Properties

Label 97.3.l.a
Level $97$
Weight $3$
Character orbit 97.l
Analytic conductor $2.643$
Analytic rank $0$
Dimension $480$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,3,Mod(5,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(96)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 97.l (of order \(96\), degree \(32\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.64305856429\)
Analytic rank: \(0\)
Dimension: \(480\)
Relative dimension: \(15\) over \(\Q(\zeta_{96})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{96}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 480 q - 32 q^{2} - 32 q^{3} - 32 q^{4} - 32 q^{5} - 32 q^{6} - 32 q^{7} - 32 q^{8} + 64 q^{9} - 32 q^{10} - 32 q^{11} - 224 q^{12} - 32 q^{13} - 32 q^{14} + 224 q^{15} - 32 q^{16} + 48 q^{17} - 32 q^{18}+ \cdots - 512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1 −1.65450 3.35499i −2.33421 + 2.66165i −6.08354 + 7.92822i 6.93452 + 0.227013i 12.7918 + 3.42754i −3.26636 5.25273i 21.9887 + 4.37383i −0.461140 3.50270i −10.7115 23.6408i
5.2 −1.40167 2.84231i 2.77755 3.16719i −3.67900 + 4.79457i −0.883234 0.0289141i −12.8954 3.45530i −2.96741 4.77199i 6.35145 + 1.26338i −1.14157 8.67110i 1.15582 + 2.55096i
5.3 −1.37439 2.78699i −0.762503 + 0.869468i −3.44331 + 4.48741i −5.14179 0.168325i 3.47117 + 0.930098i 3.28413 + 5.28130i 5.04784 + 1.00408i 1.00017 + 7.59706i 6.59770 + 14.5614i
5.4 −0.892161 1.80912i 1.10269 1.25737i −0.0419330 + 0.0546482i 9.36675 + 0.306636i −3.25852 0.873117i 2.51256 + 4.04053i −7.77728 1.54700i 0.809667 + 6.15003i −7.80191 17.2192i
5.5 −0.696622 1.41261i −3.05902 + 3.48815i 0.924862 1.20530i 0.338209 + 0.0110718i 7.05838 + 1.89129i −3.69079 5.93527i −8.52600 1.69593i −1.63482 12.4177i −0.219963 0.485470i
5.6 −0.390169 0.791184i −2.36070 + 2.69186i 1.96131 2.55602i 0.944383 + 0.0309159i 3.05082 + 0.817466i 5.11796 + 8.23036i −6.24836 1.24288i −0.498478 3.78632i −0.344009 0.759243i
5.7 −0.324869 0.658770i 0.314308 0.358400i 2.10661 2.74539i −9.68590 0.317084i −0.338212 0.0906237i −4.51165 7.25532i −5.37457 1.06907i 1.14507 + 8.69771i 2.93777 + 6.48379i
5.8 −0.294635 0.597460i 2.48200 2.83018i 2.16490 2.82135i −0.576421 0.0188701i −2.42220 0.649027i 1.69403 + 2.72423i −4.93693 0.982017i −0.674853 5.12602i 0.158559 + 0.349948i
5.9 0.353009 + 0.715832i −0.0724022 + 0.0825589i 2.04725 2.66802i 4.63816 + 0.151838i −0.0846570 0.0226838i −6.73702 10.8340i 5.76378 + 1.14649i 1.17316 + 8.91105i 1.52862 + 3.37374i
5.10 0.661299 + 1.34098i −0.943730 + 1.07612i 1.07413 1.39983i 3.07311 + 0.100603i −2.06714 0.553889i 2.69693 + 4.33701i 8.45325 + 1.68146i 0.907332 + 6.89187i 1.89734 + 4.18752i
5.11 0.846508 + 1.71655i −2.95510 + 3.36964i 0.205082 0.267268i −8.04921 0.263504i −8.28567 2.22014i −0.649793 1.04495i 8.14099 + 1.61934i −1.44715 10.9922i −6.36141 14.0399i
5.12 0.907123 + 1.83946i 2.64934 3.02099i −0.125706 + 0.163823i −3.20791 0.105016i 7.96027 + 2.13295i 1.56170 + 2.51141i 7.63088 + 1.51788i −0.932656 7.08423i −2.71680 5.99610i
5.13 1.42932 + 2.89837i −3.72788 + 4.25083i −3.92256 + 5.11198i 8.57096 + 0.280584i −17.6488 4.72899i −0.656059 1.05503i −7.74484 1.54054i −2.99775 22.7702i 11.4374 + 25.2429i
5.14 1.52675 + 3.09595i −0.360809 + 0.411424i −4.81886 + 6.28006i −3.75239 0.122840i −1.82461 0.488903i 0.812792 + 1.30708i −13.2575 2.63708i 1.13565 + 8.62611i −5.34866 11.8047i
5.15 1.53926 + 3.12131i 2.56943 2.92987i −4.93820 + 6.43558i 6.28191 + 0.205648i 13.1000 + 3.51014i −4.41226 7.09549i −14.0352 2.79178i −0.807446 6.13316i 9.02759 + 19.9243i
7.1 −3.72531 + 0.244169i 1.40357 4.13477i 9.85250 1.29711i 1.47402 + 2.37041i −4.21913 + 15.7460i 8.21761 + 0.269017i −21.7406 + 4.32448i −7.98615 6.12799i −6.06995 8.47060i
7.2 −3.50846 + 0.229957i −0.807400 + 2.37852i 8.29065 1.09148i −3.05573 4.91402i 2.28577 8.53062i −4.50388 0.147442i −15.0427 + 2.99218i 2.13470 + 1.63802i 11.8509 + 16.5380i
7.3 −2.91985 + 0.191377i −1.27371 + 3.75224i 4.52310 0.595478i 4.36164 + 7.01409i 3.00096 11.1997i 0.0597225 + 0.00195511i −1.61326 + 0.320898i −5.31678 4.07971i −14.0777 19.6453i
7.4 −2.57378 + 0.168694i 0.766859 2.25909i 2.63009 0.346257i −1.40224 2.25499i −1.59263 + 5.94377i −6.95923 0.227822i 3.40811 0.677915i 2.62474 + 2.01404i 3.98946 + 5.56729i
7.5 −1.75983 + 0.115345i 0.716397 2.11044i −0.882081 + 0.116128i 3.67912 + 5.91650i −1.01731 + 3.79665i −3.93366 0.128775i 8.45779 1.68236i 3.19945 + 2.45503i −7.15707 9.98768i
See next 80 embeddings (of 480 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.15
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
97.l odd 96 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 97.3.l.a 480
97.l odd 96 1 inner 97.3.l.a 480
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
97.3.l.a 480 1.a even 1 1 trivial
97.3.l.a 480 97.l odd 96 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(97, [\chi])\).