Properties

Label 975.2.a.n.1.3
Level $975$
Weight $2$
Character 975.1
Self dual yes
Analytic conductor $7.785$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(1,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-3,5,0,1,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.78541419707\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.08613 q^{2} -1.00000 q^{3} +2.35194 q^{4} -2.08613 q^{6} -4.08613 q^{7} +0.734191 q^{8} +1.00000 q^{9} -3.43807 q^{11} -2.35194 q^{12} -1.00000 q^{13} -8.52420 q^{14} -3.17226 q^{16} -7.17226 q^{17} +2.08613 q^{18} +7.52420 q^{19} +4.08613 q^{21} -7.17226 q^{22} +2.82032 q^{23} -0.734191 q^{24} -2.08613 q^{26} -1.00000 q^{27} -9.61033 q^{28} -5.70388 q^{29} -5.61033 q^{31} -8.08613 q^{32} +3.43807 q^{33} -14.9623 q^{34} +2.35194 q^{36} -4.82032 q^{37} +15.6965 q^{38} +1.00000 q^{39} +5.52420 q^{41} +8.52420 q^{42} +2.05582 q^{43} -8.08613 q^{44} +5.88356 q^{46} +7.49389 q^{47} +3.17226 q^{48} +9.69646 q^{49} +7.17226 q^{51} -2.35194 q^{52} +2.52420 q^{53} -2.08613 q^{54} -3.00000 q^{56} -7.52420 q^{57} -11.8990 q^{58} +4.79001 q^{59} -7.87614 q^{61} -11.7039 q^{62} -4.08613 q^{63} -10.5242 q^{64} +7.17226 q^{66} +6.20257 q^{67} -16.8687 q^{68} -2.82032 q^{69} -0.475800 q^{71} +0.734191 q^{72} -9.35194 q^{73} -10.0558 q^{74} +17.6965 q^{76} +14.0484 q^{77} +2.08613 q^{78} +11.6965 q^{79} +1.00000 q^{81} +11.5242 q^{82} -16.4307 q^{83} +9.61033 q^{84} +4.28870 q^{86} +5.70388 q^{87} -2.52420 q^{88} -10.1723 q^{89} +4.08613 q^{91} +6.63322 q^{92} +5.61033 q^{93} +15.6332 q^{94} +8.08613 q^{96} -14.8761 q^{97} +20.2281 q^{98} -3.43807 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} + 5 q^{4} + q^{6} - 5 q^{7} - 3 q^{8} + 3 q^{9} - q^{11} - 5 q^{12} - 3 q^{13} - 9 q^{14} + 5 q^{16} - 7 q^{17} - q^{18} + 6 q^{19} + 5 q^{21} - 7 q^{22} - 4 q^{23} + 3 q^{24}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08613 1.47512 0.737558 0.675283i \(-0.235979\pi\)
0.737558 + 0.675283i \(0.235979\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.35194 1.17597
\(5\) 0 0
\(6\) −2.08613 −0.851659
\(7\) −4.08613 −1.54441 −0.772206 0.635372i \(-0.780847\pi\)
−0.772206 + 0.635372i \(0.780847\pi\)
\(8\) 0.734191 0.259576
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.43807 −1.03662 −0.518308 0.855194i \(-0.673438\pi\)
−0.518308 + 0.855194i \(0.673438\pi\)
\(12\) −2.35194 −0.678946
\(13\) −1.00000 −0.277350
\(14\) −8.52420 −2.27819
\(15\) 0 0
\(16\) −3.17226 −0.793065
\(17\) −7.17226 −1.73953 −0.869764 0.493467i \(-0.835729\pi\)
−0.869764 + 0.493467i \(0.835729\pi\)
\(18\) 2.08613 0.491706
\(19\) 7.52420 1.72617 0.863085 0.505059i \(-0.168529\pi\)
0.863085 + 0.505059i \(0.168529\pi\)
\(20\) 0 0
\(21\) 4.08613 0.891667
\(22\) −7.17226 −1.52913
\(23\) 2.82032 0.588078 0.294039 0.955793i \(-0.405001\pi\)
0.294039 + 0.955793i \(0.405001\pi\)
\(24\) −0.734191 −0.149866
\(25\) 0 0
\(26\) −2.08613 −0.409124
\(27\) −1.00000 −0.192450
\(28\) −9.61033 −1.81618
\(29\) −5.70388 −1.05918 −0.529592 0.848253i \(-0.677655\pi\)
−0.529592 + 0.848253i \(0.677655\pi\)
\(30\) 0 0
\(31\) −5.61033 −1.00764 −0.503822 0.863807i \(-0.668073\pi\)
−0.503822 + 0.863807i \(0.668073\pi\)
\(32\) −8.08613 −1.42944
\(33\) 3.43807 0.598491
\(34\) −14.9623 −2.56601
\(35\) 0 0
\(36\) 2.35194 0.391990
\(37\) −4.82032 −0.792456 −0.396228 0.918152i \(-0.629681\pi\)
−0.396228 + 0.918152i \(0.629681\pi\)
\(38\) 15.6965 2.54630
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 5.52420 0.862735 0.431368 0.902176i \(-0.358031\pi\)
0.431368 + 0.902176i \(0.358031\pi\)
\(42\) 8.52420 1.31531
\(43\) 2.05582 0.313509 0.156755 0.987638i \(-0.449897\pi\)
0.156755 + 0.987638i \(0.449897\pi\)
\(44\) −8.08613 −1.21903
\(45\) 0 0
\(46\) 5.88356 0.867483
\(47\) 7.49389 1.09310 0.546548 0.837428i \(-0.315942\pi\)
0.546548 + 0.837428i \(0.315942\pi\)
\(48\) 3.17226 0.457876
\(49\) 9.69646 1.38521
\(50\) 0 0
\(51\) 7.17226 1.00432
\(52\) −2.35194 −0.326155
\(53\) 2.52420 0.346725 0.173363 0.984858i \(-0.444537\pi\)
0.173363 + 0.984858i \(0.444537\pi\)
\(54\) −2.08613 −0.283886
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) −7.52420 −0.996605
\(58\) −11.8990 −1.56242
\(59\) 4.79001 0.623606 0.311803 0.950147i \(-0.399067\pi\)
0.311803 + 0.950147i \(0.399067\pi\)
\(60\) 0 0
\(61\) −7.87614 −1.00844 −0.504218 0.863576i \(-0.668219\pi\)
−0.504218 + 0.863576i \(0.668219\pi\)
\(62\) −11.7039 −1.48639
\(63\) −4.08613 −0.514804
\(64\) −10.5242 −1.31552
\(65\) 0 0
\(66\) 7.17226 0.882844
\(67\) 6.20257 0.757765 0.378882 0.925445i \(-0.376308\pi\)
0.378882 + 0.925445i \(0.376308\pi\)
\(68\) −16.8687 −2.04563
\(69\) −2.82032 −0.339527
\(70\) 0 0
\(71\) −0.475800 −0.0564671 −0.0282336 0.999601i \(-0.508988\pi\)
