Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.h (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(15.5572305219\) |
Analytic rank: | \(0\) |
Dimension: | \(328\) |
Relative dimension: | \(41\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −10.3746 | − | 4.29730i | 7.95190 | + | 19.1976i | 66.5381 | + | 66.5381i | 44.7629 | + | 8.90389i | − | 233.339i | −154.075 | + | 30.6475i | −266.858 | − | 644.252i | −133.487 | + | 133.487i | −426.134 | − | 284.734i | |
8.2 | −9.61987 | − | 3.98468i | −10.1332 | − | 24.4637i | 54.0368 | + | 54.0368i | −13.8191 | − | 2.74879i | 275.715i | 241.835 | − | 48.1040i | −176.998 | − | 427.310i | −323.965 | + | 323.965i | 121.985 | + | 81.5078i | ||
8.3 | −9.56034 | − | 3.96002i | −5.31633 | − | 12.8347i | 53.0910 | + | 53.0910i | −37.9759 | − | 7.55388i | 143.757i | −181.921 | + | 36.1864i | −170.606 | − | 411.878i | 35.3595 | − | 35.3595i | 333.149 | + | 222.603i | ||
8.4 | −9.33488 | − | 3.86663i | 0.193073 | + | 0.466119i | 49.5617 | + | 49.5617i | 75.7581 | + | 15.0692i | − | 5.09771i | 191.198 | − | 38.0316i | −147.283 | − | 355.573i | 171.647 | − | 171.647i | −648.926 | − | 433.598i | |
8.5 | −8.98497 | − | 3.72170i | 3.74591 | + | 9.04342i | 44.2512 | + | 44.2512i | −100.004 | − | 19.8919i | − | 95.1960i | 89.3228 | − | 17.7674i | −113.812 | − | 274.767i | 104.075 | − | 104.075i | 824.497 | + | 550.912i | |
8.6 | −7.86145 | − | 3.25632i | 4.70878 | + | 11.3680i | 28.5714 | + | 28.5714i | 13.6132 | + | 2.70783i | − | 104.702i | 37.0219 | − | 7.36412i | −27.3726 | − | 66.0833i | 64.7683 | − | 64.7683i | −98.2018 | − | 65.6163i | |
8.7 | −7.73908 | − | 3.20563i | −6.81101 | − | 16.4432i | 26.9899 | + | 26.9899i | 82.5625 | + | 16.4227i | 149.089i | −93.3807 | + | 18.5746i | −19.7772 | − | 47.7464i | −52.1631 | + | 52.1631i | −586.313 | − | 391.762i | ||
8.8 | −7.30587 | − | 3.02619i | 10.8205 | + | 26.1229i | 21.5905 | + | 21.5905i | −32.3274 | − | 6.43032i | − | 223.595i | 18.1818 | − | 3.61659i | 4.43776 | + | 10.7137i | −393.496 | + | 393.496i | 216.720 | + | 144.808i | |
8.9 | −7.16917 | − | 2.96957i | −1.65377 | − | 3.99255i | 19.9513 | + | 19.9513i | −0.609800 | − | 0.121297i | 33.5343i | −24.6779 | + | 4.90875i | 11.2386 | + | 27.1324i | 158.621 | − | 158.621i | 4.01157 | + | 2.68044i | ||
8.10 | −5.84992 | − | 2.42311i | −8.52128 | − | 20.5722i | 5.72262 | + | 5.72262i | −63.8050 | − | 12.6916i | 140.994i | −3.31217 | + | 0.658832i | 57.9294 | + | 139.854i | −178.776 | + | 178.776i | 342.501 | + | 228.852i | ||
8.11 | −5.66080 | − | 2.34478i | 7.20400 | + | 17.3920i | 3.91928 | + | 3.91928i | 37.0679 | + | 7.37327i | − | 115.344i | −151.078 | + | 30.0512i | 62.0366 | + | 149.770i | −78.7570 | + | 78.7570i | −192.545 | − | 128.655i | |
8.12 | −4.42586 | − | 1.83325i | −3.76603 | − | 9.09200i | −6.39996 | − | 6.39996i | −8.96145 | − | 1.78254i | 47.1440i | 129.522 | − | 25.7635i | 75.2567 | + | 181.686i | 103.346 | − | 103.346i | 36.3943 | + | 24.3179i | ||
8.13 | −4.38334 | − | 1.81564i | 8.11822 | + | 19.5991i | −6.71026 | − | 6.71026i | 96.2593 | + | 19.1472i | − | 100.649i | 186.642 | − | 37.1253i | 75.3305 | + | 181.864i | −146.393 | + | 146.393i | −387.173 | − | 258.701i | |
8.14 | −3.88645 | − | 1.60982i | 2.98824 | + | 7.21424i | −10.1145 | − | 10.1145i | −78.1286 | − | 15.5408i | − | 32.8483i | −241.760 | + | 48.0891i | 74.5411 | + | 179.958i | 128.711 | − | 128.711i | 278.625 | + | 186.171i | |
8.15 | −3.63002 | − | 1.50360i | −10.5360 | − | 25.4361i | −11.7112 | − | 11.7112i | 61.6904 | + | 12.2710i | 108.175i | 65.0408 | − | 12.9374i | 73.0182 | + | 176.281i | −364.159 | + | 364.159i | −205.486 | − | 137.302i | ||
8.16 | −3.57640 | − | 1.48139i | 0.214320 | + | 0.517414i | −12.0313 | − | 12.0313i | −45.4532 | − | 9.04121i | − | 2.16797i | 213.862 | − | 42.5397i | 72.6102 | + | 175.297i | 171.605 | − | 171.605i | 149.165 | + | 99.6690i | |
8.17 | −2.69225 | − | 1.11517i | −0.00886495 | − | 0.0214019i | −16.6228 | − | 16.6228i | 72.8619 | + | 14.4931i | 0.0675052i | −105.323 | + | 20.9501i | 61.9009 | + | 149.442i | 171.827 | − | 171.827i | −180.000 | − | 120.272i | ||
8.18 | −1.58184 | − | 0.655221i | 9.22393 | + | 22.2685i | −20.5545 | − | 20.5545i | −72.2782 | − | 14.3770i | − | 41.2690i | 77.7079 | − | 15.4571i | 40.0133 | + | 96.6007i | −238.980 | + | 238.980i | 104.913 | + | 70.1004i | |
8.19 | −1.04174 | − | 0.431504i | −10.0554 | − | 24.2760i | −21.7284 | − | 21.7284i | −8.06889 | − | 1.60500i | 29.6283i | −208.217 | + | 41.4169i | 27.0676 | + | 65.3470i | −316.384 | + | 316.384i | 7.71315 | + | 5.15376i | ||
8.20 | −1.00943 | − | 0.418119i | −2.14107 | − | 5.16901i | −21.7833 | − | 21.7833i | 36.7237 | + | 7.30479i | 6.11297i | −35.3812 | + | 7.03776i | 26.2605 | + | 63.3984i | 149.693 | − | 149.693i | −34.0157 | − | 22.7285i | ||
See next 80 embeddings (of 328 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.h | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.6.h.a | ✓ | 328 |
97.h | even | 16 | 1 | inner | 97.6.h.a | ✓ | 328 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.6.h.a | ✓ | 328 | 1.a | even | 1 | 1 | trivial |
97.6.h.a | ✓ | 328 | 97.h | even | 16 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(97, [\chi])\).