Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.j (of order \(32\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(22.3152461111\) |
Analytic rank: | \(0\) |
Dimension: | \(768\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{32})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{32}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −8.79004 | + | 13.1552i | 1.06910 | + | 0.212658i | −71.3034 | − | 172.142i | −131.771 | + | 70.4331i | −12.1950 | + | 12.1950i | −340.019 | − | 181.744i | 1898.19 | + | 377.574i | −672.410 | − | 278.522i | 231.710 | − | 2352.59i |
19.2 | −8.08643 | + | 12.1022i | 19.7519 | + | 3.92890i | −56.5811 | − | 136.599i | 102.565 | − | 54.8223i | −207.271 | + | 207.271i | −28.4535 | − | 15.2087i | 1197.05 | + | 238.108i | −298.806 | − | 123.769i | −165.917 | + | 1684.58i |
19.3 | −7.93371 | + | 11.8736i | −38.8820 | − | 7.73411i | −53.5477 | − | 129.276i | −50.1015 | + | 26.7798i | 400.310 | − | 400.310i | 20.2645 | + | 10.8316i | 1063.43 | + | 211.529i | 778.485 | + | 322.459i | 79.5171 | − | 807.350i |
19.4 | −7.69492 | + | 11.5163i | 50.9813 | + | 10.1408i | −48.9208 | − | 118.105i | −42.9030 | + | 22.9321i | −509.081 | + | 509.081i | 117.577 | + | 62.8462i | 867.173 | + | 172.491i | 1822.75 | + | 755.006i | 66.0427 | − | 670.543i |
19.5 | −7.63247 | + | 11.4228i | −29.3932 | − | 5.84667i | −47.7340 | − | 115.240i | 177.811 | − | 95.0420i | 291.128 | − | 291.128i | 220.494 | + | 117.856i | 818.348 | + | 162.780i | 156.269 | + | 64.7286i | −271.492 | + | 2756.50i |
19.6 | −7.44558 | + | 11.1431i | 17.2512 | + | 3.43147i | −44.2402 | − | 106.805i | −89.5143 | + | 47.8464i | −166.682 | + | 166.682i | 592.462 | + | 316.678i | 678.307 | + | 134.924i | −387.681 | − | 160.583i | 133.329 | − | 1353.71i |
19.7 | −6.78987 | + | 10.1618i | 15.2804 | + | 3.03947i | −32.6673 | − | 78.8658i | 107.652 | − | 57.5412i | −134.639 | + | 134.639i | −172.387 | − | 92.1430i | 256.078 | + | 50.9372i | −449.254 | − | 186.087i | −146.223 | + | 1484.63i |
19.8 | −6.14859 | + | 9.20201i | −8.41134 | − | 1.67312i | −22.3801 | − | 54.0304i | −46.9219 | + | 25.0803i | 67.1139 | − | 67.1139i | 521.829 | + | 278.924i | −59.8941 | − | 11.9137i | −605.557 | − | 250.830i | 57.7144 | − | 585.984i |
19.9 | −5.92118 | + | 8.86167i | −21.8054 | − | 4.33737i | −18.9771 | − | 45.8147i | −143.084 | + | 76.4799i | 167.550 | − | 167.550i | 15.6889 | + | 8.38587i | −150.634 | − | 29.9631i | −216.844 | − | 89.8196i | 169.485 | − | 1720.81i |
19.10 | −5.89540 | + | 8.82309i | 20.5481 | + | 4.08728i | −18.5994 | − | 44.9029i | −208.842 | + | 111.628i | −157.202 | + | 157.202i | −245.674 | − | 131.315i | −160.250 | − | 31.8756i | −267.988 | − | 111.004i | 246.299 | − | 2500.72i |
19.11 | −5.88431 | + | 8.80650i | −20.5586 | − | 4.08936i | −18.4375 | − | 44.5120i | 61.0885 | − | 32.6525i | 156.986 | − | 156.986i | −528.374 | − | 282.422i | −164.343 | − | 32.6898i | −267.576 | − | 110.833i | −71.9098 | + | 730.113i |
19.12 | −5.23530 | + | 7.83517i | 37.4064 | + | 7.44060i | −9.48989 | − | 22.9106i | −26.3162 | + | 14.0663i | −254.132 | + | 254.132i | −345.967 | − | 184.923i | −362.311 | − | 72.0681i | 670.370 | + | 277.676i | 27.5611 | − | 279.833i |
19.13 | −4.52976 | + | 6.77927i | 38.8146 | + | 7.72070i | −0.947976 | − | 2.28862i | 220.298 | − | 117.752i | −228.162 | + | 228.162i | 356.239 | + | 190.414i | −491.979 | − | 97.8607i | 773.455 | + | 320.376i | −199.627 | + | 2026.84i |
19.14 | −4.46871 | + | 6.68790i | −49.0270 | − | 9.75207i | −0.266874 | − | 0.644290i | −104.105 | + | 55.6455i | 284.308 | − | 284.308i | 92.2469 | + | 49.3070i | −499.389 | − | 99.3347i | 1635.03 | + | 677.252i | 93.0655 | − | 944.910i |
19.15 | −3.82791 | + | 5.72887i | 21.1096 | + | 4.19895i | 6.32464 | + | 15.2690i | −6.96191 | + | 3.72122i | −104.861 | + | 104.861i | 109.780 | + | 58.6788i | −544.175 | − | 108.243i | −245.526 | − | 101.700i | 5.33118 | − | 54.1284i |
19.16 | −3.74297 | + | 5.60175i | −47.6605 | − | 9.48025i | 7.12199 | + | 17.1940i | 153.939 | − | 82.2822i | 231.497 | − | 231.497i | −50.7344 | − | 27.1181i | −545.867 | − | 108.580i | 1508.14 | + | 624.690i | −115.265 | + | 1170.31i |
19.17 | −3.60786 | + | 5.39954i | −5.65428 | − | 1.12471i | 8.35334 | + | 20.1667i | 75.8939 | − | 40.5661i | 26.4728 | − | 26.4728i | 182.189 | + | 97.3818i | −546.657 | − | 108.737i | −642.802 | − | 266.257i | −54.7759 | + | 556.149i |
19.18 | −2.48629 | + | 3.72100i | −25.2506 | − | 5.02265i | 16.8276 | + | 40.6253i | 100.797 | − | 53.8771i | 81.4696 | − | 81.4696i | 262.607 | + | 140.366i | −473.915 | − | 94.2675i | −61.1431 | − | 25.3263i | −50.1341 | + | 509.020i |
19.19 | −1.81050 | + | 2.70961i | 41.4098 | + | 8.23692i | 20.4277 | + | 49.3168i | −131.101 | + | 70.0748i | −97.2914 | + | 97.2914i | 372.276 | + | 198.986i | −375.171 | − | 74.6261i | 973.414 | + | 403.201i | 47.4830 | − | 482.103i |
19.20 | −1.66408 | + | 2.49047i | −1.43974 | − | 0.286382i | 21.0585 | + | 50.8396i | −142.655 | + | 76.2507i | 3.10907 | − | 3.10907i | −77.1178 | − | 41.2203i | −349.670 | − | 69.5537i | −671.517 | − | 278.152i | 47.4890 | − | 482.164i |
See next 80 embeddings (of 768 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.j | odd | 32 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.7.j.a | ✓ | 768 |
97.j | odd | 32 | 1 | inner | 97.7.j.a | ✓ | 768 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.7.j.a | ✓ | 768 | 1.a | even | 1 | 1 | trivial |
97.7.j.a | ✓ | 768 | 97.j | odd | 32 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(97, [\chi])\).