Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.h (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(30.3013474720\) |
Analytic rank: | \(0\) |
Dimension: | \(440\) |
Relative dimension: | \(55\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −20.2712 | − | 8.39660i | −24.3454 | − | 58.7751i | 249.908 | + | 249.908i | 417.025 | + | 82.9514i | 1395.86i | −436.387 | + | 86.8028i | −1892.79 | − | 4569.60i | −1315.37 | + | 1315.37i | −7757.08 | − | 5183.11i | ||
8.2 | −20.1509 | − | 8.34677i | 22.2046 | + | 53.6066i | 245.880 | + | 245.880i | −194.096 | − | 38.6080i | − | 1265.56i | 893.707 | − | 177.769i | −1834.01 | − | 4427.68i | −834.178 | + | 834.178i | 3588.95 | + | 2398.06i | |
8.3 | −19.6534 | − | 8.14069i | −14.8615 | − | 35.8787i | 229.474 | + | 229.474i | −167.126 | − | 33.2435i | 826.120i | 179.469 | − | 35.6986i | −1599.86 | − | 3862.39i | 480.023 | − | 480.023i | 3013.97 | + | 2013.87i | ||
8.4 | −18.3208 | − | 7.58872i | 16.3453 | + | 39.4610i | 187.553 | + | 187.553i | 28.0467 | + | 5.57883i | − | 846.996i | −910.476 | + | 181.105i | −1041.48 | − | 2514.35i | 256.442 | − | 256.442i | −471.501 | − | 315.047i | |
8.5 | −17.2851 | − | 7.15970i | 6.15294 | + | 14.8545i | 157.002 | + | 157.002i | 350.463 | + | 69.7114i | − | 300.814i | 524.297 | − | 104.289i | −673.259 | − | 1625.39i | 1363.64 | − | 1363.64i | −5558.66 | − | 3714.18i | |
8.6 | −16.9940 | − | 7.03913i | −10.1290 | − | 24.4535i | 148.736 | + | 148.736i | −499.378 | − | 99.3324i | 486.862i | 208.091 | − | 41.3920i | −579.633 | − | 1399.36i | 1051.06 | − | 1051.06i | 7787.20 | + | 5203.24i | ||
8.7 | −16.6711 | − | 6.90540i | 1.04022 | + | 2.51132i | 139.732 | + | 139.732i | −71.3894 | − | 14.2002i | − | 49.0496i | −1704.25 | + | 338.997i | −480.689 | − | 1160.49i | 1541.22 | − | 1541.22i | 1092.08 | + | 729.706i | |
8.8 | −16.1903 | − | 6.70626i | 34.6581 | + | 83.6721i | 126.644 | + | 126.644i | 481.745 | + | 95.8250i | − | 1587.11i | −159.733 | + | 31.7728i | −342.697 | − | 827.345i | −4253.40 | + | 4253.40i | −7156.99 | − | 4782.15i | |
8.9 | −15.4197 | − | 6.38703i | −34.4893 | − | 83.2646i | 106.462 | + | 106.462i | −285.686 | − | 56.8266i | 1504.20i | −910.212 | + | 181.052i | −144.093 | − | 347.872i | −4197.04 | + | 4197.04i | 4042.24 | + | 2700.94i | ||
8.10 | −14.8540 | − | 6.15271i | −26.3081 | − | 63.5135i | 92.2744 | + | 92.2744i | 133.110 | + | 26.4773i | 1105.29i | 671.524 | − | 133.574i | −15.3550 | − | 37.0702i | −1795.40 | + | 1795.40i | −1814.31 | − | 1212.28i | ||
8.11 | −14.8378 | − | 6.14601i | 29.4785 | + | 71.1674i | 91.8765 | + | 91.8765i | −331.728 | − | 65.9848i | − | 1237.14i | −681.501 | + | 135.559i | −11.8803 | − | 28.6815i | −2649.38 | + | 2649.38i | 4516.56 | + | 3017.87i | |
8.12 | −14.3189 | − | 5.93107i | −13.0172 | − | 31.4263i | 79.3427 | + | 79.3427i | −56.0713 | − | 11.1533i | 527.195i | 1335.12 | − | 265.571i | 93.6661 | + | 226.130i | 728.279 | − | 728.279i | 736.726 | + | 492.265i | ||
8.13 | −12.7349 | − | 5.27495i | 20.7134 | + | 50.0066i | 43.8417 | + | 43.8417i | −95.6555 | − | 19.0271i | − | 746.089i | 1710.21 | − | 340.182i | 348.138 | + | 840.480i | −525.171 | + | 525.171i | 1117.79 | + | 746.885i | |
8.14 | −11.9808 | − | 4.96263i | −19.1529 | − | 46.2391i | 28.4033 | + | 28.4033i | 338.783 | + | 67.3881i | 649.032i | −1451.58 | + | 288.737i | 435.876 | + | 1052.30i | −224.782 | + | 224.782i | −3724.48 | − | 2488.62i | ||
8.15 | −11.0476 | − | 4.57606i | −2.12866 | − | 5.13904i | 10.5992 | + | 10.5992i | 299.878 | + | 59.6495i | 66.5149i | −474.287 | + | 94.3415i | 517.143 | + | 1248.49i | 1524.56 | − | 1524.56i | −3039.97 | − | 2031.24i | ||
8.16 | −10.9086 | − | 4.51848i | 8.54779 | + | 20.6362i | 8.07072 | + | 8.07072i | −399.200 | − | 79.4059i | − | 263.734i | −102.762 | + | 20.4405i | 526.793 | + | 1271.79i | 1193.66 | − | 1193.66i | 3995.91 | + | 2669.98i | |
8.17 | −8.78157 | − | 3.63744i | 18.9318 | + | 45.7053i | −26.6248 | − | 26.6248i | 180.794 | + | 35.9622i | − | 470.228i | −381.684 | + | 75.9216i | 602.554 | + | 1454.69i | −184.123 | + | 184.123i | −1456.84 | − | 973.433i | |
8.18 | −8.18508 | − | 3.39037i | 23.4510 | + | 56.6158i | −35.0088 | − | 35.0088i | 138.946 | + | 27.6380i | − | 542.913i | 41.0820 | − | 8.17173i | 601.824 | + | 1452.93i | −1108.96 | + | 1108.96i | −1043.58 | − | 697.297i | |
8.19 | −8.12427 | − | 3.36518i | −5.89910 | − | 14.2417i | −35.8303 | − | 35.8303i | −190.256 | − | 37.8443i | 135.555i | 170.751 | − | 33.9644i | 601.263 | + | 1451.58i | 1378.42 | − | 1378.42i | 1418.34 | + | 947.705i | ||
8.20 | −7.09290 | − | 2.93797i | −28.3325 | − | 68.4006i | −48.8322 | − | 48.8322i | 351.179 | + | 69.8538i | 568.398i | 765.341 | − | 152.236i | 578.955 | + | 1397.72i | −2329.47 | + | 2329.47i | −2285.65 | − | 1527.22i | ||
See next 80 embeddings (of 440 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.h | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.8.h.a | ✓ | 440 |
97.h | even | 16 | 1 | inner | 97.8.h.a | ✓ | 440 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.8.h.a | ✓ | 440 | 1.a | even | 1 | 1 | trivial |
97.8.h.a | ✓ | 440 | 97.h | even | 16 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(97, [\chi])\).