−0.0282336 + 0.999601i \(0.508988\pi\)
\(72\) 0.734191 0.0865252
\(73\) −9.35194 −1.09456 −0.547281 0.836949i \(-0.684337\pi\)
−0.547281 + 0.836949i \(0.684337\pi\)
\(74\) −10.0558 −1.16897
\(75\) 0 0
\(76\) 17.6965 2.02992
\(77\) 14.0484 1.60096
\(78\) 2.08613 0.236208
\(79\) 11.6965 1.31595 0.657977 0.753038i \(-0.271412\pi\)
0.657977 + 0.753038i \(0.271412\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 11.5242 1.27263
\(83\) −16.4307 −1.80350 −0.901749 0.432260i \(-0.857716\pi\)
−0.901749 + 0.432260i \(0.857716\pi\)
\(84\) 9.61033 1.04857
\(85\) 0 0
\(86\) 4.28870 0.462463
\(87\) 5.70388 0.611520
\(88\) −2.52420 −0.269081
\(89\) −10.1723 −1.07826 −0.539129 0.842223i \(-0.681246\pi\)
−0.539129 + 0.842223i \(0.681246\pi\)
\(90\) 0 0
\(91\) 4.08613 0.428343
\(92\) 6.63322 0.691561
\(93\) 5.61033 0.581764
\(94\) 15.6332 1.61244
\(95\) 0 0
\(96\) 8.08613 0.825287
\(97\) −14.8761 −1.51044 −0.755222 0.655470i \(-0.772471\pi\)
−0.755222 + 0.655470i \(0.772471\pi\)
\(98\) 20.2281 2.04334
\(99\) −3.43807 −0.345539
\(100\) 0 0
\(101\) −4.94418 −0.491965 −0.245982 0.969274i \(-0.579111\pi\)
−0.245982 + 0.969274i \(0.579111\pi\)
\(102\) 14.9623 1.48149
\(103\) 8.28870 0.816710 0.408355 0.912823i \(-0.366103\pi\)
0.408355 + 0.912823i \(0.366103\pi\)
\(104\) −0.734191 −0.0719934
\(105\) 0 0
\(106\) 5.26581 0.511461
\(107\) −12.5168 −1.21004 −0.605021 0.796209i \(-0.706835\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(108\) −2.35194 −0.226315
\(109\) 11.6965 1.12032 0.560159 0.828385i \(-0.310740\pi\)
0.560159 + 0.828385i \(0.310740\pi\)
\(110\) 0 0
\(111\) 4.82032 0.457525
\(112\) 12.9623 1.22482
\(113\) −1.23550 −0.116226 −0.0581129 0.998310i \(-0.518508\pi\)
−0.0581129 + 0.998310i \(0.518508\pi\)
\(114\) −15.6965 −1.47011
\(115\) 0 0
\(116\) −13.4152 −1.24557
\(117\) −1.00000 −0.0924500
\(118\) 9.99258 0.919892
\(119\) 29.3068 2.68655
\(120\) 0 0
\(121\) 0.820321 0.0745747
\(122\) −16.4307 −1.48756
\(123\) −5.52420 −0.498100
\(124\) −13.1952 −1.18496
\(125\) 0 0
\(126\) −8.52420 −0.759396
\(127\) 9.52420 0.845136 0.422568 0.906331i \(-0.361129\pi\)
0.422568 + 0.906331i \(0.361129\pi\)
\(128\) −5.78259 −0.511114
\(129\) −2.05582 −0.181005
\(130\) 0 0
\(131\) 10.5726 0.923732 0.461866 0.886950i \(-0.347180\pi\)
0.461866 + 0.886950i \(0.347180\pi\)
\(132\) 8.08613 0.703807
\(133\) −30.7449 −2.66592
\(134\) 12.9394 1.11779
\(135\) 0 0
\(136\) −5.26581 −0.451539
\(137\) −4.53162 −0.387162 −0.193581 0.981084i \(-0.562010\pi\)
−0.193581 + 0.981084i \(0.562010\pi\)
\(138\) −5.88356 −0.500842
\(139\) −14.4562 −1.22616 −0.613078 0.790023i \(-0.710069\pi\)
−0.613078 + 0.790023i \(0.710069\pi\)
\(140\) 0 0
\(141\) −7.49389 −0.631099
\(142\) −0.992582 −0.0832956
\(143\) 3.43807 0.287506
\(144\) −3.17226 −0.264355
\(145\) 0 0
\(146\) −19.5094 −1.61461
\(147\) −9.69646 −0.799751
\(148\) −11.3371 −0.931904
\(149\) 12.2839 1.00634 0.503168 0.864189i \(-0.332168\pi\)
0.503168 + 0.864189i \(0.332168\pi\)
\(150\) 0 0
\(151\) 22.6029 1.83940 0.919699 0.392623i \(-0.128432\pi\)
0.919699 + 0.392623i \(0.128432\pi\)
\(152\) 5.52420 0.448072
\(153\) −7.17226 −0.579843
\(154\) 29.3068 2.36161
\(155\) 0 0
\(156\) 2.35194 0.188306
\(157\) −3.64806 −0.291147 −0.145573 0.989347i \(-0.546503\pi\)
−0.145573 + 0.989347i \(0.546503\pi\)
\(158\) 24.4003 1.94119
\(159\) −2.52420 −0.200182
\(160\) 0 0
\(161\) −11.5242 −0.908234
\(162\) 2.08613 0.163902
\(163\) 0.820321 0.0642525 0.0321263 0.999484i \(-0.489772\pi\)
0.0321263 + 0.999484i \(0.489772\pi\)
\(164\) 12.9926 1.01455
\(165\) 0 0
\(166\) −34.2765 −2.66037
\(167\) −9.46357 −0.732313 −0.366157 0.930553i \(-0.619327\pi\)
−0.366157 + 0.930553i \(0.619327\pi\)
\(168\) 3.00000 0.231455
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 7.52420 0.575390
\(172\) 4.83516 0.368677
\(173\) 6.69646 0.509122 0.254561 0.967057i \(-0.418069\pi\)
0.254561 + 0.967057i \(0.418069\pi\)
\(174\) 11.8990 0.902063
\(175\) 0 0
\(176\) 10.9065 0.822105
\(177\) −4.79001 −0.360039
\(178\) −21.2207 −1.59056
\(179\) −15.1042 −1.12894 −0.564471 0.825453i \(-0.690920\pi\)
−0.564471 + 0.825453i \(0.690920\pi\)
\(180\) 0 0
\(181\) −1.70869 −0.127006 −0.0635028 0.997982i \(-0.520227\pi\)
−0.0635028 + 0.997982i \(0.520227\pi\)
\(182\) 8.52420 0.631856
\(183\) 7.87614 0.582221
\(184\) 2.07065 0.152651
\(185\) 0 0
\(186\) 11.7039 0.858170
\(187\) 24.6587 1.80322
\(188\) 17.6252 1.28545
\(189\) 4.08613 0.297222
\(190\) 0 0
\(191\) −23.6406 −1.71058 −0.855288 0.518152i \(-0.826620\pi\)
−0.855288 + 0.518152i \(0.826620\pi\)
\(192\) 10.5242 0.759519
\(193\) 21.4487 1.54391 0.771957 0.635675i \(-0.219278\pi\)
0.771957 + 0.635675i \(0.219278\pi\)
\(194\) −31.0336 −2.22808
\(195\) 0 0
\(196\) 22.8055 1.62896
