0.303440i
\(995\) 0 0
\(996\) 4.95362 + 9.62461i 0.156961 + 0.304967i
\(997\) 29.3615 50.8556i 0.929888 1.61061i 0.146383 0.989228i \(-0.453237\pi\)
0.783505 0.621386i \(-0.213430\pi\)
\(998\) −22.9120 39.6847i −0.725266 1.25620i
\(999\) −13.7250 34.4855i −0.434241 1.09107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bo.h.626.19 96
3.2 odd 2 inner 975.2.bo.h.626.5 96
5.2 odd 4 195.2.bh.a.119.19 yes 96
5.3 odd 4 195.2.bh.a.119.6 yes 96
5.4 even 2 inner 975.2.bo.h.626.6 96
13.7 odd 12 inner 975.2.bo.h.176.5 96
15.2 even 4 195.2.bh.a.119.5 yes 96
15.8 even 4 195.2.bh.a.119.20 yes 96
15.14 odd 2 inner 975.2.bo.h.626.20 96
39.20 even 12 inner 975.2.bo.h.176.19 96
65.7 even 12 195.2.bh.a.59.20 yes 96
65.33 even 12 195.2.bh.a.59.5 96
65.59 odd 12 inner 975.2.bo.h.176.20 96
195.59 even 12 inner 975.2.bo.h.176.6 96
195.98 odd 12 195.2.bh.a.59.19 yes 96
195.137 odd 12 195.2.bh.a.59.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bh.a.59.5 96 65.33 even 12
195.2.bh.a.59.6 yes 96 195.137 odd 12
195.2.bh.a.59.19 yes 96 195.98 odd 12
195.2.bh.a.59.20 yes 96 65.7 even 12
195.2.bh.a.119.5 yes 96 15.2 even 4
195.2.bh.a.119.6 yes 96 5.3 odd 4
195.2.bh.a.119.19 yes 96 5.2 odd 4
195.2.bh.a.119.20 yes 96 15.8 even 4
975.2.bo.h.176.5 96 13.7 odd 12 inner
975.2.bo.h.176.6 96 195.59 even 12 inner
975.2.bo.h.176.19 96 39.20 even 12 inner
975.2.bo.h.176.20 96 65.59 odd 12 inner
975.2.bo.h.626.5 96 3.2 odd 2 inner
975.2.bo.h.626.6 96 5.4 even 2 inner
975.2.bo.h.626.19 96 1.1 even 1 trivial
975.2.bo.h.626.20 96 15.14 odd 2 inner