Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.k (of order \(48\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.5572305219\) |
Analytic rank: | \(0\) |
Dimension: | \(640\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{48})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −10.5278 | − | 1.38602i | 24.6151 | − | 18.8878i | 78.0046 | + | 20.9013i | 2.94026 | + | 5.96225i | −285.322 | + | 164.731i | 122.547 | − | 8.03214i | −478.318 | − | 198.126i | 186.260 | − | 695.130i | −22.6908 | − | 66.8449i |
2.2 | −10.4339 | − | 1.37365i | 2.96604 | − | 2.27592i | 76.0706 | + | 20.3831i | 14.7671 | + | 29.9447i | −34.0738 | + | 19.6725i | −135.246 | + | 8.86447i | −454.585 | − | 188.295i | −59.2755 | + | 221.219i | −112.945 | − | 332.726i |
2.3 | −10.2671 | − | 1.35169i | −10.5830 | + | 8.12059i | 72.6768 | + | 19.4737i | −9.64301 | − | 19.5541i | 119.633 | − | 69.0701i | 177.633 | − | 11.6427i | −413.701 | − | 171.360i | −16.8380 | + | 62.8402i | 72.5748 | + | 213.798i |
2.4 | −9.59368 | − | 1.26303i | −23.7394 | + | 18.2159i | 59.5338 | + | 15.9520i | 31.0907 | + | 63.0456i | 250.755 | − | 144.774i | −89.1773 | + | 5.84499i | −264.924 | − | 109.735i | 168.847 | − | 630.147i | −218.645 | − | 644.108i |
2.5 | −8.95128 | − | 1.17846i | 9.54367 | − | 7.32311i | 47.8271 | + | 12.8152i | −38.1307 | − | 77.3215i | −94.0581 | + | 54.3044i | −75.6527 | + | 4.95854i | −146.091 | − | 60.5129i | −25.4394 | + | 94.9413i | 250.199 | + | 737.062i |
2.6 | −8.56885 | − | 1.12811i | −14.9675 | + | 11.4850i | 41.2430 | + | 11.0510i | −38.3472 | − | 77.7605i | 141.211 | − | 81.5282i | −21.2512 | + | 1.39287i | −85.4212 | − | 35.3826i | 29.2291 | − | 109.084i | 240.869 | + | 709.578i |
2.7 | −7.92337 | − | 1.04313i | 5.32344 | − | 4.08482i | 30.7820 | + | 8.24802i | 42.3505 | + | 85.8783i | −46.4406 | + | 26.8125i | 187.048 | − | 12.2598i | 0.975199 | + | 0.403941i | −51.2397 | + | 191.229i | −245.976 | − | 724.623i |
2.8 | −7.53692 | − | 0.992255i | 13.3403 | − | 10.2364i | 24.9110 | + | 6.67489i | −7.25114 | − | 14.7039i | −110.702 | + | 63.9138i | 27.4174 | − | 1.79703i | 43.6160 | + | 18.0664i | 10.2872 | − | 38.3924i | 40.0613 | + | 118.017i |
2.9 | −7.49445 | − | 0.986663i | −11.6059 | + | 8.90554i | 24.2837 | + | 6.50679i | 22.2947 | + | 45.2091i | 95.7668 | − | 55.2910i | −1.79553 | + | 0.117685i | 47.9061 | + | 19.8434i | −7.50421 | + | 28.0061i | −122.480 | − | 360.815i |
2.10 | −6.12833 | − | 0.806809i | −7.11727 | + | 5.46127i | 5.99580 | + | 1.60657i | 4.39771 | + | 8.91768i | 48.0231 | − | 27.7262i | −197.859 | + | 12.9684i | 147.294 | + | 61.0112i | −42.0630 | + | 156.981i | −19.7558 | − | 58.1986i |
