Properties

Label 975.2.bb.j.724.4
Level $975$
Weight $2$
Character 975.724
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(724,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.724");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 724.4
Root \(-1.16746 + 0.312819i\) of defining polynomial
Character \(\chi\) \(=\) 975.724
Dual form 975.2.bb.j.874.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.466951 + 0.269594i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.854638 - 1.48028i) q^{4} +(-0.269594 - 0.466951i) q^{6} +(-4.15777 + 2.40049i) q^{7} -2.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.466951 + 0.269594i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.854638 - 1.48028i) q^{4} +(-0.269594 - 0.466951i) q^{6} +(-4.15777 + 2.40049i) q^{7} -2.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(1.70928 - 2.96055i) q^{11} +1.70928i q^{12} +(-2.81325 + 2.25513i) q^{13} -2.58864 q^{14} +(-1.17009 + 2.02665i) q^{16} +(2.49360 - 1.43968i) q^{17} +0.539189i q^{18} +(2.48554 + 4.30507i) q^{19} +4.80098 q^{21} +(1.59630 - 0.921622i) q^{22} +(7.35856 + 4.24846i) q^{23} +(-1.00000 + 1.73205i) q^{24} +(-1.92162 + 0.294598i) q^{26} -1.00000i q^{27} +(7.10678 + 4.10310i) q^{28} +(-1.75513 + 3.03997i) q^{29} +3.04945 q^{31} +(-4.55685 + 2.63090i) q^{32} +(-2.96055 + 1.70928i) q^{33} +1.55252 q^{34} +(0.854638 - 1.48028i) q^{36} +(-2.32125 - 1.34017i) q^{37} +2.68035i q^{38} +(3.56391 - 0.546373i) q^{39} +(1.87577 - 3.24893i) q^{41} +(2.24183 + 1.29432i) q^{42} +(-1.37580 + 0.794319i) q^{43} -5.84324 q^{44} +(2.29072 + 3.96765i) q^{46} -0.539189i q^{47} +(2.02665 - 1.17009i) q^{48} +(8.02472 - 13.8992i) q^{49} -2.87936 q^{51} +(5.74253 + 2.23707i) q^{52} +13.7587i q^{53} +(0.269594 - 0.466951i) q^{54} +(4.80098 + 8.31555i) q^{56} -4.97107i q^{57} +(-1.63912 + 0.946346i) q^{58} +(4.20261 + 7.27913i) q^{59} +(1.52472 + 2.64090i) q^{61} +(1.42394 + 0.822114i) q^{62} +(-4.15777 - 2.40049i) q^{63} +1.84324 q^{64} -1.84324 q^{66} +(11.1288 + 6.42522i) q^{67} +(-4.26225 - 2.46081i) q^{68} +(-4.24846 - 7.35856i) q^{69} +(-1.04585 - 1.81147i) q^{71} +(1.73205 - 1.00000i) q^{72} +5.53919i q^{73} +(-0.722606 - 1.25159i) q^{74} +(4.24846 - 7.35856i) q^{76} +16.4124i q^{77} +(1.81147 + 0.705681i) q^{78} -2.21235 q^{79} +(-0.500000 + 0.866025i) q^{81} +(1.75178 - 1.01139i) q^{82} -4.34017i q^{83} +(-4.10310 - 7.10678i) q^{84} -0.856576 q^{86} +(3.03997 - 1.75513i) q^{87} +(-5.92110 - 3.41855i) q^{88} +(-3.50667 + 6.07372i) q^{89} +(6.28345 - 16.1295i) q^{91} -14.5236i q^{92} +(-2.64090 - 1.52472i) q^{93} +(0.145362 - 0.251775i) q^{94} +5.26180 q^{96} +(-12.3573 + 7.13449i) q^{97} +(7.49431 - 4.32684i) q^{98} +3.41855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 4 q^{4} + 6 q^{9} - 8 q^{11} + 48 q^{14} + 8 q^{16} + 20 q^{21} - 12 q^{24} - 36 q^{26} + 12 q^{29} - 36 q^{31} + 16 q^{34} - 4 q^{36} + 40 q^{41} - 96 q^{44} + 56 q^{46} + 60 q^{49} + 16 q^{51} + 20 q^{56} + 20 q^{59} - 18 q^{61} + 48 q^{64} - 48 q^{66} - 16 q^{69} - 8 q^{71} + 16 q^{74} + 16 q^{76} - 68 q^{79} - 6 q^{81} - 40 q^{86} - 44 q^{89} - 62 q^{91} + 16 q^{94} + 32 q^{96} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.466951 + 0.269594i 0.330184 + 0.190632i 0.655923 0.754828i \(-0.272280\pi\)
−0.325739 + 0.945460i \(0.605613\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.854638 1.48028i −0.427319 0.740138i
\(5\) 0 0
\(6\) −0.269594 0.466951i −0.110061 0.190632i
\(7\) −4.15777 + 2.40049i −1.57149 + 0.907301i −0.575504 + 0.817799i \(0.695194\pi\)
−0.995987 + 0.0895019i \(0.971472\pi\)
\(8\) 2.00000i 0.707107i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.70928 2.96055i 0.515366 0.892640i −0.484475 0.874805i \(-0.660989\pi\)
0.999841 0.0178349i \(-0.00567731\pi\)
\(12\) 1.70928i 0.493425i
\(13\) −2.81325 + 2.25513i −0.780256 + 0.625460i
\(14\) −2.58864 −0.691842
\(15\) 0 0
\(16\) −1.17009 + 2.02665i −0.292522 + 0.506662i
\(17\) 2.49360 1.43968i 0.604787 0.349174i −0.166135 0.986103i \(-0.553129\pi\)
0.770922 + 0.636929i \(0.219796\pi\)
\(18\) 0.539189i 0.127088i
\(19\) 2.48554 + 4.30507i 0.570221 + 0.987652i 0.996543 + 0.0830801i \(0.0264757\pi\)
−0.426322 + 0.904571i \(0.640191\pi\)
\(20\) 0 0
\(21\) 4.80098 1.04766
\(22\) 1.59630 0.921622i 0.340332 0.196491i
\(23\) 7.35856 + 4.24846i 1.53436 + 0.885866i 0.999153 + 0.0411482i \(0.0131016\pi\)
0.535212 + 0.844718i \(0.320232\pi\)
\(24\) −1.00000 + 1.73205i −0.204124 + 0.353553i
\(25\) 0 0
\(26\) −1.92162 + 0.294598i −0.376861 + 0.0577755i
\(27\) 1.00000i 0.192450i
\(28\) 7.10678 + 4.10310i 1.34306 + 0.775413i
\(29\) −1.75513 + 3.03997i −0.325919 + 0.564509i −0.981698 0.190444i \(-0.939007\pi\)
0.655779 + 0.754953i \(0.272340\pi\)
\(30\) 0 0
\(31\) 3.04945 0.547697 0.273849 0.961773i \(-0.411703\pi\)
0.273849 + 0.961773i \(0.411703\pi\)
\(32\) −4.55685 + 2.63090i −0.805545 + 0.465081i
\(33\) −2.96055 + 1.70928i −0.515366 + 0.297547i
\(34\) 1.55252 0.266255
\(35\) 0 0
\(36\) 0.854638 1.48028i 0.142440 0.246713i
\(37\) −2.32125 1.34017i −0.381611 0.220323i 0.296908 0.954906i \(-0.404044\pi\)
−0.678519 + 0.734583i \(0.737378\pi\)
\(38\) 2.68035i 0.434810i
\(39\) 3.56391 0.546373i 0.570683 0.0874898i
\(40\) 0 0
\(41\) 1.87577 3.24893i 0.292946 0.507397i −0.681559 0.731763i \(-0.738698\pi\)
0.974505 + 0.224366i \(0.0720311\pi\)
\(42\) 2.24183 + 1.29432i 0.345921 + 0.199718i
\(43\) −1.37580 + 0.794319i −0.209808 + 0.121132i −0.601222 0.799082i \(-0.705319\pi\)
0.391414 + 0.920215i \(0.371986\pi\)
\(44\) −5.84324 −0.880902
\(45\) 0 0
\(46\) 2.29072 + 3.96765i 0.337749 + 0.584998i
\(47\) 0.539189i 0.0786488i −0.999226 0.0393244i \(-0.987479\pi\)
0.999226 0.0393244i \(-0.0125206\pi\)
\(48\) 2.02665 1.17009i 0.292522 0.168887i
\(49\) 8.02472 13.8992i 1.14639 1.98560i
\(50\) 0 0
\(51\) −2.87936 −0.403191
\(52\) 5.74253 + 2.23707i 0.796345 + 0.310226i
\(53\) 13.7587i 1.88991i 0.327206 + 0.944953i \(0.393893\pi\)
−0.327206 + 0.944953i \(0.606107\pi\)
\(54\) 0.269594 0.466951i 0.0366872 0.0635440i
\(55\) 0 0
\(56\) 4.80098 + 8.31555i 0.641558 + 1.11121i
\(57\) 4.97107i 0.658434i
\(58\) −1.63912 + 0.946346i −0.215227 + 0.124261i
\(59\) 4.20261 + 7.27913i 0.547133 + 0.947663i 0.998469 + 0.0553085i \(0.0176142\pi\)
−0.451336 + 0.892354i \(0.649052\pi\)
\(60\) 0 0
\(61\) 1.52472 + 2.64090i 0.195221 + 0.338133i 0.946973 0.321313i \(-0.104124\pi\)
−0.751752 + 0.659446i \(0.770791\pi\)
\(62\) 1.42394 + 0.822114i 0.180841 + 0.104409i
\(63\) −4.15777 2.40049i −0.523830 0.302434i