\(197\) −4.57260 −0.325784 −0.162892 0.986644i \(-0.552082\pi\)
−0.162892 + 0.986644i \(0.552082\pi\)
\(198\) −7.17226 −0.509710
\(199\) 5.65548 0.400906 0.200453 0.979703i \(-0.435759\pi\)
0.200453 + 0.979703i \(0.435759\pi\)
\(200\) 0 0
\(201\) −6.20257 −0.437496
\(202\) −10.3142 −0.725705
\(203\) 23.3068 1.63582
\(204\) 16.8687 1.18105
\(205\) 0 0
\(206\) 17.2913 1.20474
\(207\) 2.82032 0.196026
\(208\) 3.17226 0.219957
\(209\) −25.8687 −1.78938
\(210\) 0 0
\(211\) −5.63583 −0.387987 −0.193993 0.981003i \(-0.562144\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(212\) 5.93676 0.407739
\(213\) 0.475800 0.0326013
\(214\) −26.1116 −1.78495
\(215\) 0 0
\(216\) −0.734191 −0.0499554
\(217\) 22.9245 1.55622
\(218\) 24.4003 1.65260
\(219\) 9.35194 0.631945
\(220\) 0 0
\(221\) 7.17226 0.482458
\(222\) 10.0558 0.674902
\(223\) 6.22808 0.417063 0.208531 0.978016i \(-0.433132\pi\)
0.208531 + 0.978016i \(0.433132\pi\)
\(224\) 33.0410 2.20764
\(225\) 0 0
\(226\) −2.57741 −0.171447
\(227\) 14.8458 0.985352 0.492676 0.870213i \(-0.336019\pi\)
0.492676 + 0.870213i \(0.336019\pi\)
\(228\) −17.6965 −1.17198
\(229\) −25.5046 −1.68539 −0.842694 0.538392i \(-0.819032\pi\)
−0.842694 + 0.538392i \(0.819032\pi\)
\(230\) 0 0
\(231\) −14.0484 −0.924317
\(232\) −4.18774 −0.274938
\(233\) −4.17226 −0.273334 −0.136667 0.990617i \(-0.543639\pi\)
−0.136667 + 0.990617i \(0.543639\pi\)
\(234\) −2.08613 −0.136375
\(235\) 0 0
\(236\) 11.2658 0.733342
\(237\) −11.6965 −0.759767
\(238\) 61.1378 3.96297
\(239\) 23.3068 1.50759 0.753795 0.657109i \(-0.228221\pi\)
0.753795 + 0.657109i \(0.228221\pi\)
\(240\) 0 0
\(241\) −25.3371 −1.63211 −0.816053 0.577977i \(-0.803842\pi\)
−0.816053 + 0.577977i \(0.803842\pi\)
\(242\) 1.71130 0.110006
\(243\) −1.00000 −0.0641500
\(244\) −18.5242 −1.18589
\(245\) 0 0
\(246\) −11.5242 −0.734756
\(247\) −7.52420 −0.478753
\(248\) −4.11905 −0.261560
\(249\) 16.4307 1.04125
\(250\) 0 0
\(251\) −5.24030 −0.330765 −0.165383 0.986229i \(-0.552886\pi\)
−0.165383 + 0.986229i \(0.552886\pi\)
\(252\) −9.61033 −0.605394
\(253\) −9.69646 −0.609611
\(254\) 19.8687 1.24667
\(255\) 0 0
\(256\) 8.98516 0.561573
\(257\) −23.4610 −1.46345 −0.731727 0.681597i \(-0.761286\pi\)
−0.731727 + 0.681597i \(0.761286\pi\)
\(258\) −4.28870 −0.267003
\(259\) 19.6965 1.22388
\(260\) 0 0
\(261\) −5.70388 −0.353061
\(262\) 22.0558 1.36261
\(263\) −18.0410 −1.11245 −0.556227 0.831030i \(-0.687752\pi\)
−0.556227 + 0.831030i \(0.687752\pi\)
\(264\) 2.52420 0.155354
\(265\) 0 0
\(266\) −64.1378 −3.93254
\(267\) 10.1723 0.622532
\(268\) 14.5881 0.891108
\(269\) −27.8761 −1.69964 −0.849819 0.527074i \(-0.823289\pi\)
−0.849819 + 0.527074i \(0.823289\pi\)
\(270\) 0 0
\(271\) −20.0713 −1.21924 −0.609622 0.792692i \(-0.708679\pi\)
−0.609622 + 0.792692i \(0.708679\pi\)
\(272\) 22.7523 1.37956
\(273\) −4.08613 −0.247304
\(274\) −9.45355 −0.571110
\(275\) 0 0
\(276\) −6.63322 −0.399273
\(277\) 8.40515 0.505016 0.252508 0.967595i \(-0.418745\pi\)
0.252508 + 0.967595i \(0.418745\pi\)
\(278\) −30.1574 −1.80872
\(279\) −5.61033 −0.335882
\(280\) 0 0
\(281\) −10.4562 −0.623762 −0.311881 0.950121i \(-0.600959\pi\)
−0.311881 + 0.950121i \(0.600959\pi\)
\(282\) −15.6332 −0.930945
\(283\) 18.3445 1.09047 0.545234 0.838284i \(-0.316441\pi\)
0.545234 + 0.838284i \(0.316441\pi\)
\(284\) −1.11905 −0.0664036
\(285\) 0 0
\(286\) 7.17226 0.424105
\(287\) −22.5726 −1.33242
\(288\) −8.08613 −0.476480
\(289\) 34.4413 2.02596
\(290\) 0 0
\(291\) 14.8761 0.872055
\(292\) −21.9952 −1.28717
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) −20.2281 −1.17973
\(295\) 0 0
\(296\) −3.53904 −0.205702
\(297\) 3.43807 0.199497
\(298\) 25.6258 1.48446
\(299\) −2.82032 −0.163103
\(300\) 0 0
\(301\) −8.40034 −0.484187
\(302\) 47.1526 2.71333
\(303\) 4.94418 0.284036
\(304\) −23.8687 −1.36897
\(305\) 0 0
\(306\) −14.9623 −0.855336
\(307\) 13.9293 0.794990 0.397495 0.917604i \(-0.369880\pi\)
0.397495 + 0.917604i \(0.369880\pi\)
\(308\) 33.0410 1.88268
\(309\) −8.28870 −0.471528
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0.734191 0.0415654
\(313\) 30.0894 1.70075 0.850376 0.526175i \(-0.176374\pi\)
0.850376 + 0.526175i \(0.176374\pi\)
\(314\) −7.61033 −0.429476
\(315\) 0 0
\(316\) 27.5094 1.54752
\(317\) 4.05582 0.227797 0.113899 0.993492i \(-0.463666\pi\)
0.113899 + 0.993492i \(0.463666\pi\)
\(318\) −5.26581 −0.295292
\(319\) 19.6103 1.09797
\(320\) 0 0
\(321\) 12.5168 0.698619
\(322\) −24.0410 −1.33975
\(323\) −53.9655 −3.00272
\(324\) 2.35194 0.130663
\(325\) 0 0
\(326\) 1.71130 0.0947800
\(327\) −11.6965 −0.646816
\(328\) 4.05582 0.223945
\(329\) −30.6210 −1.68819
\(330\) 0 0
\(331\) −19.4126 −1.06701 −0.533506 0.845797i \(-0.679126\pi\)
−0.533506 + 0.845797i \(0.679126\pi\)