2.11 | −6.12651 | − | 0.806570i | 18.8531 | − | 14.4665i | 5.97390 | + | 1.60070i | 26.2500 | + | 53.2298i | −127.172 | + | 73.4229i | −133.670 | + | 8.76122i | 147.380 | + | 61.0467i | 83.2676 | − | 310.759i | −117.887 | − | 347.285i |
2.12 | −5.19156 | − | 0.683482i | 10.2619 | − | 7.87425i | −4.42448 | − | 1.18554i | −24.1827 | − | 49.0377i | −58.6573 | + | 33.8658i | 206.724 | − | 13.5494i | 176.968 | + | 73.3026i | −19.5898 | + | 73.1102i | 92.0297 | + | 271.111i |
2.13 | −5.06084 | − | 0.666273i | −21.0211 | + | 16.1300i | −5.74140 | − | 1.53840i | −23.3379 | − | 47.3246i | 117.131 | − | 67.6258i | −58.3412 | + | 3.82388i | 178.942 | + | 74.1202i | 118.814 | − | 443.420i | 86.5785 | + | 255.052i |
2.14 | −4.28506 | − | 0.564138i | −6.71998 | + | 5.15642i | −12.8662 | − | 3.44748i | −11.0997 | − | 22.5080i | 31.7044 | − | 18.3046i | 112.717 | − | 7.38789i | 180.965 | + | 74.9580i | −44.3236 | + | 165.418i | 34.8653 | + | 102.710i |
2.15 | −2.71724 | − | 0.357732i | 15.5736 | − | 11.9500i | −23.6542 | − | 6.33812i | 10.9580 | + | 22.2205i | −46.5920 | + | 26.8999i | −98.7476 | + | 6.47226i | 143.033 | + | 59.2462i | 36.8398 | − | 137.488i | −21.8264 | − | 64.2986i |
2.16 | −2.56821 | − | 0.338112i | −21.4712 | + | 16.4754i | −24.4282 | − | 6.54552i | 17.9792 | + | 36.4583i | 60.7132 | − | 35.0528i | 206.320 | − | 13.5229i | 137.106 | + | 56.7912i | 126.680 | − | 472.776i | −33.8475 | − | 99.7116i |
2.17 | −2.36332 | − | 0.311137i | −8.69061 | + | 6.66854i | −25.4212 | − | 6.81158i | 45.5411 | + | 92.3482i | 22.6135 | − | 13.0559i | −92.9581 | + | 6.09280i | 128.431 | + | 53.1980i | −31.8358 | + | 118.813i | −78.8952 | − | 232.418i |
2.18 | −1.78422 | − | 0.234897i | 1.84682 | − | 1.41711i | −27.7814 | − | 7.44399i | −33.1729 | − | 67.2680i | −3.62800 | + | 2.09463i | −215.781 | + | 14.1431i | 101.024 | + | 41.8453i | −61.4905 | + | 229.486i | 43.3867 | + | 127.813i |
2.19 | −1.36295 | − | 0.179435i | 21.8908 | − | 16.7974i | −29.0842 | − | 7.79309i | −35.1195 | − | 71.2154i | −32.8500 | + | 18.9659i | 34.8614 | − | 2.28493i | 78.8838 | + | 32.6748i | 134.161 | − | 500.696i | 35.0875 | + | 103.364i |
2.20 | −0.366237 | − | 0.0482160i | 1.88695 | − | 1.44790i | −30.7778 | − | 8.24689i | 7.97879 | + | 16.1794i | −0.760881 | + | 0.439295i | 49.2297 | − | 3.22668i | 21.7952 | + | 9.02788i | −61.4289 | + | 229.256i | −2.14202 | − | 6.31018i |
See next 80 embeddings (of 640 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.k | even | 48 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.6.k.a | ✓ | 640 |
97.k | even | 48 | 1 | inner | 97.6.k.a | ✓ | 640 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.6.k.a | ✓ | 640 | 1.a | even | 1 | 1 | trivial |
97.6.k.a | ✓ | 640 | 97.k | even | 48 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(97, [\chi])\).