\(64\) 1.84324 0.230406
\(65\) 0 0
\(66\) −1.84324 −0.226888
\(67\) 11.1288 + 6.42522i 1.35960 + 0.784965i 0.989570 0.144055i \(-0.0460142\pi\)
0.370030 + 0.929020i \(0.379347\pi\)
\(68\) −4.26225 2.46081i −0.516874 0.298417i
\(69\) −4.24846 7.35856i −0.511455 0.885866i
\(70\) 0 0
\(71\) −1.04585 1.81147i −0.124120 0.214982i 0.797269 0.603625i \(-0.206277\pi\)
−0.921389 + 0.388642i \(0.872944\pi\)
\(72\) 1.73205 1.00000i 0.204124 0.117851i
\(73\) 5.53919i 0.648313i 0.946003 + 0.324157i \(0.105080\pi\)
−0.946003 + 0.324157i \(0.894920\pi\)
\(74\) −0.722606 1.25159i −0.0840013 0.145494i
\(75\) 0 0
\(76\) 4.24846 7.35856i 0.487332 0.844084i
\(77\) 16.4124i 1.87037i
\(78\) 1.81147 + 0.705681i 0.205109 + 0.0799027i
\(79\) −2.21235 −0.248908 −0.124454 0.992225i \(-0.539718\pi\)
−0.124454 + 0.992225i \(0.539718\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.75178 1.01139i 0.193452 0.111690i
\(83\) 4.34017i 0.476396i −0.971217 0.238198i \(-0.923443\pi\)
0.971217 0.238198i \(-0.0765567\pi\)
\(84\) −4.10310 7.10678i −0.447685 0.775413i
\(85\) 0 0
\(86\) −0.856576 −0.0923669
\(87\) 3.03997 1.75513i 0.325919 0.188170i
\(88\) −5.92110 3.41855i −0.631192 0.364419i
\(89\) −3.50667 + 6.07372i −0.371706 + 0.643813i −0.989828 0.142269i \(-0.954560\pi\)
0.618122 + 0.786082i \(0.287894\pi\)
\(90\) 0 0
\(91\) 6.28345 16.1295i 0.658684 1.69083i
\(92\) 14.5236i 1.51419i
\(93\) −2.64090 1.52472i −0.273849 0.158107i
\(94\) 0.145362 0.251775i 0.0149930 0.0259686i
\(95\) 0 0
\(96\) 5.26180 0.537030
\(97\) −12.3573 + 7.13449i −1.25469 + 0.724398i −0.972038 0.234824i \(-0.924549\pi\)
−0.282656 + 0.959221i \(0.591215\pi\)
\(98\) 7.49431 4.32684i 0.757040 0.437077i
\(99\) 3.41855 0.343577
\(100\) 0 0
\(101\) −6.24846 + 10.8227i −0.621745 + 1.07689i 0.367415 + 0.930057i \(0.380243\pi\)
−0.989161 + 0.146838i \(0.953091\pi\)
\(102\) −1.34452 0.776260i −0.133127 0.0768612i
\(103\) 6.85043i 0.674993i −0.941327 0.337497i \(-0.890420\pi\)
0.941327 0.337497i \(-0.109580\pi\)
\(104\) 4.51026 + 5.62651i 0.442267 + 0.551724i
\(105\) 0 0
\(106\) −3.70928 + 6.42465i −0.360277 + 0.624018i
\(107\) −13.4751 7.77985i −1.30269 0.752107i −0.321823 0.946800i \(-0.604296\pi\)
−0.980864 + 0.194693i \(0.937629\pi\)
\(108\) −1.48028 + 0.854638i −0.142440 + 0.0822375i
\(109\) −15.8371 −1.51692 −0.758460 0.651720i \(-0.774048\pi\)
−0.758460 + 0.651720i \(0.774048\pi\)
\(110\) 0 0
\(111\) 1.34017 + 2.32125i 0.127204 + 0.220323i
\(112\) 11.2351i 1.06162i
\(113\) 2.66595 1.53919i 0.250792 0.144795i −0.369335 0.929296i \(-0.620414\pi\)
0.620127 + 0.784502i \(0.287081\pi\)
\(114\) 1.34017 2.32125i 0.125519 0.217405i
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −3.35963 1.30878i −0.310598 0.120997i
\(118\) 4.53200i 0.417205i
\(119\) −6.91189 + 11.9717i −0.633611 + 1.09745i
\(120\) 0 0
\(121\) −0.343245 0.594517i −0.0312040 0.0540470i
\(122\) 1.64423i 0.148861i
\(123\) −3.24893 + 1.87577i −0.292946 + 0.169132i
\(124\) −2.60617 4.51402i −0.234041 0.405371i
\(125\) 0 0
\(126\) −1.29432 2.24183i −0.115307 0.199718i
\(127\) 6.45593 + 3.72733i 0.572871 + 0.330747i 0.758295 0.651911i \(-0.226033\pi\)
−0.185424 + 0.982659i \(0.559366\pi\)
\(128\) 9.97440 + 5.75872i 0.881621 + 0.509004i
\(129\) 1.58864 0.139872
\(130\) 0 0
\(131\) 11.6937 1.02168 0.510841 0.859675i \(-0.329334\pi\)
0.510841 + 0.859675i \(0.329334\pi\)
\(132\) 5.06040 + 2.92162i 0.440451 + 0.254295i
\(133\) −20.6686 11.9330i −1.79219 1.03472i
\(134\) 3.46441 + 6.00053i 0.299279 + 0.518366i
\(135\) 0 0
\(136\) −2.87936 4.98720i −0.246903 0.427649i
\(137\) −8.03446 + 4.63870i −0.686430 + 0.396311i −0.802273 0.596957i \(-0.796376\pi\)
0.115843 + 0.993268i \(0.463043\pi\)
\(138\) 4.58145i 0.389999i
\(139\) 6.45774 + 11.1851i 0.547738 + 0.948711i 0.998429 + 0.0560304i \(0.0178444\pi\)
−0.450691 + 0.892680i \(0.648822\pi\)
\(140\) 0 0
\(141\) −0.269594 + 0.466951i −0.0227039 + 0.0393244i
\(142\) 1.12783i 0.0946451i
\(143\) 1.86781 + 12.1834i 0.156194 + 1.01883i
\(144\) −2.34017 −0.195014
\(145\) 0 0
\(146\) −1.49333 + 2.58653i −0.123589 + 0.214063i
\(147\) −13.8992 + 8.02472i −1.14639 + 0.661868i
\(148\) 4.58145i 0.376593i
\(149\) −1.00000 1.73205i −0.0819232 0.141895i 0.822153 0.569267i \(-0.192773\pi\)
−0.904076 + 0.427372i \(0.859440\pi\)
\(150\) 0 0
\(151\) −8.60424 −0.700203 −0.350101 0.936712i \(-0.613853\pi\)
−0.350101 + 0.936712i \(0.613853\pi\)
\(152\) 8.61015 4.97107i 0.698375 0.403207i
\(153\) 2.49360 + 1.43968i 0.201596 + 0.116391i
\(154\) −4.42469 + 7.66379i −0.356552 + 0.617566i
\(155\) 0 0
\(156\) −3.85464 4.80862i −0.308618 0.384998i
\(157\) 0.908291i 0.0724895i 0.999343 + 0.0362448i \(0.0115396\pi\)
−0.999343 + 0.0362448i \(0.988460\pi\)
\(158\) −1.03306 0.596436i −0.0821857 0.0474499i
\(159\) 6.87936 11.9154i 0.545569 0.944953i
\(160\) 0 0
\(161\) −40.7936 −3.21499
\(162\) −0.466951 + 0.269594i −0.0366872 + 0.0211813i
\(163\) 12.6823 7.32211i 0.993352 0.573512i 0.0870777 0.996202i \(-0.472247\pi\)
0.906275 + 0.422689i \(0.138914\pi\)
\(164\) −6.41241 −0.500725
\(165\) 0 0
\(166\) 1.17009 2.02665i 0.0908163 0.157298i
\(167\) 4.23916 + 2.44748i 0.328036 + 0.189392i 0.654969 0.755656i \(-0.272682\pi\)
−0.326933 + 0.945048i \(0.606015\pi\)
\(168\) 9.60197i 0.740808i
\(169\) 2.82878 12.6885i 0.217598 0.976038i
\(170\) 0 0
\(171\) −2.48554 + 4.30507i −0.190074 + 0.329217i
\(172\) 2.35162 + 1.35771i 0.179309 + 0.103524i
\(173\) 15.2072 8.77985i 1.15618 0.667520i 0.205793 0.978595i \(-0.434023\pi\)
0.950385 + 0.311076i \(0.100689\pi\)
\(174\) 1.89269 0.143485
\(175\) 0 0
\(176\) 4.00000 + 6.92820i 0.301511 + 0.522233i
\(177\) 8.40522i 0.631775i
\(178\) −3.27488 + 1.89076i −0.245463 + 0.141718i
\(179\) 0.692350 1.19919i 0.0517487 0.0896314i −0.838991 0.544146i \(-0.816854\pi\)
0.890739 + 0.454514i \(0.150187\pi\)
\(180\) 0 0
\(181\) −7.46800 −0.555092 −0.277546 0.960712i \(-0.589521\pi\)
−0.277546 + 0.960712i \(0.589521\pi\)
\(182\) 7.28249 5.83771i 0.539814 0.432720i
\(183\) 3.04945i 0.225422i
\(184\) 8.49693 14.7171i 0.626402 1.08496i
\(185\) 0 0
\(186\) −0.822114 1.42394i −0.0602803 0.104409i
\(187\) 9.84324i 0.719809i
\(188\) −0.798148 + 0.460811i −0.0582109 + 0.0336081i
\(189\) 2.40049 + 4.15777i 0.174610 + 0.302434i
\(190\) 0 0
\(191\) 1.20261 + 2.08298i 0.0870178 + 0.150719i 0.906249 0.422744i \(-0.138933\pi\)
−0.819231 + 0.573463i \(0.805600\pi\)
\(192\) −1.59630 0.921622i −0.115203 0.0665124i
\(193\) −13.7018 7.91075i −0.986279 0.569428i −0.0821189 0.996623i \(-0.526169\pi\)
−0.904160 + 0.427194i \(0.859502\pi\)