\(332\) −38.6439 −2.12086
\(333\) −4.82032 −0.264152
\(334\) −19.7422 −1.08025
\(335\) 0 0
\(336\) −12.9623 −0.707150
\(337\) −20.1797 −1.09926 −0.549629 0.835409i \(-0.685231\pi\)
−0.549629 + 0.835409i \(0.685231\pi\)
\(338\) 2.08613 0.113471
\(339\) 1.23550 0.0671030
\(340\) 0 0
\(341\) 19.2887 1.04454
\(342\) 15.6965 0.848767
\(343\) −11.0181 −0.594921
\(344\) 1.50936 0.0813794
\(345\) 0 0
\(346\) 13.9697 0.751015
\(347\) −18.8007 −1.00927 −0.504637 0.863332i \(-0.668374\pi\)
−0.504637 + 0.863332i \(0.668374\pi\)
\(348\) 13.4152 0.719129
\(349\) −4.47580 −0.239584 −0.119792 0.992799i \(-0.538223\pi\)
−0.119792 + 0.992799i \(0.538223\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 27.8007 1.48178
\(353\) −26.8203 −1.42750 −0.713751 0.700400i \(-0.753005\pi\)
−0.713751 + 0.700400i \(0.753005\pi\)
\(354\) −9.99258 −0.531100
\(355\) 0 0
\(356\) −23.9245 −1.26800
\(357\) −29.3068 −1.55108
\(358\) −31.5094 −1.66532
\(359\) −5.89903 −0.311339 −0.155670 0.987809i \(-0.549753\pi\)
−0.155670 + 0.987809i \(0.549753\pi\)
\(360\) 0 0
\(361\) 37.6136 1.97966
\(362\) −3.56454 −0.187348
\(363\) −0.820321 −0.0430557
\(364\) 9.61033 0.503718
\(365\) 0 0
\(366\) 16.4307 0.858844
\(367\) −18.0968 −0.944645 −0.472323 0.881426i \(-0.656584\pi\)
−0.472323 + 0.881426i \(0.656584\pi\)
\(368\) −8.94679 −0.466384
\(369\) 5.52420 0.287578
\(370\) 0 0
\(371\) −10.3142 −0.535487
\(372\) 13.1952 0.684137
\(373\) 12.8836 0.667085 0.333543 0.942735i \(-0.391756\pi\)
0.333543 + 0.942735i \(0.391756\pi\)
\(374\) 51.4413 2.65997
\(375\) 0 0
\(376\) 5.50194 0.283741
\(377\) 5.70388 0.293765
\(378\) 8.52420 0.438438
\(379\) −19.0032 −0.976131 −0.488066 0.872807i \(-0.662297\pi\)
−0.488066 + 0.872807i \(0.662297\pi\)
\(380\) 0 0
\(381\) −9.52420 −0.487940
\(382\) −49.3175 −2.52330
\(383\) −9.62100 −0.491610 −0.245805 0.969319i \(-0.579052\pi\)
−0.245805 + 0.969319i \(0.579052\pi\)
\(384\) 5.78259 0.295092
\(385\) 0 0
\(386\) 44.7449 2.27745
\(387\) 2.05582 0.104503
\(388\) −34.9878 −1.77624
\(389\) −2.41998 −0.122698 −0.0613490 0.998116i \(-0.519540\pi\)
−0.0613490 + 0.998116i \(0.519540\pi\)
\(390\) 0 0
\(391\) −20.2281 −1.02298
\(392\) 7.11905 0.359567
\(393\) −10.5726 −0.533317
\(394\) −9.53904 −0.480570
\(395\) 0 0
\(396\) −8.08613 −0.406343
\(397\) 26.6136 1.33570 0.667849 0.744297i \(-0.267215\pi\)
0.667849 + 0.744297i \(0.267215\pi\)
\(398\) 11.7981 0.591384
\(399\) 30.7449 1.53917
\(400\) 0 0
\(401\) 12.4758 0.623012 0.311506 0.950244i \(-0.399167\pi\)
0.311506 + 0.950244i \(0.399167\pi\)
\(402\) −12.9394 −0.645357
\(403\) 5.61033 0.279470
\(404\) −11.6284 −0.578535
\(405\) 0 0
\(406\) 48.6210 2.41302
\(407\) 16.5726 0.821473
\(408\) 5.26581 0.260696
\(409\) 16.2281 0.802427 0.401213 0.915985i \(-0.368589\pi\)
0.401213 + 0.915985i \(0.368589\pi\)
\(410\) 0 0
\(411\) 4.53162 0.223528
\(412\) 19.4945 0.960426
\(413\) −19.5726 −0.963105
\(414\) 5.88356 0.289161
\(415\) 0 0
\(416\) 8.08613 0.396455
\(417\) 14.4562 0.707921
\(418\) −53.9655 −2.63954
\(419\) −38.3855 −1.87525 −0.937627 0.347642i \(-0.886982\pi\)
−0.937627 + 0.347642i \(0.886982\pi\)
\(420\) 0 0
\(421\) 8.95160 0.436274 0.218137 0.975918i \(-0.430002\pi\)
0.218137 + 0.975918i \(0.430002\pi\)
\(422\) −11.7571 −0.572326
\(423\) 7.49389 0.364365
\(424\) 1.85324 0.0900015
\(425\) 0 0
\(426\) 0.992582 0.0480907
\(427\) 32.1829 1.55744
\(428\) −29.4387 −1.42297
\(429\) −3.43807 −0.165992
\(430\) 0 0
\(431\) −1.99519 −0.0961050 −0.0480525 0.998845i \(-0.515301\pi\)
−0.0480525 + 0.998845i \(0.515301\pi\)
\(432\) 3.17226 0.152625
\(433\) −36.9729 −1.77681 −0.888403 0.459064i \(-0.848185\pi\)
−0.888403 + 0.459064i \(0.848185\pi\)
\(434\) 47.8236 2.29560
\(435\) 0 0
\(436\) 27.5094 1.31746
\(437\) 21.2207 1.01512
\(438\) 19.5094 0.932193
\(439\) −5.06804 −0.241885 −0.120942 0.992660i \(-0.538592\pi\)
−0.120942 + 0.992660i \(0.538592\pi\)
\(440\) 0 0
\(441\) 9.69646 0.461736
\(442\) 14.9623 0.711683
\(443\) −5.59966 −0.266048 −0.133024 0.991113i \(-0.542469\pi\)
−0.133024 + 0.991113i \(0.542469\pi\)
\(444\) 11.3371 0.538035
\(445\) 0 0
\(446\) 12.9926 0.615217
\(447\) −12.2839 −0.581008
\(448\) 43.0032 2.03171
\(449\) 13.9852 0.660001 0.330000 0.943981i \(-0.392951\pi\)
0.330000 + 0.943981i \(0.392951\pi\)
\(450\) 0 0
\(451\) −18.9926 −0.894326
\(452\) −2.90581 −0.136678
\(453\) −22.6029 −1.06198
\(454\) 30.9703 1.45351
\(455\) 0 0
\(456\) −5.52420 −0.258694
\(457\) 31.6210 1.47917 0.739584 0.673064i \(-0.235022\pi\)
0.739584 + 0.673064i \(0.235022\pi\)
\(458\) −53.2058 −2.48614
\(459\) 7.17226 0.334772
\(460\) 0 0
\(461\) 29.0484 1.35292 0.676459 0.736480i \(-0.263513\pi\)
0.676459 + 0.736480i \(0.263513\pi\)
\(462\) −29.3068 −1.36348
\(463\) 30.8458 1.43353 0.716764 0.697316i \(-0.245623\pi\)
