Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.l (of order \(96\), degree \(32\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.64305856429\) |
Analytic rank: | \(0\) |
Dimension: | \(480\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{96})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{96}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.65450 | − | 3.35499i | −2.33421 | + | 2.66165i | −6.08354 | + | 7.92822i | 6.93452 | + | 0.227013i | 12.7918 | + | 3.42754i | −3.26636 | − | 5.25273i | 21.9887 | + | 4.37383i | −0.461140 | − | 3.50270i | −10.7115 | − | 23.6408i |
5.2 | −1.40167 | − | 2.84231i | 2.77755 | − | 3.16719i | −3.67900 | + | 4.79457i | −0.883234 | − | 0.0289141i | −12.8954 | − | 3.45530i | −2.96741 | − | 4.77199i | 6.35145 | + | 1.26338i | −1.14157 | − | 8.67110i | 1.15582 | + | 2.55096i |
5.3 | −1.37439 | − | 2.78699i | −0.762503 | + | 0.869468i | −3.44331 | + | 4.48741i | −5.14179 | − | 0.168325i | 3.47117 | + | 0.930098i | 3.28413 | + | 5.28130i | 5.04784 | + | 1.00408i | 1.00017 | + | 7.59706i | 6.59770 | + | 14.5614i |
5.4 | −0.892161 | − | 1.80912i | 1.10269 | − | 1.25737i | −0.0419330 | + | 0.0546482i | 9.36675 | + | 0.306636i | −3.25852 | − | 0.873117i | 2.51256 | + | 4.04053i | −7.77728 | − | 1.54700i | 0.809667 | + | 6.15003i | −7.80191 | − | 17.2192i |
5.5 | −0.696622 | − | 1.41261i | −3.05902 | + | 3.48815i | 0.924862 | − | 1.20530i | 0.338209 | + | 0.0110718i | 7.05838 | + | 1.89129i | −3.69079 | − | 5.93527i | −8.52600 | − | 1.69593i | −1.63482 | − | 12.4177i | −0.219963 | − | 0.485470i |
5.6 | −0.390169 | − | 0.791184i | −2.36070 | + | 2.69186i | 1.96131 | − | 2.55602i | 0.944383 | + | 0.0309159i | 3.05082 | + | 0.817466i | 5.11796 | + | 8.23036i | −6.24836 | − | 1.24288i | −0.498478 | − | 3.78632i | −0.344009 | − | 0.759243i |
5.7 | −0.324869 | − | 0.658770i | 0.314308 | − | 0.358400i | 2.10661 | − | 2.74539i | −9.68590 | − | 0.317084i | −0.338212 | − | 0.0906237i | −4.51165 | − | 7.25532i | −5.37457 | − | 1.06907i | 1.14507 | + | 8.69771i | 2.93777 | + | 6.48379i |
5.8 | −0.294635 | − | 0.597460i | 2.48200 | − | 2.83018i | 2.16490 | − | 2.82135i | −0.576421 | − | 0.0188701i | −2.42220 | − | 0.649027i | 1.69403 | + | 2.72423i | −4.93693 | − | 0.982017i | −0.674853 | − | 5.12602i | 0.158559 | + | 0.349948i |
5.9 | 0.353009 | + | 0.715832i | −0.0724022 | + | 0.0825589i | 2.04725 | − | 2.66802i | 4.63816 | + | 0.151838i | −0.0846570 | − | 0.0226838i | −6.73702 | − | 10.8340i | 5.76378 | + | 1.14649i | 1.17316 | + | 8.91105i | 1.52862 | + | 3.37374i |
5.10 | 0.661299 | + | 1.34098i | −0.943730 | + | 1.07612i | 1.07413 | − | 1.39983i | 3.07311 | + | 0.100603i | −2.06714 | − | 0.553889i | 2.69693 | + | 4.33701i | 8.45325 | + | 1.68146i | 0.907332 | + | 6.89187i | 1.89734 | + | 4.18752i |