\(194\) −7.69368 −0.552374
\(195\) 0 0
\(196\) −27.4329 −1.95949
\(197\) −15.9918 9.23287i −1.13937 0.657814i −0.193094 0.981180i \(-0.561852\pi\)
−0.946274 + 0.323366i \(0.895186\pi\)
\(198\) 1.59630 + 0.921622i 0.113444 + 0.0654968i
\(199\) 5.47107 + 9.47617i 0.387834 + 0.671748i 0.992158 0.124991i \(-0.0398901\pi\)
−0.604324 + 0.796739i \(0.706557\pi\)
\(200\) 0 0
\(201\) −6.42522 11.1288i −0.453200 0.784965i
\(202\) −5.83546 + 3.36910i −0.410581 + 0.237049i
\(203\) 16.8527i 1.18283i
\(204\) 2.46081 + 4.26225i 0.172291 + 0.298417i
\(205\) 0 0
\(206\) 1.84684 3.19882i 0.128675 0.222872i
\(207\) 8.49693i 0.590577i
\(208\) −1.27861 8.34017i −0.0886555 0.578287i
\(209\) 16.9939 1.17549
\(210\) 0 0
\(211\) 7.08864 12.2779i 0.488002 0.845244i −0.511903 0.859043i \(-0.671059\pi\)
0.999905 + 0.0137992i \(0.00439257\pi\)
\(212\) 20.3667 11.7587i 1.39879 0.807592i
\(213\) 2.09171i 0.143322i
\(214\) −4.19481 7.26563i −0.286751 0.496668i
\(215\) 0 0
\(216\) −2.00000 −0.136083
\(217\) −12.6789 + 7.32018i −0.860701 + 0.496926i
\(218\) −7.39515 4.26959i −0.500863 0.289173i
\(219\) 2.76959 4.79708i 0.187152 0.324157i
\(220\) 0 0
\(221\) −3.76846 + 9.67358i −0.253494 + 0.650715i
\(222\) 1.44521i 0.0969963i
\(223\) −4.90155 2.82991i −0.328232 0.189505i 0.326824 0.945085i \(-0.394022\pi\)
−0.655056 + 0.755580i \(0.727355\pi\)
\(224\) 12.6309 21.8774i 0.843937 1.46174i
\(225\) 0 0
\(226\) 1.65983 0.110410
\(227\) 18.0821 10.4397i 1.20015 0.692906i 0.239560 0.970882i \(-0.422997\pi\)
0.960588 + 0.277976i \(0.0896634\pi\)
\(228\) −7.35856 + 4.24846i −0.487332 + 0.281361i
\(229\) 11.5525 0.763412 0.381706 0.924284i \(-0.375337\pi\)
0.381706 + 0.924284i \(0.375337\pi\)
\(230\) 0 0
\(231\) 8.20620 14.2136i 0.539929 0.935184i
\(232\) 6.07995 + 3.51026i 0.399168 + 0.230460i
\(233\) 3.73206i 0.244495i 0.992500 + 0.122248i \(0.0390102\pi\)
−0.992500 + 0.122248i \(0.960990\pi\)
\(234\) −1.21594 1.51687i −0.0794885 0.0991612i
\(235\) 0 0
\(236\) 7.18342 12.4420i 0.467601 0.809908i
\(237\) 1.91595 + 1.10617i 0.124454 + 0.0718537i
\(238\) −6.45503 + 3.72681i −0.418417 + 0.241573i
\(239\) −27.0928 −1.75248 −0.876242 0.481871i \(-0.839957\pi\)
−0.876242 + 0.481871i \(0.839957\pi\)
\(240\) 0 0
\(241\) 11.7990 + 20.4365i 0.760043 + 1.31643i 0.942828 + 0.333281i \(0.108156\pi\)
−0.182784 + 0.983153i \(0.558511\pi\)
\(242\) 0.370147i 0.0237940i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 2.60617 4.51402i 0.166843 0.288981i
\(245\) 0 0
\(246\) −2.02279 −0.128968
\(247\) −16.7009 6.50605i −1.06266 0.413970i
\(248\) 6.09890i 0.387280i
\(249\) −2.17009 + 3.75870i −0.137524 + 0.238198i
\(250\) 0 0
\(251\) 13.4319 + 23.2647i 0.847813 + 1.46845i 0.883156 + 0.469080i \(0.155414\pi\)
−0.0353430 + 0.999375i \(0.511252\pi\)
\(252\) 8.20620i 0.516942i
\(253\) 25.1556 14.5236i 1.58152 0.913090i
\(254\) 2.00974 + 3.48097i 0.126102 + 0.218415i
\(255\) 0 0
\(256\) 1.26180 + 2.18549i 0.0788622 + 0.136593i
\(257\) 3.04726 + 1.75933i 0.190083 + 0.109744i 0.592021 0.805922i \(-0.298330\pi\)
−0.401939 + 0.915667i \(0.631663\pi\)
\(258\) 0.741816 + 0.428288i 0.0461835 + 0.0266640i
\(259\) 12.8683 0.799597
\(260\) 0 0
\(261\) −3.51026 −0.217280
\(262\) 5.46038 + 3.15255i 0.337343 + 0.194765i
\(263\) −7.66666 4.42635i −0.472747 0.272940i 0.244642 0.969613i \(-0.421330\pi\)
−0.717389 + 0.696673i \(0.754663\pi\)
\(264\) 3.41855 + 5.92110i 0.210397 + 0.364419i
\(265\) 0 0
\(266\) −6.43415 11.1443i −0.394503 0.683299i
\(267\) 6.07372 3.50667i 0.371706 0.214604i
\(268\) 21.9649i 1.34172i
\(269\) 13.6212 + 23.5925i 0.830497 + 1.43846i 0.897645 + 0.440720i \(0.145277\pi\)
−0.0671480 + 0.997743i \(0.521390\pi\)
\(270\) 0 0
\(271\) −6.93188 + 12.0064i −0.421082 + 0.729335i −0.996046 0.0888438i \(-0.971683\pi\)
0.574964 + 0.818179i \(0.305016\pi\)
\(272\) 6.73820i 0.408564i
\(273\) −13.5064 + 10.8268i −0.817443 + 0.655270i
\(274\) −5.00227 −0.302198
\(275\) 0 0
\(276\) −7.26180 + 12.5778i −0.437109 + 0.757094i
\(277\) 2.23560 1.29072i 0.134324 0.0775521i −0.431332 0.902193i \(-0.641956\pi\)
0.565656 + 0.824641i \(0.308623\pi\)
\(278\) 6.96388i 0.417666i
\(279\) 1.52472 + 2.64090i 0.0912828 + 0.158107i
\(280\) 0 0
\(281\) −5.35350 −0.319363 −0.159682 0.987169i \(-0.551047\pi\)
−0.159682 + 0.987169i \(0.551047\pi\)
\(282\) −0.251775 + 0.145362i −0.0149930 + 0.00865620i
\(283\) 13.7644 + 7.94687i 0.818207 + 0.472392i 0.849798 0.527109i \(-0.176724\pi\)
−0.0315904 + 0.999501i \(0.510057\pi\)
\(284\) −1.78765 + 3.09631i −0.106078 + 0.183732i
\(285\) 0 0
\(286\) −2.41241 + 6.19261i −0.142649 + 0.366177i
\(287\) 18.0111i 1.06316i
\(288\) −4.55685 2.63090i −0.268515 0.155027i
\(289\) −4.35464 + 7.54245i −0.256155 + 0.443674i
\(290\) 0 0
\(291\) 14.2690 0.836463
\(292\) 8.19953 4.73400i 0.479841 0.277036i
\(293\) 2.14889 1.24067i 0.125540 0.0724804i −0.435915 0.899988i \(-0.643575\pi\)
0.561455 + 0.827507i \(0.310242\pi\)
\(294\) −8.65368 −0.504693
\(295\) 0 0
\(296\) −2.68035 + 4.64250i −0.155792 + 0.269840i
\(297\) −2.96055 1.70928i −0.171789 0.0991822i
\(298\) 1.07838i 0.0624687i
\(299\) −30.2823 + 4.64250i −1.75127 + 0.268482i
\(300\) 0 0
\(301\) 3.81351 6.60519i 0.219807 0.380717i
\(302\) −4.01776 2.31965i −0.231196 0.133481i
\(303\) 10.8227 6.24846i 0.621745 0.358965i
\(304\) −11.6332 −0.667208
\(305\) 0 0
\(306\) 0.776260 + 1.34452i 0.0443758 + 0.0768612i
\(307\) 22.2423i 1.26944i −0.772744 0.634718i \(-0.781116\pi\)
0.772744 0.634718i \(-0.218884\pi\)
\(308\) 24.2949 14.0267i 1.38433 0.799243i
\(309\) −3.42522 + 5.93265i −0.194854 + 0.337497i
\(310\) 0 0
\(311\) −0.405220 −0.0229779 −0.0114890 0.999934i \(-0.503657\pi\)
−0.0114890 + 0.999934i \(0.503657\pi\)
\(312\) −1.09275 7.12783i −0.0618646 0.403534i
\(313\) 0.353504i 0.0199812i 0.999950 + 0.00999061i \(0.00318016\pi\)
−0.999950 + 0.00999061i \(0.996820\pi\)
\(314\) −0.244870 + 0.424128i −0.0138188 + 0.0239349i
\(315\) 0 0
\(316\) 1.89076 + 3.27488i 0.106363 + 0.184227i
\(317\) 25.3028i 1.42115i 0.703622 + 0.710574i \(0.251565\pi\)
−0.703622 + 0.710574i \(0.748435\pi\)
\(318\) 6.42465 3.70928i 0.360277 0.208006i
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 0 0
\(321\) 7.77985 + 13.4751i 0.434229 + 0.752107i
\(322\) −19.0486 10.9977i −1.06154 0.612880i
\(323\) 12.3959 + 7.15676i 0.689724 + 0.398213i
\(324\) 1.70928 0.0949597
\(325\) 0 0
\(326\) 7.89601 0.437319
\(327\) 13.7153 + 7.91855i 0.758460 + 0.437897i
\(328\) −6.49785 3.75154i −0.358784 0.207144i
\(329\) 1.29432 + 2.24183i 0.0713581 + 0.123596i