0.716764 + 0.697316i \(0.245623\pi\)
\(464\) 18.0942 0.840002
\(465\) 0 0
\(466\) −8.70388 −0.403199
\(467\) 17.3323 0.802043 0.401021 0.916069i \(-0.368655\pi\)
0.401021 + 0.916069i \(0.368655\pi\)
\(468\) −2.35194 −0.108718
\(469\) −25.3445 −1.17030
\(470\) 0 0
\(471\) 3.64806 0.168094
\(472\) 3.51678 0.161873
\(473\) −7.06804 −0.324989
\(474\) −24.4003 −1.12074
\(475\) 0 0
\(476\) 68.9278 3.15930
\(477\) 2.52420 0.115575
\(478\) 48.6210 2.22387
\(479\) −9.20518 −0.420596 −0.210298 0.977637i \(-0.567443\pi\)
−0.210298 + 0.977637i \(0.567443\pi\)
\(480\) 0 0
\(481\) 4.82032 0.219788
\(482\) −52.8565 −2.40755
\(483\) 11.5242 0.524369
\(484\) 1.92935 0.0876975
\(485\) 0 0
\(486\) −2.08613 −0.0946288
\(487\) −27.8432 −1.26170 −0.630848 0.775906i \(-0.717293\pi\)
−0.630848 + 0.775906i \(0.717293\pi\)
\(488\) −5.78259 −0.261766
\(489\) −0.820321 −0.0370962
\(490\) 0 0
\(491\) −23.6406 −1.06689 −0.533444 0.845836i \(-0.679102\pi\)
−0.533444 + 0.845836i \(0.679102\pi\)
\(492\) −12.9926 −0.585751
\(493\) 40.9097 1.84248
\(494\) −15.6965 −0.706217
\(495\) 0 0
\(496\) 17.7974 0.799128
\(497\) 1.94418 0.0872085
\(498\) 34.2765 1.53597
\(499\) −16.1829 −0.724447 −0.362224 0.932091i \(-0.617982\pi\)
−0.362224 + 0.932091i \(0.617982\pi\)
\(500\) 0 0
\(501\) 9.46357 0.422801
\(502\) −10.9320 −0.487917
\(503\) 12.4758 0.556268 0.278134 0.960542i \(-0.410284\pi\)
0.278134 + 0.960542i \(0.410284\pi\)
\(504\) −3.00000 −0.133631
\(505\) 0 0
\(506\) −20.2281 −0.899248
\(507\) −1.00000 −0.0444116
\(508\) 22.4003 0.993854
\(509\) −10.0558 −0.445716 −0.222858 0.974851i \(-0.571539\pi\)
−0.222858 + 0.974851i \(0.571539\pi\)
\(510\) 0 0
\(511\) 38.2132 1.69045
\(512\) 30.3094 1.33950
\(513\) −7.52420 −0.332202
\(514\) −48.9426 −2.15877
\(515\) 0 0
\(516\) −4.83516 −0.212856
\(517\) −25.7645 −1.13312
\(518\) 41.0894 1.80536
\(519\) −6.69646 −0.293942
\(520\) 0 0
\(521\) 31.7523 1.39109 0.695546 0.718481i \(-0.255162\pi\)
0.695546 + 0.718481i \(0.255162\pi\)
\(522\) −11.8990 −0.520807
\(523\) 18.9878 0.830277 0.415139 0.909758i \(-0.363733\pi\)
0.415139 + 0.909758i \(0.363733\pi\)
\(524\) 24.8661 1.08628
\(525\) 0 0
\(526\) −37.6358 −1.64100
\(527\) 40.2387 1.75283
\(528\) −10.9065 −0.474642
\(529\) −15.0458 −0.654165
\(530\) 0 0
\(531\) 4.79001 0.207869
\(532\) −72.3100 −3.13504
\(533\) −5.52420 −0.239280
\(534\) 21.2207 0.918308
\(535\) 0 0
\(536\) 4.55387 0.196697
\(537\) 15.1042 0.651795
\(538\) −58.1533 −2.50716
\(539\) −33.3371 −1.43593
\(540\) 0 0
\(541\) 1.00742 0.0433123 0.0216562 0.999765i \(-0.493106\pi\)
0.0216562 + 0.999765i \(0.493106\pi\)
\(542\) −41.8713 −1.79853
\(543\) 1.70869 0.0733267
\(544\) 57.9958 2.48655
\(545\) 0 0
\(546\) −8.52420 −0.364802
\(547\) 0.662898 0.0283435 0.0141717 0.999900i \(-0.495489\pi\)
0.0141717 + 0.999900i \(0.495489\pi\)
\(548\) −10.6581 −0.455291
\(549\) −7.87614 −0.336145
\(550\) 0 0
\(551\) −42.9171 −1.82833
\(552\) −2.07065 −0.0881329
\(553\) −47.7933 −2.03238
\(554\) 17.5342 0.744958
\(555\) 0 0
\(556\) −34.0000 −1.44192
\(557\) 16.8809 0.715269 0.357634 0.933862i \(-0.383583\pi\)
0.357634 + 0.933862i \(0.383583\pi\)
\(558\) −11.7039 −0.495465
\(559\) −2.05582 −0.0869518
\(560\) 0 0
\(561\) −24.6587 −1.04109
\(562\) −21.8129 −0.920122
\(563\) −18.7087 −0.788477 −0.394239 0.919008i \(-0.628992\pi\)
−0.394239 + 0.919008i \(0.628992\pi\)
\(564\) −17.6252 −0.742153
\(565\) 0 0
\(566\) 38.2691 1.60857
\(567\) −4.08613 −0.171601
\(568\) −0.349328 −0.0146575
\(569\) −16.5848 −0.695272 −0.347636 0.937630i \(-0.613016\pi\)
−0.347636 + 0.937630i \(0.613016\pi\)
\(570\) 0 0
\(571\) −0.460964 −0.0192907 −0.00964536 0.999953i \(-0.503070\pi\)
−0.00964536 + 0.999953i \(0.503070\pi\)
\(572\) 8.08613 0.338098
\(573\) 23.6406 0.987602
\(574\) −47.0894 −1.96547
\(575\) 0 0
\(576\) −10.5242 −0.438508
\(577\) −23.9394 −0.996609 −0.498305 0.867002i \(-0.666044\pi\)
−0.498305 + 0.867002i \(0.666044\pi\)
\(578\) 71.8491 2.98853
\(579\) −21.4487 −0.891379
\(580\) 0 0
\(581\) 67.1378 2.78534
\(582\) 31.0336 1.28638
\(583\) −8.67837 −0.359422
\(584\) −6.86611 −0.284122
\(585\) 0 0
\(586\) −12.5168 −0.517063
\(587\) 32.7194 1.35047 0.675236 0.737602i \(-0.264042\pi\)
0.675236 + 0.737602i \(0.264042\pi\)
\(588\) −22.8055 −0.940482
\(589\) −42.2132 −1.73937
\(590\) 0 0
\(591\) 4.57260 0.188092
\(592\) 15.2913 0.628469
\(593\) −0.825129 −0.0338840 −0.0169420 0.999856i \(-0.505393\pi\)
−0.0169420 + 0.999856i \(0.505393\pi\)
\(594\) 7.17226 0.294281
\(595\) 0 0
\(596\) 28.8910 1.18342
\(597\) −5.65548 −0.231463
\(598\) −5.88356 −0.240597
\(599\) −11.2913 −0.461351 −0.230675 0.973031i \(-0.574094\pi\)
−0.230675 + 0.973031i \(0.574094\pi\)
\(600\) 0 0
\(601\) 9.64806 0.393553 0.196776 0.980448i \(-0.436953\pi\)