5.11 | 0.846508 | + | 1.71655i | −2.95510 | + | 3.36964i | 0.205082 | − | 0.267268i | −8.04921 | − | 0.263504i | −8.28567 | − | 2.22014i | −0.649793 | − | 1.04495i | 8.14099 | + | 1.61934i | −1.44715 | − | 10.9922i | −6.36141 | − | 14.0399i |
5.12 | 0.907123 | + | 1.83946i | 2.64934 | − | 3.02099i | −0.125706 | + | 0.163823i | −3.20791 | − | 0.105016i | 7.96027 | + | 2.13295i | 1.56170 | + | 2.51141i | 7.63088 | + | 1.51788i | −0.932656 | − | 7.08423i | −2.71680 | − | 5.99610i |
5.13 | 1.42932 | + | 2.89837i | −3.72788 | + | 4.25083i | −3.92256 | + | 5.11198i | 8.57096 | + | 0.280584i | −17.6488 | − | 4.72899i | −0.656059 | − | 1.05503i | −7.74484 | − | 1.54054i | −2.99775 | − | 22.7702i | 11.4374 | + | 25.2429i |
5.14 | 1.52675 | + | 3.09595i | −0.360809 | + | 0.411424i | −4.81886 | + | 6.28006i | −3.75239 | − | 0.122840i | −1.82461 | − | 0.488903i | 0.812792 | + | 1.30708i | −13.2575 | − | 2.63708i | 1.13565 | + | 8.62611i | −5.34866 | − | 11.8047i |
5.15 | 1.53926 | + | 3.12131i | 2.56943 | − | 2.92987i | −4.93820 | + | 6.43558i | 6.28191 | + | 0.205648i | 13.1000 | + | 3.51014i | −4.41226 | − | 7.09549i | −14.0352 | − | 2.79178i | −0.807446 | − | 6.13316i | 9.02759 | + | 19.9243i |
7.1 | −3.72531 | + | 0.244169i | 1.40357 | − | 4.13477i | 9.85250 | − | 1.29711i | 1.47402 | + | 2.37041i | −4.21913 | + | 15.7460i | 8.21761 | + | 0.269017i | −21.7406 | + | 4.32448i | −7.98615 | − | 6.12799i | −6.06995 | − | 8.47060i |
7.2 | −3.50846 | + | 0.229957i | −0.807400 | + | 2.37852i | 8.29065 | − | 1.09148i | −3.05573 | − | 4.91402i | 2.28577 | − | 8.53062i | −4.50388 | − | 0.147442i | −15.0427 | + | 2.99218i | 2.13470 | + | 1.63802i | 11.8509 | + | 16.5380i |
7.3 | −2.91985 | + | 0.191377i | −1.27371 | + | 3.75224i | 4.52310 | − | 0.595478i | 4.36164 | + | 7.01409i | 3.00096 | − | 11.1997i | 0.0597225 | + | 0.00195511i | −1.61326 | + | 0.320898i | −5.31678 | − | 4.07971i | −14.0777 | − | 19.6453i |
7.4 | −2.57378 | + | 0.168694i | 0.766859 | − | 2.25909i | 2.63009 | − | 0.346257i | −1.40224 | − | 2.25499i | −1.59263 | + | 5.94377i | −6.95923 | − | 0.227822i | 3.40811 | − | 0.677915i | 2.62474 | + | 2.01404i | 3.98946 | + | 5.56729i |
7.5 | −1.75983 | + | 0.115345i | 0.716397 | − | 2.11044i | −0.882081 | + | 0.116128i | 3.67912 | + | 5.91650i | −1.01731 | + | 3.79665i | −3.93366 | − | 0.128775i | 8.45779 | − | 1.68236i | 3.19945 | + | 2.45503i | −7.15707 | − | 9.98768i |
See next 80 embeddings (of 480 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.l | odd | 96 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.3.l.a | ✓ | 480 |
97.l | odd | 96 | 1 | inner | 97.3.l.a | ✓ | 480 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.3.l.a | ✓ | 480 | 1.a | even | 1 | 1 | trivial |
97.3.l.a | ✓ | 480 | 97.l | odd | 96 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(97, [\chi])\).