\(330\) 0 0
\(331\) −2.30098 3.98542i −0.126474 0.219059i 0.795834 0.605514i \(-0.207033\pi\)
−0.922308 + 0.386456i \(0.873699\pi\)
\(332\) −6.42465 + 3.70928i −0.352599 + 0.203573i
\(333\) 2.68035i 0.146882i
\(334\) 1.31965 + 2.28571i 0.0722083 + 0.125068i
\(335\) 0 0
\(336\) −5.61757 + 9.72991i −0.306463 + 0.530810i
\(337\) 31.0338i 1.69052i −0.534354 0.845261i \(-0.679445\pi\)
0.534354 0.845261i \(-0.320555\pi\)
\(338\) 4.74165 5.16229i 0.257912 0.280791i
\(339\) −3.07838 −0.167195
\(340\) 0 0
\(341\) 5.21235 9.02805i 0.282264 0.488896i
\(342\) −2.32125 + 1.34017i −0.125519 + 0.0724683i
\(343\) 43.4463i 2.34588i
\(344\) 1.58864 + 2.75160i 0.0856536 + 0.148356i
\(345\) 0 0
\(346\) 9.46800 0.509003
\(347\) −15.5508 + 8.97826i −0.834811 + 0.481978i −0.855497 0.517808i \(-0.826748\pi\)
0.0206863 + 0.999786i \(0.493415\pi\)
\(348\) −5.19615 3.00000i −0.278543 0.160817i
\(349\) 0.0505820 0.0876107i 0.00270759 0.00468969i −0.864668 0.502343i \(-0.832471\pi\)
0.867376 + 0.497653i \(0.165805\pi\)
\(350\) 0 0
\(351\) 2.25513 + 2.81325i 0.120370 + 0.150160i
\(352\) 17.9877i 0.958748i
\(353\) −25.4271 14.6803i −1.35335 0.781356i −0.364631 0.931152i \(-0.618805\pi\)
−0.988717 + 0.149796i \(0.952138\pi\)
\(354\) 2.26600 3.92483i 0.120437 0.208602i
\(355\) 0 0
\(356\) 11.9877 0.635348
\(357\) 11.9717 6.91189i 0.633611 0.365816i
\(358\) 0.646588 0.373308i 0.0341732 0.0197299i
\(359\) 11.5369 0.608895 0.304448 0.952529i \(-0.401528\pi\)
0.304448 + 0.952529i \(0.401528\pi\)
\(360\) 0 0
\(361\) −2.85577 + 4.94634i −0.150304 + 0.260334i
\(362\) −3.48719 2.01333i −0.183283 0.105818i
\(363\) 0.686489i 0.0360313i
\(364\) −29.2462 + 4.48365i −1.53292 + 0.235007i
\(365\) 0 0
\(366\) 0.822114 1.42394i 0.0429726 0.0744307i
\(367\) 30.8562 + 17.8148i 1.61068 + 0.929927i 0.989213 + 0.146488i \(0.0467968\pi\)
0.621468 + 0.783439i \(0.286536\pi\)
\(368\) −17.2203 + 9.94214i −0.897670 + 0.518270i
\(369\) 3.75154 0.195297
\(370\) 0 0
\(371\) −33.0277 57.2057i −1.71471 2.96997i
\(372\) 5.21235i 0.270248i
\(373\) 8.32374 4.80571i 0.430987 0.248830i −0.268780 0.963202i \(-0.586621\pi\)
0.699767 + 0.714371i \(0.253287\pi\)
\(374\) 2.65368 4.59632i 0.137219 0.237670i
\(375\) 0 0
\(376\) −1.07838 −0.0556131
\(377\) −1.91791 12.5103i −0.0987775 0.644311i
\(378\) 2.58864i 0.133145i
\(379\) 3.51139 6.08191i 0.180368 0.312407i −0.761638 0.648003i \(-0.775604\pi\)
0.942006 + 0.335596i \(0.108938\pi\)
\(380\) 0 0
\(381\) −3.72733 6.45593i −0.190957 0.330747i
\(382\) 1.29687i 0.0663535i
\(383\) −17.5053 + 10.1067i −0.894480 + 0.516428i −0.875405 0.483390i \(-0.839405\pi\)
−0.0190745 + 0.999818i \(0.506072\pi\)
\(384\) −5.75872 9.97440i −0.293874 0.509004i
\(385\) 0 0
\(386\) −4.26539 7.38787i −0.217103 0.376033i
\(387\) −1.37580 0.794319i −0.0699359 0.0403775i
\(388\) 21.1220 + 12.1948i 1.07231 + 0.619098i
\(389\) 15.7587 0.798999 0.399500 0.916733i \(-0.369184\pi\)
0.399500 + 0.916733i \(0.369184\pi\)
\(390\) 0 0
\(391\) 24.4657 1.23729
\(392\) −27.7985 16.0494i −1.40403 0.810620i
\(393\) −10.1270 5.84684i −0.510841 0.294934i
\(394\) −4.97826 8.62260i −0.250801 0.434400i
\(395\) 0 0
\(396\) −2.92162 5.06040i −0.146817 0.254295i
\(397\) 9.82710 5.67368i 0.493208 0.284754i −0.232696 0.972549i \(-0.574755\pi\)
0.725904 + 0.687796i \(0.241421\pi\)
\(398\) 5.89988i 0.295734i
\(399\) 11.9330 + 20.6686i 0.597398 + 1.03472i
\(400\) 0 0
\(401\) −13.3268 + 23.0828i −0.665511 + 1.15270i 0.313636 + 0.949543i \(0.398453\pi\)
−0.979147 + 0.203155i \(0.934880\pi\)
\(402\) 6.92881i 0.345578i
\(403\) −8.57887 + 6.87690i −0.427344 + 0.342563i
\(404\) 21.3607 1.06273
\(405\) 0 0
\(406\) 4.54339 7.86939i 0.225485 0.390551i
\(407\) −7.93530 + 4.58145i −0.393338 + 0.227094i
\(408\) 5.75872i 0.285099i
\(409\) −15.4463 26.7539i −0.763773 1.32289i −0.940893 0.338704i \(-0.890012\pi\)
0.177120 0.984189i \(-0.443322\pi\)
\(410\) 0 0
\(411\) 9.27739 0.457620
\(412\) −10.1405 + 5.85464i −0.499588 + 0.288437i
\(413\) −34.9470 20.1767i −1.71963 0.992829i
\(414\) −2.29072 + 3.96765i −0.112583 + 0.194999i
\(415\) 0 0
\(416\) 6.88655 17.6777i 0.337641 0.866719i
\(417\) 12.9155i 0.632474i
\(418\) 7.93530 + 4.58145i 0.388128 + 0.224086i
\(419\) 17.1581 29.7187i 0.838227 1.45185i −0.0531484 0.998587i \(-0.516926\pi\)
0.891376 0.453265i \(-0.149741\pi\)
\(420\) 0 0
\(421\) −13.5320 −0.659509 −0.329755 0.944067i \(-0.606966\pi\)
−0.329755 + 0.944067i \(0.606966\pi\)
\(422\) 6.62010 3.82211i 0.322261 0.186058i
\(423\) 0.466951 0.269594i 0.0227039 0.0131081i
\(424\) 27.5174 1.33637
\(425\) 0 0
\(426\) −0.563913 + 0.976726i −0.0273217 + 0.0473225i
\(427\) −12.6789 7.32018i −0.613576 0.354248i
\(428\) 26.5958i 1.28556i
\(429\) 4.47414 11.4851i 0.216014 0.554504i
\(430\) 0 0
\(431\) −7.63090 + 13.2171i −0.367567 + 0.636645i −0.989185 0.146676i \(-0.953143\pi\)
0.621617 + 0.783321i \(0.286476\pi\)
\(432\) 2.02665 + 1.17009i 0.0975072 + 0.0562958i
\(433\) −3.35963 + 1.93968i −0.161453 + 0.0932151i −0.578550 0.815647i \(-0.696381\pi\)
0.417096 + 0.908862i \(0.363048\pi\)
\(434\) −7.89392 −0.378920
\(435\) 0 0
\(436\) 13.5350 + 23.4433i 0.648208 + 1.12273i
\(437\) 42.2388i 2.02056i
\(438\) 2.58653 1.49333i 0.123589 0.0713543i
\(439\) −10.1556 + 17.5901i −0.484701 + 0.839527i −0.999846 0.0175761i \(-0.994405\pi\)
0.515144 + 0.857104i \(0.327738\pi\)
\(440\) 0 0
\(441\) 16.0494 0.764259
\(442\) −4.36763 + 3.50113i −0.207747 + 0.166532i
\(443\) 35.0772i 1.66657i 0.552847 + 0.833283i \(0.313542\pi\)
−0.552847 + 0.833283i \(0.686458\pi\)
\(444\) 2.29072 3.96765i 0.108713 0.188296i
\(445\) 0 0
\(446\) −1.52586 2.64286i −0.0722515 0.125143i
\(447\) 2.00000i 0.0945968i
\(448\) −7.66379 + 4.42469i −0.362080 + 0.209047i
\(449\) 3.98667 + 6.90511i 0.188143 + 0.325872i 0.944631 0.328135i \(-0.106420\pi\)
−0.756488 + 0.654007i \(0.773087\pi\)
\(450\) 0 0
\(451\) −6.41241 11.1066i −0.301948 0.522990i
\(452\) −4.55685 2.63090i −0.214336 0.123747i
\(453\) 7.45149 + 4.30212i 0.350101 + 0.202131i
\(454\) 11.2579 0.528360
\(455\) 0 0
\(456\) −9.94214 −0.465583
\(457\) −2.25960 1.30458i −0.105699 0.0610256i 0.446218 0.894924i \(-0.352770\pi\)
−0.551918 + 0.833899i \(0.686104\pi\)
\(458\) 5.39446 + 3.11450i 0.252067 + 0.145531i
\(459\) −1.43968 2.49360i −0.0671986 0.116391i
\(460\) 0 0
\(461\) 15.0397 + 26.0495i 0.700469 + 1.21325i 0.968302 + 0.249783i \(0.0803592\pi\)
−0.267833 + 0.963465i \(0.586307\pi\)
\(462\) 7.66379 4.42469i 0.356552 0.205855i
\(463\) 6.36788i 0.295940i 0.988992 + 0.147970i \(0.0472740\pi\)