0.196776 + 0.980448i \(0.436953\pi\)
\(602\) −17.5242 −0.714233
\(603\) 6.20257 0.252588
\(604\) 53.1607 2.16308
\(605\) 0 0
\(606\) 10.3142 0.418986
\(607\) 24.6284 0.999637 0.499818 0.866130i \(-0.333400\pi\)
0.499818 + 0.866130i \(0.333400\pi\)
\(608\) −60.8417 −2.46746
\(609\) −23.3068 −0.944439
\(610\) 0 0
\(611\) −7.49389 −0.303170
\(612\) −16.8687 −0.681878
\(613\) −10.3445 −0.417811 −0.208906 0.977936i \(-0.566990\pi\)
−0.208906 + 0.977936i \(0.566990\pi\)
\(614\) 29.0584 1.17270
\(615\) 0 0
\(616\) 10.3142 0.415571
\(617\) −32.8613 −1.32295 −0.661473 0.749969i \(-0.730068\pi\)
−0.661473 + 0.749969i \(0.730068\pi\)
\(618\) −17.2913 −0.695559
\(619\) 36.8565 1.48139 0.740694 0.671843i \(-0.234497\pi\)
0.740694 + 0.671843i \(0.234497\pi\)
\(620\) 0 0
\(621\) −2.82032 −0.113176
\(622\) −37.5503 −1.50563
\(623\) 41.5652 1.66527
\(624\) −3.17226 −0.126992
\(625\) 0 0
\(626\) 62.7704 2.50881
\(627\) 25.8687 1.03310
\(628\) −8.58002 −0.342380
\(629\) 34.5726 1.37850
\(630\) 0 0
\(631\) −25.6965 −1.02296 −0.511480 0.859295i \(-0.670903\pi\)
−0.511480 + 0.859295i \(0.670903\pi\)
\(632\) 8.58744 0.341590
\(633\) 5.63583 0.224004
\(634\) 8.46096 0.336028
\(635\) 0 0
\(636\) −5.93676 −0.235408
\(637\) −9.69646 −0.384188
\(638\) 40.9097 1.61963
\(639\) −0.475800 −0.0188224
\(640\) 0 0
\(641\) 18.4535 0.728871 0.364436 0.931229i \(-0.381262\pi\)
0.364436 + 0.931229i \(0.381262\pi\)
\(642\) 26.1116 1.03054
\(643\) 16.7087 0.658926 0.329463 0.944168i \(-0.393132\pi\)
0.329463 + 0.944168i \(0.393132\pi\)
\(644\) −27.1042 −1.06806
\(645\) 0 0
\(646\) −112.579 −4.42937
\(647\) −28.6136 −1.12492 −0.562458 0.826826i \(-0.690144\pi\)
−0.562458 + 0.826826i \(0.690144\pi\)
\(648\) 0.734191 0.0288417
\(649\) −16.4684 −0.646441
\(650\) 0 0
\(651\) −22.9245 −0.898483
\(652\) 1.92935 0.0755590
\(653\) 39.7252 1.55457 0.777284 0.629150i \(-0.216597\pi\)
0.777284 + 0.629150i \(0.216597\pi\)
\(654\) −24.4003 −0.954129
\(655\) 0 0
\(656\) −17.5242 −0.684205
\(657\) −9.35194 −0.364854
\(658\) −63.8794 −2.49028
\(659\) 5.21585 0.203181 0.101590 0.994826i \(-0.467607\pi\)
0.101590 + 0.994826i \(0.467607\pi\)
\(660\) 0 0
\(661\) 20.3493 0.791497 0.395749 0.918359i \(-0.370485\pi\)
0.395749 + 0.918359i \(0.370485\pi\)
\(662\) −40.4971 −1.57397
\(663\) −7.17226 −0.278548
\(664\) −12.0632 −0.468144
\(665\) 0 0
\(666\) −10.0558 −0.389655
\(667\) −16.0868 −0.622882
\(668\) −22.2578 −0.861178
\(669\) −6.22808 −0.240791
\(670\) 0 0
\(671\) 27.0787 1.04536
\(672\) −33.0410 −1.27458
\(673\) −18.2765 −0.704506 −0.352253 0.935905i \(-0.614584\pi\)
−0.352253 + 0.935905i \(0.614584\pi\)
\(674\) −42.0974 −1.62153
\(675\) 0 0
\(676\) 2.35194 0.0904592
\(677\) 43.2664 1.66286 0.831432 0.555626i \(-0.187521\pi\)
0.831432 + 0.555626i \(0.187521\pi\)
\(678\) 2.57741 0.0989847
\(679\) 60.7858 2.33275
\(680\) 0 0
\(681\) −14.8458 −0.568893
\(682\) 40.2387 1.54082
\(683\) 25.8432 0.988863 0.494432 0.869217i \(-0.335376\pi\)
0.494432 + 0.869217i \(0.335376\pi\)
\(684\) 17.6965 0.676641
\(685\) 0 0
\(686\) −22.9852 −0.877578
\(687\) 25.5046 0.973059
\(688\) −6.52159 −0.248633
\(689\) −2.52420 −0.0961643
\(690\) 0 0
\(691\) −8.94743 −0.340376 −0.170188 0.985412i \(-0.554438\pi\)
−0.170188 + 0.985412i \(0.554438\pi\)
\(692\) 15.7497 0.598712
\(693\) 14.0484 0.533655
\(694\) −39.2207 −1.48880
\(695\) 0 0
\(696\) 4.18774 0.158736
\(697\) −39.6210 −1.50075
\(698\) −9.33710 −0.353415
\(699\) 4.17226 0.157809
\(700\) 0 0
\(701\) −26.4897 −1.00050 −0.500251 0.865880i \(-0.666759\pi\)
−0.500251 + 0.865880i \(0.666759\pi\)
\(702\) 2.08613 0.0787359
\(703\) −36.2691 −1.36791
\(704\) 36.1829 1.36370
\(705\) 0 0
\(706\) −55.9507 −2.10573
\(707\) 20.2026 0.759796
\(708\) −11.2658 −0.423395
\(709\) 19.3977 0.728497 0.364248 0.931302i \(-0.381326\pi\)
0.364248 + 0.931302i \(0.381326\pi\)
\(710\) 0 0
\(711\) 11.6965 0.438652
\(712\) −7.46838 −0.279889
\(713\) −15.8229 −0.592573
\(714\) −61.1378 −2.28802
\(715\) 0 0
\(716\) −35.5242 −1.32760
\(717\) −23.3068 −0.870408
\(718\) −12.3062 −0.459261
\(719\) −32.0261 −1.19437 −0.597187 0.802102i \(-0.703715\pi\)
−0.597187 + 0.802102i \(0.703715\pi\)
\(720\) 0 0
\(721\) −33.8687 −1.26134
\(722\) 78.4668 2.92023
\(723\) 25.3371 0.942297
\(724\) −4.01873 −0.149355
\(725\) 0 0
\(726\) −1.71130 −0.0635122
\(727\) −5.46357 −0.202633 −0.101316 0.994854i \(-0.532305\pi\)
−0.101316 + 0.994854i \(0.532305\pi\)
\(728\) 3.00000 0.111187
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −14.7449 −0.545358
\(732\) 18.5242 0.684674
\(733\) 45.6406 1.68578 0.842888 0.538089i \(-0.180854\pi\)
0.842888 + 0.538089i \(0.180854\pi\)
\(734\) −37.7523 −1.39346
\(735\) 0 0
\(736\) −22.8055 −0.840621
\(737\) −21.3249 −0.785512
\(738\) 11.5242 0.424212
\(739\) 34.9278 1.28484 0.642420 0.766353i \(-0.277931\pi\)
0.642420 + 0.766353i \(0.277931\pi\)
\(740\) 0 0
\(741\) 7.52420 0.276408
\(742\) −21.5168 −0.789906
\(743\) 52.3962 1.92223 0.961115 0.276150i \(-0.0890587\pi\)
0.961115 + 0.276150i \(0.0890587\pi\)
\(744\) 4.11905 0.151012
\(745\) 0 0
\(746\) 26.8768 0.984029
\(747\) −16.4307 −0.601166
\(748\) 57.9958 2.12054
\(749\) 51.1452 1.86880
\(750\) 0 0
\(751\) 31.9655 1.16644 0.583219 0.812315i \(-0.301793\pi\)
0.583219 + 0.812315i \(0.301793\pi\)
\(752\) −23.7726 −0.866896
\(753\) 5.24030 0.190967
\(754\) 11.8990 0.433337
\(755\) 0 0
\(756\) 9.61033 0.349524
\(757\) −34.4897 −1.25355 −0.626775 0.779200i \(-0.715626\pi\)
−0.626775 + 0.779200i \(0.715626\pi\)
\(758\) −39.6433 −1.43991
\(759\) 9.69646 0.351959
\(760\) 0 0
\(761\) −19.7933 −0.717505 −0.358753 0.933433i \(-0.616798\pi\)
−0.358753 + 0.933433i \(0.616798\pi\)
\(762\) −19.8687 −0.719768
\(763\) −47.7933 −1.73023
\(764\) −55.6014 −2.01159
\(765\) 0 0
\(766\) −20.0707 −0.725182
\(767\) −4.79001 −0.172957
\(768\) −8.98516 −0.324224
\(769\) 4.65287 0.167787 0.0838934 0.996475i \(-0.473264\pi\)
0.0838934 + 0.996475i \(0.473264\pi\)
\(770\) 0 0
\(771\) 23.4610 0.844926
\(772\) 50.4461 1.81560
\(773\) −20.6284 −0.741953 −0.370976 0.928642i \(-0.620977\pi\)
−0.370976 + 0.928642i \(0.620977\pi\)
\(774\) 4.28870 0.154154
\(775\) 0 0
\(776\) −10.9219 −0.392074
\(777\) −19.6965 −0.706607
\(778\) −5.04840 −0.180994
\(779\) 41.5652 1.48923
\(780\) 0 0
\(781\) 1.63583 0.0585348
\(782\) −42.1984 −1.50901
\(783\) 5.70388 0.203840
\(784\) −30.7597 −1.09856
\(785\) 0 0
\(786\) −22.0558 −0.786705
\(787\) 26.1877 0.933492 0.466746 0.884391i \(-0.345426\pi\)
0.466746 + 0.884391i \(0.345426\pi\)
\(788\) −10.7545 −0.383112
\(789\) 18.0410 0.642276
\(790\) 0 0
\(791\) 5.04840 0.179500
\(792\) −2.52420 −0.0896935
\(793\) 7.87614 0.279690
\(794\) 55.5194 1.97031
\(795\) 0 0
\(796\) 13.3013 0.471454
\(797\) −17.2180 −0.609895 −0.304947 0.952369i \(-0.598639\pi\)
−0.304947 + 0.952369i \(0.598639\pi\)
\(798\) 64.1378 2.27045
\(799\) −53.7481 −1.90147
\(800\) 0 0
\(801\) −10.1723 −0.359419
\(802\) 26.0261 0.919015
\(803\) 32.1526 1.13464
\(804\) −14.5881 −0.514482
\(805\) 0 0
\(806\) 11.7039 0.412252
\(807\) 27.8761 0.981287
\(808\) −3.62997 −0.127702
\(809\) 13.4684 0.473523 0.236762 0.971568i \(-0.423914\pi\)
0.236762 + 0.971568i \(0.423914\pi\)
\(810\) 0 0
\(811\) −7.83841 −0.275244 −0.137622 0.990485i \(-0.543946\pi\)
−0.137622 + 0.990485i \(0.543946\pi\)
\(812\) 54.8162 1.92367
\(813\) 20.0713 0.703931
\(814\) 34.5726 1.21177
\(815\) 0 0
\(816\) −22.7523 −0.796489
\(817\) 15.4684 0.541170
\(818\) 33.8539 1.18367
\(819\) 4.08613 0.142781
\(820\) 0 0
\(821\) 32.8203 1.14544 0.572719 0.819752i \(-0.305889\pi\)
0.572719 + 0.819752i \(0.305889\pi\)
\(822\) 9.45355 0.329730
\(823\) −24.1478 −0.841740 −0.420870 0.907121i \(-0.638275\pi\)
−0.420870 + 0.907121i \(0.638275\pi\)
\(824\) 6.08549 0.211998
\(825\) 0 0
\(826\) −40.8310 −1.42069
\(827\) 10.1058 0.351412 0.175706 0.984443i \(-0.443779\pi\)
0.175706 + 0.984443i \(0.443779\pi\)
\(828\) 6.63322 0.230520
\(829\) −3.54645 −0.123173 −0.0615867 0.998102i \(-0.519616\pi\)
−0.0615867 + 0.998102i \(0.519616\pi\)
\(830\) 0 0
\(831\) −8.40515 −0.291571
\(832\) 10.5242 0.364861
\(833\) −69.5455 −2.40961
\(834\) 30.1574 1.04427
\(835\) 0 0
\(836\) −60.8417 −2.10425
\(837\) 5.61033 0.193921
\(838\) −80.0772 −2.76622
\(839\) −27.1797 −0.938347 −0.469173 0.883106i \(-0.655448\pi\)
−0.469173 + 0.883106i \(0.655448\pi\)
\(840\) 0 0
\(841\) 3.53423 0.121870
\(842\) 18.6742 0.643556
\(843\) 10.4562 0.360129
\(844\) −13.2551 −0.456261
\(845\) 0 0
\(846\) 15.6332 0.537481
\(847\) −3.35194 −0.115174
\(848\) −8.00742 −0.274976
\(849\) −18.3445 −0.629582
\(850\) 0 0
\(851\) −13.5949 −0.466026
\(852\) 1.11905 0.0383381
\(853\) −14.4413 −0.494461 −0.247231 0.968957i \(-0.579521\pi\)
−0.247231 + 0.968957i \(0.579521\pi\)
\(854\) 67.1378 2.29741
\(855\) 0 0
\(856\) −9.18971 −0.314098
\(857\) 20.7858 0.710031 0.355015 0.934860i \(-0.384476\pi\)
0.355015 + 0.934860i \(0.384476\pi\)
\(858\) −7.17226 −0.244857
\(859\) 20.9926 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(860\) 0 0
\(861\) 22.5726 0.769272
\(862\) −4.16223 −0.141766
\(863\) 25.3020 0.861289 0.430645 0.902522i \(-0.358286\pi\)
0.430645 + 0.902522i \(0.358286\pi\)
\(864\) 8.08613 0.275096
\(865\) 0 0
\(866\) −77.1304 −2.62100
\(867\) −34.4413 −1.16969
\(868\) 53.9171 1.83007
\(869\) −40.2132 −1.36414
\(870\) 0 0
\(871\) −6.20257 −0.210166
\(872\) 8.58744 0.290807
\(873\) −14.8761 −0.503481
\(874\) 44.2691 1.49742
\(875\) 0 0
\(876\) 21.9952 0.743149
\(877\) −27.9342 −0.943269 −0.471635 0.881794i \(-0.656336\pi\)