−0.988992 + 0.147970i \(0.952726\pi\)
\(464\) −4.10731 7.11406i −0.190677 0.330262i
\(465\) 0 0
\(466\) −1.00614 + 1.74269i −0.0466087 + 0.0807286i
\(467\) 2.06892i 0.0957383i −0.998854 0.0478692i \(-0.984757\pi\)
0.998854 0.0478692i \(-0.0152431\pi\)
\(468\) 0.933903 + 6.09171i 0.0431697 + 0.281589i
\(469\) −61.6947 −2.84880
\(470\) 0 0
\(471\) 0.454146 0.786603i 0.0209259 0.0362448i
\(472\) 14.5583 8.40522i 0.670099 0.386882i
\(473\) 5.43084i 0.249710i
\(474\) 0.596436 + 1.03306i 0.0273952 + 0.0474499i
\(475\) 0 0
\(476\) 23.6286 1.08302
\(477\) −11.9154 + 6.87936i −0.545569 + 0.314984i
\(478\) −12.6510 7.30406i −0.578643 0.334080i
\(479\) 5.75513 9.96818i 0.262959 0.455458i −0.704068 0.710132i \(-0.748635\pi\)
0.967027 + 0.254675i \(0.0819684\pi\)
\(480\) 0 0
\(481\) 9.55252 1.46447i 0.435557 0.0667741i
\(482\) 12.7238i 0.579555i
\(483\) 35.3283 + 20.3968i 1.60749 + 0.928087i
\(484\) −0.586699 + 1.01619i −0.0266682 + 0.0461906i
\(485\) 0 0
\(486\) 0.539189 0.0244581
\(487\) 17.4490 10.0742i 0.790689 0.456504i −0.0495162 0.998773i \(-0.515768\pi\)
0.840205 + 0.542269i \(0.182435\pi\)
\(488\) 5.28180 3.04945i 0.239096 0.138042i
\(489\) −14.6442 −0.662235
\(490\) 0 0
\(491\) 10.9408 18.9500i 0.493752 0.855204i −0.506222 0.862403i \(-0.668958\pi\)
0.999974 + 0.00719955i \(0.00229171\pi\)
\(492\) 5.55331 + 3.20620i 0.250362 + 0.144547i
\(493\) 10.1073i 0.455210i
\(494\) −6.04453 7.54049i −0.271956 0.339263i
\(495\) 0 0
\(496\) −3.56812 + 6.18016i −0.160213 + 0.277497i
\(497\) 8.69685 + 5.02113i 0.390107 + 0.225228i
\(498\) −2.02665 + 1.17009i −0.0908163 + 0.0524328i
\(499\) 23.8225 1.06644 0.533222 0.845975i \(-0.320981\pi\)
0.533222 + 0.845975i \(0.320981\pi\)
\(500\) 0 0
\(501\) −2.44748 4.23916i −0.109345 0.189392i
\(502\) 14.4846i 0.646481i
\(503\) −3.73168 + 2.15449i −0.166388 + 0.0960639i −0.580881 0.813988i \(-0.697292\pi\)
0.414494 + 0.910052i \(0.363959\pi\)
\(504\) −4.80098 + 8.31555i −0.213853 + 0.370404i
\(505\) 0 0
\(506\) 15.6619 0.696257
\(507\) −8.79404 + 9.57417i −0.390557 + 0.425204i
\(508\) 12.7421i 0.565338i
\(509\) 0.496928 0.860705i 0.0220260 0.0381501i −0.854802 0.518954i \(-0.826322\pi\)
0.876828 + 0.480804i \(0.159655\pi\)
\(510\) 0 0
\(511\) −13.2968 23.0307i −0.588215 1.01882i
\(512\) 21.6742i 0.957873i
\(513\) 4.30507 2.48554i 0.190074 0.109739i
\(514\) 0.948614 + 1.64305i 0.0418416 + 0.0724717i
\(515\) 0 0
\(516\) −1.35771 2.35162i −0.0597698 0.103524i
\(517\) −1.59630 0.921622i −0.0702050 0.0405329i
\(518\) 6.00887 + 3.46922i 0.264015 + 0.152429i
\(519\) −17.5597 −0.770786
\(520\) 0 0
\(521\) 9.75154 0.427223 0.213611 0.976919i \(-0.431477\pi\)
0.213611 + 0.976919i \(0.431477\pi\)
\(522\) −1.63912 0.946346i −0.0717423 0.0414205i
\(523\) −9.54405 5.51026i −0.417332 0.240947i 0.276603 0.960984i \(-0.410791\pi\)
−0.693935 + 0.720037i \(0.744125\pi\)
\(524\) −9.99386 17.3099i −0.436584 0.756185i
\(525\) 0 0
\(526\) −2.38664 4.13378i −0.104062 0.180241i
\(527\) 7.60411 4.39023i 0.331240 0.191242i
\(528\) 8.00000i 0.348155i
\(529\) 24.5989 + 42.6065i 1.06952 + 1.85246i
\(530\) 0 0
\(531\) −4.20261 + 7.27913i −0.182378 + 0.315888i
\(532\) 40.7936i 1.76863i
\(533\) 2.04974 + 13.3701i 0.0887841 + 0.579125i
\(534\) 3.78151 0.163642
\(535\) 0 0
\(536\) 12.8504 22.2576i 0.555054 0.961382i
\(537\) −1.19919 + 0.692350i −0.0517487 + 0.0298771i
\(538\) 14.6888i 0.633277i
\(539\) −27.4329 47.5152i −1.18162 2.04663i
\(540\) 0 0
\(541\) −6.28846 −0.270362 −0.135181 0.990821i \(-0.543162\pi\)
−0.135181 + 0.990821i \(0.543162\pi\)
\(542\) −6.47370 + 3.73759i −0.278069 + 0.160543i
\(543\) 6.46748 + 3.73400i 0.277546 + 0.160241i
\(544\) −7.57531 + 13.1208i −0.324789 + 0.562550i
\(545\) 0 0
\(546\) −9.22568 + 1.41436i −0.394823 + 0.0605291i
\(547\) 27.6875i 1.18383i 0.805999 + 0.591917i \(0.201629\pi\)
−0.805999 + 0.591917i \(0.798371\pi\)
\(548\) 13.7331 + 7.92881i 0.586649 + 0.338702i
\(549\) −1.52472 + 2.64090i −0.0650736 + 0.112711i
\(550\) 0 0
\(551\) −17.4497 −0.743384
\(552\) −14.7171 + 8.49693i −0.626402 + 0.361653i
\(553\) 9.19844 5.31072i 0.391157 0.225835i
\(554\) 1.39189 0.0591357
\(555\) 0 0
\(556\) 11.0381 19.1185i 0.468118 0.810804i
\(557\) 18.5885 + 10.7321i 0.787619 + 0.454732i 0.839124 0.543941i \(-0.183068\pi\)
−0.0515046 + 0.998673i \(0.516402\pi\)
\(558\) 1.64423i 0.0696057i
\(559\) 2.07918 5.33723i 0.0879400 0.225741i
\(560\) 0 0
\(561\) −4.92162 + 8.52450i −0.207791 + 0.359905i
\(562\) −2.49983 1.44327i −0.105449 0.0608809i
\(563\) 13.5743 7.83710i 0.572087 0.330294i −0.185896 0.982570i \(-0.559519\pi\)
0.757982 + 0.652275i \(0.226185\pi\)
\(564\) 0.921622 0.0388073
\(565\) 0 0
\(566\) 4.28486 + 7.42160i 0.180106 + 0.311953i
\(567\) 4.80098i 0.201622i
\(568\) −3.62295 + 2.09171i −0.152015 + 0.0877661i
\(569\) 8.21594 14.2304i 0.344430 0.596571i −0.640820 0.767691i \(-0.721405\pi\)
0.985250 + 0.171121i \(0.0547388\pi\)
\(570\) 0 0
\(571\) 14.6765 0.614191 0.307096 0.951679i \(-0.400643\pi\)
0.307096 + 0.951679i \(0.400643\pi\)
\(572\) 16.4385 13.1773i 0.687329 0.550970i
\(573\) 2.40522i 0.100479i
\(574\) −4.85568 + 8.41029i −0.202672 + 0.351039i
\(575\) 0 0
\(576\) 0.921622 + 1.59630i 0.0384009 + 0.0665124i
\(577\) 17.8622i 0.743611i −0.928311 0.371806i \(-0.878739\pi\)
0.928311 0.371806i \(-0.121261\pi\)
\(578\) −4.06681 + 2.34797i −0.169157 + 0.0976628i
\(579\) 7.91075 + 13.7018i 0.328760 + 0.569428i
\(580\) 0 0
\(581\) 10.4186 + 18.0455i 0.432234 + 0.748652i
\(582\) 6.66292 + 3.84684i 0.276187 + 0.159457i
\(583\) 40.7334 + 23.5174i 1.68701 + 0.973993i
\(584\) 11.0784 0.458427
\(585\) 0 0
\(586\) 1.33791 0.0552684
\(587\) 3.83084 + 2.21174i 0.158116 + 0.0912881i 0.576970 0.816765i \(-0.304235\pi\)
−0.418854 + 0.908053i \(0.637568\pi\)
\(588\) 23.7576 + 13.7165i 0.979747 + 0.565657i
\(589\) 7.57951 + 13.1281i 0.312308 + 0.540934i
\(590\) 0 0
\(591\) 9.23287 + 15.9918i 0.379789 + 0.657814i
\(592\) 5.43212 3.13624i 0.223259 0.128899i
\(593\) 12.5380i 0.514873i −0.966295 0.257436i \(-0.917122\pi\)
0.966295 0.257436i \(-0.0828777\pi\)
\(594\) −0.921622 1.59630i −0.0378146 0.0654968i
\(595\) 0 0
\(596\) −1.70928 + 2.96055i −0.0700146 + 0.121269i
\(597\) 10.9421i 0.447832i
\(598\) −15.3920 5.99612i −0.629424 0.245200i
\(599\) −23.5825 −0.963555 −0.481777 0.876294i \(-0.660009\pi\)
−0.481777 + 0.876294i \(0.660009\pi\)
\(600\) 0 0
\(601\) −1.64229 + 2.84453i −0.0669904 + 0.116031i −0.897575 0.440861i \(-0.854673\pi\)
0.830585 + 0.556892i \(0.188006\pi\)
\(602\) 3.56145 2.05620i 0.145154 0.0838046i
\(603\) 12.8504i 0.523310i
\(604\) 7.35350 + 12.7366i 0.299210 + 0.518247i
\(605\) 0 0
\(606\) 6.73820 0.273721
\(607\) −5.20344 + 3.00421i −0.211201 + 0.121937i −0.601869 0.798595i \(-0.705577\pi\)
0.390668 + 0.920531i \(0.372244\pi\)
\(608\) −22.6524 13.0784i −0.918677 0.530398i
\(609\) −8.42635 + 14.5949i −0.341453 + 0.591414i
\(610\) 0 0
\(611\) 1.21594 + 1.51687i 0.0491917 + 0.0613662i
\(612\) 4.92162i 0.198945i
\(613\) −4.78979 2.76539i −0.193458 0.111693i 0.400142 0.916453i \(-0.368961\pi\)
−0.593600 + 0.804760i \(0.702294\pi\)
\(614\) 5.99641 10.3861i 0.241995 0.419148i
\(615\) 0 0
\(616\) 32.8248 1.32255
\(617\) 10.2921 5.94214i 0.414344 0.239222i −0.278311 0.960491i \(-0.589774\pi\)
0.692654 + 0.721270i \(0.256441\pi\)
\(618\) −3.19882 + 1.84684i −0.128675 + 0.0742907i
\(619\) −32.2183 −1.29496 −0.647482 0.762081i \(-0.724178\pi\)
−0.647482 + 0.762081i \(0.724178\pi\)
\(620\) 0 0
\(621\) 4.24846 7.35856i 0.170485 0.295289i
\(622\) −0.189218 0.109245i −0.00758695 0.00438032i
\(623\) 33.6709i 1.34900i
\(624\) −3.06278 + 7.86211i −0.122609 + 0.314736i
\(625\) 0 0
\(626\) −0.0953027 + 0.165069i −0.00380906 + 0.00659749i
\(627\) −14.7171 8.49693i −0.587745 0.339335i
\(628\) 1.34452 0.776260i 0.0536523 0.0309761i
\(629\) −7.71769 −0.307724
\(630\) 0 0
\(631\) 9.87209 + 17.0990i 0.393002 + 0.680699i 0.992844 0.119420i \(-0.0381034\pi\)
−0.599842 + 0.800118i \(0.704770\pi\)
\(632\) 4.42469i 0.176005i
\(633\) −12.2779 + 7.08864i −0.488002 + 0.281748i
\(634\) −6.82150 + 11.8152i −0.270916 + 0.469241i
\(635\) 0 0
\(636\) −23.5174 −0.932527
\(637\) 8.76899 + 57.1988i 0.347440 + 2.26630i
\(638\) 6.47027i 0.256160i
\(639\) 1.04585 1.81147i 0.0413734 0.0716608i
\(640\) 0 0
\(641\) −18.0566 31.2750i −0.713194 1.23529i −0.963652 0.267161i \(-0.913914\pi\)
0.250458 0.968128i \(-0.419419\pi\)
\(642\) 8.38962i 0.331112i
\(643\) −33.9328 + 19.5911i −1.33818 + 0.772597i −0.986537 0.163537i \(-0.947710\pi\)
−0.351641 + 0.936135i \(0.614376\pi\)
\(644\) 34.8638 + 60.3858i 1.37382 + 2.37953i
\(645\) 0 0
\(646\) 3.85884 + 6.68371i 0.151824 + 0.262967i
\(647\) 36.5213 + 21.0856i 1.43580 + 0.828959i 0.997554 0.0698964i \(-0.0222669\pi\)
0.438245 + 0.898856i \(0.355600\pi\)
\(648\) 1.73205 + 1.00000i 0.0680414 + 0.0392837i
\(649\) 28.7337 1.12790
\(650\) 0 0
\(651\) 14.6404 0.573801
\(652\) −21.6775 12.5155i −0.848956 0.490145i
\(653\) −29.3120 16.9233i −1.14707 0.662259i −0.198896 0.980021i \(-0.563735\pi\)
−0.948171 + 0.317762i \(0.897069\pi\)
\(654\) 4.26959 + 7.39515i 0.166954 + 0.289173i
\(655\) 0 0
\(656\) 4.38962 + 7.60305i 0.171386 + 0.296849i
\(657\) −4.79708 + 2.76959i −0.187152 + 0.108052i
\(658\) 1.39576i 0.0544126i
\(659\) −15.7659 27.3074i −0.614153 1.06374i −0.990533 0.137278i \(-0.956165\pi\)
0.376380 0.926465i \(-0.377169\pi\)
\(660\) 0 0
\(661\) 3.18876 5.52309i 0.124028 0.214823i −0.797324 0.603551i \(-0.793752\pi\)
0.921353 + 0.388728i \(0.127085\pi\)
\(662\) 2.48133i 0.0964396i
\(663\) 8.10037 6.49333i 0.314592 0.252180i
\(664\) −8.68035 −0.336863
\(665\) 0 0
\(666\) 0.722606 1.25159i 0.0280004 0.0484982i
\(667\) −25.8304 + 14.9132i −1.00016 + 0.577442i
\(668\) 8.36683i 0.323723i
\(669\) 2.82991 + 4.90155i 0.109411 + 0.189505i
\(670\) 0 0
\(671\) 10.4247 0.402441
\(672\) −21.8774 + 12.6309i −0.843937 + 0.487247i
\(673\) 8.42002 + 4.86130i 0.324568 + 0.187389i 0.653427 0.756990i \(-0.273331\pi\)
−0.328859 + 0.944379i \(0.606664\pi\)
\(674\) 8.36655 14.4913i 0.322268 0.558184i
\(675\) 0 0
\(676\) −21.2001 + 6.65669i −0.815387 + 0.256027i
\(677\) 10.0845i 0.387580i −0.981043 0.193790i \(-0.937922\pi\)
0.981043 0.193790i \(-0.0620780\pi\)
\(678\) −1.43745 0.829914i −0.0552050 0.0318726i
\(679\) 34.2526 59.3272i 1.31449 2.27677i
\(680\) 0 0
\(681\) −20.8794 −0.800099
\(682\) 4.86782 2.81044i 0.186399 0.107617i
\(683\) 5.83440 3.36849i 0.223247 0.128892i −0.384206 0.923247i \(-0.625525\pi\)
0.607453 + 0.794356i \(0.292191\pi\)
\(684\) 8.49693 0.324888
\(685\) 0 0
\(686\) −11.7129 + 20.2873i −0.447199 + 0.774572i
\(687\) −10.0048 5.77626i −0.381706 0.220378i
\(688\) 3.71769i 0.141735i
\(689\) −31.0277 38.7068i −1.18206 1.47461i
\(690\) 0 0
\(691\) 8.97220 15.5403i 0.341319 0.591181i −0.643359 0.765565i \(-0.722460\pi\)
0.984678 + 0.174383i \(0.0557931\pi\)
\(692\) −25.9932 15.0072i −0.988114 0.570488i
\(693\) −14.2136 + 8.20620i −0.539929 + 0.311728i
\(694\) −9.68195 −0.367522
\(695\) 0 0
\(696\) −3.51026 6.07995i −0.133056 0.230460i
\(697\) 10.8020i 0.409156i
\(698\) 0.0472387 0.0272733i 0.00178801 0.00103231i
\(699\) 1.86603 3.23206i 0.0705798 0.122248i
\(700\) 0 0
\(701\) 41.2762 1.55898 0.779490 0.626415i \(-0.215478\pi\)
0.779490 + 0.626415i \(0.215478\pi\)
\(702\) 0.294598 + 1.92162i 0.0111189 + 0.0725270i
\(703\) 13.3242i 0.502531i
\(704\) 3.15061 5.45702i 0.118743 0.205669i
\(705\) 0 0
\(706\) −7.91548 13.7100i −0.297903 0.515983i
\(707\) 59.9976i 2.25644i
\(708\) −12.4420 + 7.18342i −0.467601 + 0.269969i
\(709\) 0.732866 + 1.26936i 0.0275234 + 0.0476718i 0.879459 0.475975i \(-0.157905\pi\)
−0.851936 + 0.523647i \(0.824571\pi\)
\(710\) 0 0
\(711\) −1.10617 1.91595i −0.0414847 0.0718537i
\(712\) 12.1474 + 7.01333i 0.455245 + 0.262836i
\(713\) 22.4395 + 12.9555i 0.840367 + 0.485186i
\(714\) 7.45362 0.278945
\(715\) 0 0
\(716\) −2.36683 −0.0884528
\(717\) 23.4630 + 13.5464i 0.876242 + 0.505899i
\(718\) 5.38718 + 3.11029i 0.201048 + 0.116075i
\(719\) −4.80685 8.32570i −0.179265 0.310496i 0.762364 0.647149i \(-0.224039\pi\)
−0.941629 + 0.336652i \(0.890705\pi\)
\(720\) 0 0
\(721\) 16.4444 + 28.4826i 0.612422 + 1.06075i
\(722\) −2.66701 + 1.53980i −0.0992559 + 0.0573054i
\(723\) 23.5981i 0.877623i
\(724\) 6.38243 + 11.0547i 0.237201 + 0.410845i
\(725\) 0 0
\(726\) −0.185074 + 0.320557i −0.00686873 + 0.0118970i
\(727\) 42.6547i 1.58198i −0.611831 0.790988i \(-0.709567\pi\)
0.611831 0.790988i \(-0.290433\pi\)
\(728\) −32.2590 12.5669i −1.19560 0.465760i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.28713 + 3.96143i −0.0845926 + 0.146519i
\(732\) −4.51402 + 2.60617i −0.166843 + 0.0963269i
\(733\) 6.48360i 0.239477i 0.992805 + 0.119739i \(0.0382056\pi\)
−0.992805 + 0.119739i \(0.961794\pi\)
\(734\) 9.60556 + 16.6373i 0.354548 + 0.614095i
\(735\) 0 0
\(736\) −44.7091 −1.64800
\(737\) 38.0444 21.9649i 1.40138 0.809089i
\(738\) 1.75178 + 1.01139i 0.0644841 + 0.0372299i
\(739\) −21.1845 + 36.6926i −0.779283 + 1.34976i 0.153072 + 0.988215i \(0.451083\pi\)
−0.932355 + 0.361543i \(0.882250\pi\)
\(740\) 0 0