−0.471635 + 0.881794i \(0.656336\pi\)
\(878\) −10.5726 −0.356808
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −38.9900 −1.31361 −0.656803 0.754062i \(-0.728092\pi\)
−0.656803 + 0.754062i \(0.728092\pi\)
\(882\) 20.2281 0.681115
\(883\) 12.1871 0.410128 0.205064 0.978749i \(-0.434260\pi\)
0.205064 + 0.978749i \(0.434260\pi\)
\(884\) 16.8687 0.567356
\(885\) 0 0
\(886\) −11.6816 −0.392452
\(887\) −32.1526 −1.07958 −0.539790 0.841800i \(-0.681496\pi\)
−0.539790 + 0.841800i \(0.681496\pi\)
\(888\) 3.53904 0.118762
\(889\) −38.9171 −1.30524
\(890\) 0 0
\(891\) −3.43807 −0.115180
\(892\) 14.6481 0.490453
\(893\) 56.3855 1.88687
\(894\) −25.6258 −0.857055
\(895\) 0 0
\(896\) 23.6284 0.789370
\(897\) 2.82032 0.0941678
\(898\) 29.1749 0.973578
\(899\) 32.0006 1.06728
\(900\) 0 0
\(901\) −18.1042 −0.603139
\(902\) −39.6210 −1.31923
\(903\) 8.40034 0.279546
\(904\) −0.907090 −0.0301694
\(905\) 0 0
\(906\) −47.1526 −1.56654
\(907\) 42.9368 1.42569 0.712846 0.701321i \(-0.247406\pi\)
0.712846 + 0.701321i \(0.247406\pi\)
\(908\) 34.9165 1.15874
\(909\) −4.94418 −0.163988
\(910\) 0 0
\(911\) 8.22808 0.272608 0.136304 0.990667i \(-0.456478\pi\)
0.136304 + 0.990667i \(0.456478\pi\)
\(912\) 23.8687 0.790372
\(913\) 56.4897 1.86954
\(914\) 65.9655 2.18195
\(915\) 0 0
\(916\) −59.9852 −1.98197
\(917\) −43.2010 −1.42662
\(918\) 14.9623 0.493828
\(919\) −27.5652 −0.909291 −0.454646 0.890672i \(-0.650234\pi\)
−0.454646 + 0.890672i \(0.650234\pi\)
\(920\) 0 0
\(921\) −13.9293 −0.458988
\(922\) 60.5987 1.99571
\(923\) 0.475800 0.0156612
\(924\) −33.0410 −1.08697
\(925\) 0 0
\(926\) 64.3484 2.11462
\(927\) 8.28870 0.272237
\(928\) 46.1223 1.51404
\(929\) −24.2084 −0.794253 −0.397126 0.917764i \(-0.629993\pi\)
−0.397126 + 0.917764i \(0.629993\pi\)
\(930\) 0 0
\(931\) 72.9581 2.39111
\(932\) −9.81290 −0.321432
\(933\) 18.0000 0.589294
\(934\) 36.1574 1.18311
\(935\) 0 0
\(936\) −0.734191 −0.0239978
\(937\) −2.58002 −0.0842855 −0.0421427 0.999112i \(-0.513418\pi\)
−0.0421427 + 0.999112i \(0.513418\pi\)
\(938\) −52.8720 −1.72633
\(939\) −30.0894 −0.981930
\(940\) 0 0
\(941\) 30.6088 0.997817 0.498909 0.866655i \(-0.333734\pi\)
0.498909 + 0.866655i \(0.333734\pi\)
\(942\) 7.61033 0.247958
\(943\) 15.5800 0.507355
\(944\) −15.1952 −0.494560
\(945\) 0 0
\(946\) −14.7449 −0.479397
\(947\) 51.3626 1.66906 0.834530 0.550962i \(-0.185739\pi\)
0.834530 + 0.550962i \(0.185739\pi\)
\(948\) −27.5094 −0.893463
\(949\) 9.35194 0.303577
\(950\) 0 0
\(951\) −4.05582 −0.131519
\(952\) 21.5168 0.697363
\(953\) −9.06543 −0.293658 −0.146829 0.989162i \(-0.546907\pi\)
−0.146829 + 0.989162i \(0.546907\pi\)
\(954\) 5.26581 0.170487
\(955\) 0 0
\(956\) 54.8162 1.77288
\(957\) −19.6103 −0.633912
\(958\) −19.2032 −0.620428
\(959\) 18.5168 0.597938
\(960\) 0 0
\(961\) 0.475800 0.0153484
\(962\) 10.0558 0.324213
\(963\) −12.5168 −0.403348
\(964\) −59.5913 −1.91931
\(965\) 0 0
\(966\) 24.0410 0.773506
\(967\) 47.8942 1.54017 0.770087 0.637939i \(-0.220213\pi\)
0.770087 + 0.637939i \(0.220213\pi\)
\(968\) 0.602272 0.0193578
\(969\) 53.9655 1.73362
\(970\) 0 0
\(971\) −7.59485 −0.243730 −0.121865 0.992547i \(-0.538888\pi\)
−0.121865 + 0.992547i \(0.538888\pi\)
\(972\) −2.35194 −0.0754385
\(973\) 59.0697 1.89369
\(974\) −58.0846 −1.86115
\(975\) 0 0
\(976\) 24.9852 0.799756
\(977\) 23.0484 0.737384 0.368692 0.929552i \(-0.379806\pi\)
0.368692 + 0.929552i \(0.379806\pi\)
\(978\) −1.71130 −0.0547212
\(979\) 34.9729 1.11774
\(980\) 0 0
\(981\) 11.6965 0.373439
\(982\) −49.3175 −1.57378
\(983\) 26.2026 0.835732 0.417866 0.908509i \(-0.362778\pi\)
0.417866 + 0.908509i \(0.362778\pi\)
\(984\) −4.05582 −0.129295
\(985\) 0 0
\(986\) 85.3430 2.71787
\(987\) 30.6210 0.974677
\(988\) −17.6965 −0.562999
\(989\) 5.79807 0.184368
\(990\) 0 0
\(991\) 46.9023 1.48990 0.744950 0.667120i \(-0.232473\pi\)
0.744950 + 0.667120i \(0.232473\pi\)
\(992\) 45.3659 1.44037
\(993\) 19.4126 0.616039
\(994\) 4.05582 0.128643
\(995\) 0 0
\(996\) 38.6439 1.22448
\(997\) −36.5503 −1.15756 −0.578780 0.815483i \(-0.696471\pi\)
−0.578780 + 0.815483i \(0.696471\pi\)
\(998\) −33.7597 −1.06864
\(999\) 4.82032 0.152508
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.a.n.1.3 3
3.2 odd 2 2925.2.a.bi.1.1 3
5.2 odd 4 975.2.c.j.274.5 6
5.3 odd 4 975.2.c.j.274.2 6
5.4 even 2 975.2.a.p.1.1 yes 3
15.2 even 4 2925.2.c.x.2224.2 6
15.8 even 4 2925.2.c.x.2224.5 6
15.14 odd 2 2925.2.a.bg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.a.n.1.3 3 1.1 even 1 trivial
975.2.a.p.1.1 yes 3 5.4 even 2
975.2.c.j.274.2 6 5.3 odd 4
975.2.c.j.274.5 6 5.2 odd 4
2925.2.a.bg.1.3 3 15.14 odd 2
2925.2.a.bi.1.1 3 3.2 odd 2
2925.2.c.x.2224.2 6 15.2 even 4
2925.2.c.x.2224.5 6 15.8 even 4