\(741\) 11.2104 + 13.9849i 0.411825 + 0.513747i
\(742\) 35.6163i 1.30752i
\(743\) −15.0945 8.71481i −0.553763 0.319715i 0.196875 0.980429i \(-0.436921\pi\)
−0.750638 + 0.660713i \(0.770254\pi\)
\(744\) −3.04945 + 5.28180i −0.111798 + 0.193640i
\(745\) 0 0
\(746\) 5.18237 0.189740
\(747\) 3.75870 2.17009i 0.137524 0.0793993i
\(748\) −14.5707 + 8.41241i −0.532758 + 0.307588i
\(749\) 74.7019 2.72955
\(750\) 0 0
\(751\) −6.68455 + 11.5780i −0.243923 + 0.422487i −0.961828 0.273654i \(-0.911768\pi\)
0.717905 + 0.696141i \(0.245101\pi\)
\(752\) 1.09275 + 0.630898i 0.0398484 + 0.0230065i
\(753\) 26.8638i 0.978970i
\(754\) 2.47712 6.35874i 0.0902116 0.231572i
\(755\) 0 0
\(756\) 4.10310 7.10678i 0.149228 0.258471i
\(757\) −23.9824 13.8462i −0.871654 0.503250i −0.00375649 0.999993i \(-0.501196\pi\)
−0.867898 + 0.496743i \(0.834529\pi\)
\(758\) 3.27930 1.89330i 0.119110 0.0687679i
\(759\) −29.0472 −1.05435
\(760\) 0 0
\(761\) 0.261795 + 0.453443i 0.00949007 + 0.0164373i 0.870731 0.491759i \(-0.163646\pi\)
−0.861241 + 0.508196i \(0.830313\pi\)
\(762\) 4.01947i 0.145610i
\(763\) 65.8471 38.0168i 2.38382 1.37630i
\(764\) 2.05559 3.56039i 0.0743687 0.128810i
\(765\) 0 0
\(766\) −10.8988 −0.393791
\(767\) −28.2384 11.0006i −1.01963 0.397209i
\(768\) 2.52359i 0.0910622i
\(769\) −7.08032 + 12.2635i −0.255323 + 0.442232i −0.964983 0.262312i \(-0.915515\pi\)
0.709660 + 0.704544i \(0.248848\pi\)
\(770\) 0 0
\(771\) −1.75933 3.04726i −0.0633609 0.109744i
\(772\) 27.0433i 0.973310i
\(773\) −23.7452 + 13.7093i −0.854054 + 0.493088i −0.862017 0.506880i \(-0.830799\pi\)
0.00796257 + 0.999968i \(0.497465\pi\)
\(774\) −0.428288 0.741816i −0.0153945 0.0266640i
\(775\) 0 0
\(776\) 14.2690 + 24.7146i 0.512227 + 0.887203i
\(777\) −11.1443 6.43415i −0.399799 0.230824i
\(778\) 7.35856 + 4.24846i 0.263817 + 0.152315i
\(779\) 18.6491 0.668175
\(780\) 0 0
\(781\) −7.15061 −0.255869
\(782\) 11.4243 + 6.59583i 0.408532 + 0.235866i
\(783\) 3.03997 + 1.75513i 0.108640 + 0.0627232i
\(784\) 18.7792 + 32.5266i 0.670687 + 1.16166i
\(785\) 0 0
\(786\) −3.15255 5.46038i −0.112448 0.194765i
\(787\) 18.5071 10.6851i 0.659707 0.380882i −0.132459 0.991189i \(-0.542287\pi\)
0.792165 + 0.610307i \(0.208954\pi\)
\(788\) 31.5630i 1.12439i
\(789\) 4.42635 + 7.66666i 0.157582 + 0.272940i
\(790\) 0 0
\(791\) −7.38962 + 12.7992i −0.262745 + 0.455087i
\(792\) 6.83710i 0.242946i
\(793\) −10.2450 3.99107i −0.363811 0.141727i
\(794\) 6.11837 0.217133
\(795\) 0 0
\(796\) 9.35157 16.1974i 0.331457 0.574101i
\(797\) 3.36495 1.94275i 0.119193 0.0688158i −0.439218 0.898380i \(-0.644745\pi\)
0.558411 + 0.829564i \(0.311411\pi\)
\(798\) 12.8683i 0.455533i
\(799\) −0.776260 1.34452i −0.0274621 0.0475658i
\(800\) 0 0
\(801\) −7.01333 −0.247804
\(802\) −12.4460 + 7.18568i −0.439483 + 0.253735i
\(803\) 16.3991 + 9.46800i 0.578710 + 0.334118i
\(804\) −10.9825 + 19.0222i −0.387322 + 0.670861i
\(805\) 0 0
\(806\) −5.85989 + 0.898363i −0.206406 + 0.0316435i
\(807\) 27.2423i 0.958975i
\(808\) 21.6453 + 12.4969i 0.761480 + 0.439640i
\(809\) −25.4524 + 44.0849i −0.894859 + 1.54994i −0.0608794 + 0.998145i \(0.519391\pi\)
−0.833979 + 0.551796i \(0.813943\pi\)
\(810\) 0 0
\(811\) −42.5174 −1.49299 −0.746495 0.665391i \(-0.768265\pi\)
−0.746495 + 0.665391i \(0.768265\pi\)
\(812\) −24.9466 + 14.4030i −0.875456 + 0.505445i
\(813\) 12.0064 6.93188i 0.421082 0.243112i
\(814\) −4.94053 −0.173166
\(815\) 0 0
\(816\) 3.36910 5.83546i 0.117942 0.204282i
\(817\) −6.83920 3.94861i −0.239273 0.138145i
\(818\) 16.6570i 0.582398i
\(819\) 17.1103 2.62313i 0.597882 0.0916596i
\(820\) 0 0
\(821\) 1.99773 3.46017i 0.0697213 0.120761i −0.829057 0.559164i \(-0.811122\pi\)
0.898779 + 0.438403i \(0.144456\pi\)
\(822\) 4.33209 + 2.50113i 0.151099 + 0.0872371i
\(823\) 1.36426 0.787653i 0.0475549 0.0274559i −0.476034 0.879427i \(-0.657926\pi\)
0.523589 + 0.851971i \(0.324593\pi\)
\(824\) −13.7009 −0.477292
\(825\) 0 0
\(826\) −10.8790 18.8430i −0.378530 0.655633i
\(827\) 9.17850i 0.319168i 0.987184 + 0.159584i \(0.0510152\pi\)
−0.987184 + 0.159584i \(0.948985\pi\)
\(828\) 12.5778 7.26180i 0.437109 0.252365i
\(829\) 24.7358 42.8437i 0.859112 1.48802i −0.0136660 0.999907i \(-0.504350\pi\)
0.872778 0.488118i \(-0.162317\pi\)
\(830\) 0 0
\(831\) −2.58145 −0.0895495
\(832\) −5.18551 + 4.15676i −0.179775 + 0.144110i
\(833\) 46.2122i 1.60116i
\(834\) 3.48194 6.03090i 0.120570 0.208833i
\(835\) 0 0
\(836\) −14.5236 25.1556i −0.502309 0.870024i
\(837\) 3.04945i 0.105404i
\(838\) 16.0240 9.25145i 0.553539 0.319586i
\(839\) 4.64650 + 8.04797i 0.160415 + 0.277847i 0.935018 0.354601i \(-0.115383\pi\)
−0.774603 + 0.632448i \(0.782050\pi\)
\(840\) 0 0
\(841\) 8.33904 + 14.4436i 0.287553 + 0.498057i
\(842\) −6.31878 3.64815i −0.217760 0.125724i
\(843\) 4.63627 + 2.67675i 0.159682 + 0.0921922i
\(844\) −24.2329 −0.834130
\(845\) 0 0
\(846\) 0.290725 0.00999532
\(847\) 2.85427 + 1.64791i 0.0980738 + 0.0566229i
\(848\) −27.8841 16.0989i −0.957544 0.552838i
\(849\) −7.94687 13.7644i −0.272736 0.472392i
\(850\) 0 0
\(851\) −11.3874 19.7235i −0.390353 0.676112i
\(852\) 3.09631 1.78765i 0.106078 0.0612440i
\(853\) 11.0423i 0.378080i 0.981969 + 0.189040i \(0.0605376\pi\)
−0.981969 + 0.189040i \(0.939462\pi\)
\(854\) −3.94696 6.83633i −0.135062 0.233934i
\(855\) 0 0
\(856\) −15.5597 + 26.9502i −0.531820 + 0.921139i
\(857\) 8.58476i 0.293250i −0.989192 0.146625i \(-0.953159\pi\)
0.989192 0.146625i \(-0.0468410\pi\)
\(858\) 5.18551 4.15676i 0.177030 0.141909i
\(859\) 46.6202 1.59066 0.795331 0.606176i \(-0.207297\pi\)
0.795331 + 0.606176i \(0.207297\pi\)
\(860\) 0 0
\(861\) 9.00553 15.5980i 0.306908 0.531580i
\(862\) −7.12651 + 4.11450i −0.242730 + 0.140140i
\(863\) 10.6947i 0.364053i −0.983294 0.182026i \(-0.941734\pi\)
0.983294 0.182026i \(-0.0582656\pi\)
\(864\) 2.63090 + 4.55685i 0.0895050 + 0.155027i
\(865\) 0 0
\(866\) −2.09171 −0.0710792
\(867\) 7.54245 4.35464i 0.256155 0.147891i
\(868\) 21.6718 + 12.5122i 0.735588 + 0.424692i
\(869\) −3.78151 + 6.54977i −0.128279 + 0.222186i
\(870\) 0 0
\(871\) −45.7978 + 7.02113i −1.55180 + 0.237902i
\(872\) 31.6742i 1.07262i
\(873\) −12.3573 7.13449i −0.418231 0.241466i
\(874\) −11.3874 + 19.7235i −0.385183 + 0.667157i
\(875\) 0 0
\(876\) −9.46800 −0.319894
\(877\) −9.17625 + 5.29791i −0.309860 + 0.178898i −0.646864 0.762605i \(-0.723920\pi\)
0.337004 + 0.941503i \(0.390586\pi\)
\(878\) −9.48436 + 5.47580i −0.320082 + 0.184799i
\(879\) −2.48133 −0.0836932
\(880\) 0 0
\(881\) 8.11450 14.0547i 0.273384 0.473515i −0.696342 0.717710i \(-0.745190\pi\)
0.969726 + 0.244195i \(0.0785236\pi\)
\(882\) 7.49431 + 4.32684i 0.252347 + 0.145692i
\(883\) 12.6137i 0.424484i −0.977217 0.212242i \(-0.931923\pi\)
0.977217 0.212242i \(-0.0680766\pi\)
\(884\) 17.5402 2.68904i 0.589942 0.0904423i
\(885\) 0 0
\(886\) −9.45661 + 16.3793i −0.317701 + 0.550274i
\(887\) 11.5967 + 6.69533i 0.389378 + 0.224807i 0.681890 0.731454i \(-0.261158\pi\)
−0.292513 + 0.956262i \(0.594491\pi\)
\(888\) 4.64250 2.68035i 0.155792 0.0899465i
\(889\) −35.7897 −1.20035
\(890\) 0 0
\(891\) 1.70928 + 2.96055i 0.0572629 + 0.0991822i
\(892\) 9.67420i 0.323916i
\(893\) 2.32125 1.34017i 0.0776776 0.0448472i
\(894\) −0.539189 + 0.933903i −0.0180332 + 0.0312344i
\(895\) 0 0
\(896\) −55.2951 −1.84728
\(897\) 28.5465 + 11.1206i 0.953140 + 0.371307i
\(898\) 4.29914i 0.143464i
\(899\) −5.35218 + 9.27024i −0.178505 + 0.309180i
\(900\) 0 0
\(901\) 19.8082 + 34.3088i 0.659906 + 1.14299i
\(902\) 6.91500i 0.230244i
\(903\) −6.60519 + 3.81351i −0.219807 + 0.126906i
\(904\) −3.07838 5.33191i −0.102385 0.177337i
\(905\) 0 0
\(906\) 2.31965 + 4.01776i 0.0770653 + 0.133481i
\(907\) 40.1014 + 23.1526i 1.33154 + 0.768768i 0.985536 0.169464i \(-0.0542035\pi\)
0.346008 + 0.938231i \(0.387537\pi\)
\(908\) −30.9072 17.8443i −1.02569 0.592184i
\(909\) −12.4969 −0.414497
\(910\) 0 0
\(911\) −40.6947 −1.34828 −0.674138 0.738605i \(-0.735485\pi\)
−0.674138 + 0.738605i \(0.735485\pi\)
\(912\) 10.0746 + 5.81658i 0.333604 + 0.192606i
\(913\) −12.8493 7.41855i −0.425250 0.245518i
\(914\) −0.703414 1.21835i −0.0232669 0.0402994i
\(915\) 0 0
\(916\) −9.87322 17.1009i −0.326220 0.565030i
\(917\) −48.6197 + 28.0706i −1.60556 + 0.926972i
\(918\) 1.55252i 0.0512408i
\(919\) −22.2937 38.6138i −0.735402 1.27375i −0.954547 0.298061i \(-0.903660\pi\)
0.219145 0.975692i \(-0.429673\pi\)
\(920\) 0 0
\(921\) −11.1212 + 19.2624i −0.366455 + 0.634718i
\(922\) 16.2185i 0.534128i
\(923\) 7.02736 + 2.73759i 0.231308 + 0.0901090i
\(924\) −28.0533 −0.922887
\(925\) 0 0
\(926\) −1.71674 + 2.97349i −0.0564157 + 0.0977149i
\(927\) 5.93265 3.42522i 0.194854 0.112499i
\(928\) 18.4703i 0.606316i
\(929\) 14.4885 + 25.0948i 0.475353 + 0.823335i 0.999601 0.0282300i \(-0.00898707\pi\)
−0.524249 + 0.851565i \(0.675654\pi\)
\(930\) 0 0
\(931\) 79.7829 2.61478
\(932\) 5.52448 3.18956i 0.180960 0.104478i
\(933\) 0.350931 + 0.202610i 0.0114890 + 0.00663315i
\(934\) 0.557770 0.966086i 0.0182508 0.0316113i
\(935\) 0 0
\(936\) −2.61757 + 6.71925i −0.0855578 + 0.219626i
\(937\) 53.1871i 1.73755i −0.495209 0.868774i \(-0.664909\pi\)
0.495209 0.868774i \(-0.335091\pi\)
\(938\) −28.8084 16.6326i −0.940629 0.543072i
\(939\) 0.176752 0.306143i 0.00576808 0.00999061i
\(940\) 0 0
\(941\) 26.3617 0.859368 0.429684 0.902979i \(-0.358625\pi\)
0.429684 + 0.902979i \(0.358625\pi\)
\(942\) 0.424128 0.244870i 0.0138188 0.00797830i
\(943\) 27.6059 15.9383i 0.898971 0.519021i
\(944\) −19.6697 −0.640193
\(945\) 0 0
\(946\) −1.46412 + 2.53594i −0.0476028 + 0.0824504i
\(947\) 43.9751 + 25.3890i 1.42900 + 0.825032i 0.997042 0.0768629i \(-0.0244904\pi\)
0.431956 + 0.901895i \(0.357824\pi\)
\(948\) 3.78151i 0.122818i
\(949\) −12.4916 15.5831i −0.405494 0.505850i
\(950\) 0 0
\(951\) 12.6514 21.9129i 0.410250 0.710574i
\(952\) 23.9435 + 13.8238i 0.776012 + 0.448031i
\(953\) 18.0415 10.4163i 0.584423 0.337417i −0.178466 0.983946i \(-0.557114\pi\)
0.762889 + 0.646529i \(0.223780\pi\)
\(954\) −7.41855 −0.240184
\(955\) 0 0
\(956\) 23.1545 + 40.1047i 0.748870 + 1.29708i
\(957\) 12.0000i 0.387905i
\(958\) 5.37473 3.10310i 0.173650 0.100257i
\(959\) 22.2703 38.5733i 0.719146 1.24560i
\(960\) 0 0
\(961\) −21.7009 −0.700028
\(962\) 4.85537 + 1.89147i 0.156544 + 0.0609834i
\(963\) 15.5597i 0.501405i
\(964\) 20.1678 34.9317i 0.649562 1.12507i
\(965\) 0 0
\(966\) 10.9977 + 19.0486i 0.353846 + 0.612880i
\(967\) 5.92777i 0.190624i −0.995447 0.0953120i \(-0.969615\pi\)
0.995447 0.0953120i \(-0.0303849\pi\)
\(968\) −1.18903 + 0.686489i −0.0382170 + 0.0220646i
\(969\) −7.15676 12.3959i −0.229908 0.398213i
\(970\) 0 0
\(971\) −5.24846 9.09061i −0.168431 0.291731i 0.769437 0.638722i \(-0.220537\pi\)
−0.937868 + 0.346991i \(0.887203\pi\)
\(972\) −1.48028 0.854638i −0.0474799 0.0274125i
\(973\) −53.6996 31.0035i −1.72153 0.993927i
\(974\) 10.8638 0.348097
\(975\) 0 0
\(976\) −7.13624 −0.228425
\(977\) −46.1780 26.6609i −1.47736 0.852957i −0.477692 0.878528i \(-0.658526\pi\)
−0.999673 + 0.0255707i \(0.991860\pi\)
\(978\) −6.83814 3.94800i −0.218660 0.126243i
\(979\) 11.9877 + 20.7633i 0.383129 + 0.663599i
\(980\) 0 0
\(981\) −7.91855 13.7153i −0.252820 0.437897i
\(982\) 10.2177 5.89917i 0.326058 0.188250i
\(983\) 21.7275i 0.693000i −0.938050 0.346500i \(-0.887370\pi\)
0.938050 0.346500i \(-0.112630\pi\)
\(984\) 3.75154 + 6.49785i 0.119595 + 0.207144i
\(985\) 0 0
\(986\) −2.72487 + 4.71962i −0.0867777 + 0.150303i
\(987\) 2.58864i 0.0823972i
\(988\) 4.64250 + 30.2823i 0.147697 + 0.963409i
\(989\) −13.4985 −0.429228
\(990\) 0 0
\(991\) 4.37823 7.58331i 0.139079 0.240892i −0.788069 0.615587i \(-0.788919\pi\)
0.927148 + 0.374695i \(0.122252\pi\)
\(992\) −13.8959 + 8.02279i −0.441194 + 0.254724i
\(993\) 4.60197i 0.146039i
\(994\) 2.70734 + 4.68925i 0.0858715 + 0.148734i
\(995\) 0 0
\(996\) 7.41855 0.235066
\(997\) 2.99576 1.72960i 0.0948766 0.0547770i −0.451811 0.892114i \(-0.649222\pi\)
0.546688 + 0.837337i \(0.315889\pi\)
\(998\) 11.1240 + 6.42243i 0.352123 + 0.203298i
\(999\) −1.34017 + 2.32125i −0.0424012 + 0.0734410i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bb.j.724.4 12
5.2 odd 4 975.2.i.m.451.2 6
5.3 odd 4 195.2.i.e.61.2 yes 6
5.4 even 2 inner 975.2.bb.j.724.3 12
13.3 even 3 inner 975.2.bb.j.874.3 12
15.8 even 4 585.2.j.g.451.2 6
65.3 odd 12 195.2.i.e.16.2 6
65.29 even 6 inner 975.2.bb.j.874.4 12
65.42 odd 12 975.2.i.m.601.2 6
65.43 odd 12 2535.2.a.z.1.2 3
65.48 odd 12 2535.2.a.y.1.2 3
195.68 even 12 585.2.j.g.406.2 6
195.113 even 12 7605.2.a.bu.1.2 3
195.173 even 12 7605.2.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.i.e.16.2 6 65.3 odd 12
195.2.i.e.61.2 yes 6 5.3 odd 4
585.2.j.g.406.2 6 195.68 even 12
585.2.j.g.451.2 6 15.8 even 4
975.2.i.m.451.2 6 5.2 odd 4
975.2.i.m.601.2 6 65.42 odd 12
975.2.bb.j.724.3 12 5.4 even 2 inner
975.2.bb.j.724.4 12 1.1 even 1 trivial
975.2.bb.j.874.3 12 13.3 even 3 inner
975.2.bb.j.874.4 12 65.29 even 6 inner
2535.2.a.y.1.2 3 65.48 odd 12
2535.2.a.z.1.2 3 65.43 odd 12
7605.2.a.bt.1.2 3 195.173 even 12
7605.2.a.bu.1.2 3 195.113 even 12