Newspace parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.k (of order \(48\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.774548899606\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{48})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −2.33073 | − | 0.306846i | 1.66551 | − | 1.27799i | 3.40628 | + | 0.912711i | −0.216411 | − | 0.438839i | −4.27401 | + | 2.46760i | 0.693387 | − | 0.0454470i | −3.31527 | − | 1.37323i | 0.364211 | − | 1.35925i | 0.369740 | + | 1.08922i |
2.2 | −1.89518 | − | 0.249505i | −2.35730 | + | 1.80882i | 1.59759 | + | 0.428074i | −1.17616 | − | 2.38503i | 4.91880 | − | 2.83987i | 3.87526 | − | 0.253998i | 0.611134 | + | 0.253140i | 1.50857 | − | 5.63005i | 1.63396 | + | 4.81350i |
2.3 | −1.80779 | − | 0.238000i | −0.513958 | + | 0.394374i | 1.27960 | + | 0.342867i | 0.489150 | + | 0.991897i | 1.02299 | − | 0.590622i | −4.46562 | + | 0.292692i | 1.13754 | + | 0.471184i | −0.667835 | + | 2.49239i | −0.648207 | − | 1.90956i |
2.4 | −0.256803 | − | 0.0338088i | 1.33735 | − | 1.02618i | −1.86705 | − | 0.500274i | −1.64618 | − | 3.33812i | −0.378130 | + | 0.218313i | 2.37756 | − | 0.155833i | 0.941155 | + | 0.389839i | −0.0410073 | + | 0.153041i | 0.309886 | + | 0.912895i |
2.5 | 0.158865 | + | 0.0209150i | 2.50677 | − | 1.92351i | −1.90705 | − | 0.510993i | 1.51248 | + | 3.06701i | 0.438469 | − | 0.253150i | −3.15644 | + | 0.206884i | −0.588355 | − | 0.243705i | 1.80753 | − | 6.74581i | 0.176134 | + | 0.518875i |
2.6 | 0.974068 | + | 0.128239i | −2.43883 | + | 1.87138i | −0.999488 | − | 0.267812i | 1.44759 | + | 2.93541i | −2.61557 | + | 1.51010i | 0.913554 | − | 0.0598775i | −2.75460 | − | 1.14099i | 1.66937 | − | 6.23016i | 1.03361 | + | 3.04493i |
2.7 | 1.54657 | + | 0.203610i | 0.230888 | − | 0.177167i | 0.418576 | + | 0.112157i | −0.0131102 | − | 0.0265848i | 0.393158 | − | 0.226990i | 1.08041 | − | 0.0708136i | −2.25783 | − | 0.935223i | −0.754536 | + | 2.81597i | −0.0148629 | − | 0.0437847i |
2.8 | 2.63651 | + | 0.347103i | −1.86483 | + | 1.43094i | 4.89884 | + | 1.31264i | −1.51150 | − | 3.06503i | −5.41333 | + | 3.12539i | −2.66138 | + | 0.174436i | 7.54655 | + | 3.12588i | 0.653567 | − | 2.43915i | −2.92121 | − | 8.60562i |
3.1 | −2.21047 | + | 1.69615i | 0.609046 | + | 0.0801824i | 1.49160 | − | 5.56674i | 1.61548 | − | 1.84211i | −1.48228 | + | 0.855794i | 1.15399 | − | 3.39953i | 4.01240 | + | 9.68680i | −2.53327 | − | 0.678788i | −0.446484 | + | 6.81203i |
3.2 | −1.42517 | + | 1.09357i | −0.384247 | − | 0.0505870i | 0.317569 | − | 1.18518i | −0.731341 | + | 0.833934i | 0.602936 | − | 0.348105i | −1.40879 | + | 4.15016i | −0.531401 | − | 1.28292i | −2.75269 | − | 0.737581i | 0.130318 | − | 1.98827i |
3.3 | −1.16349 | + | 0.892776i | 2.92924 | + | 0.385642i | 0.0390183 | − | 0.145618i | −2.02739 | + | 2.31179i | −3.75243 | + | 2.16647i | 0.992445 | − | 2.92365i | −1.03784 | − | 2.50556i | 5.53396 | + | 1.48282i | 0.294929 | − | 4.49974i |
3.4 | −1.03969 | + | 0.797785i | −3.02339 | − | 0.398037i | −0.0731357 | + | 0.272946i | 2.32750 | − | 2.65400i | 3.46095 | − | 1.99818i | 0.407692 | − | 1.20102i | −1.14473 | − | 2.76363i | 6.08467 | + | 1.63038i | −0.302561 | + | 4.61619i |
3.5 | 0.155906 | − | 0.119631i | −2.22857 | − | 0.293397i | −0.507643 | + | 1.89455i | −2.71257 | + | 3.09310i | −0.382548 | + | 0.220864i | 0.785965 | − | 2.31538i | 0.297909 | + | 0.719216i | 1.98267 | + | 0.531254i | −0.0528766 | + | 0.806742i |
3.6 | 0.197369 | − | 0.151447i | 1.11099 | + | 0.146265i | −0.501620 | + | 1.87207i | 0.732298 | − | 0.835026i | 0.241427 | − | 0.139388i | −0.0793805 | + | 0.233847i | 0.374922 | + | 0.905141i | −1.68487 | − | 0.451459i | 0.0180712 | − | 0.275713i |
3.7 | 1.49285 | − | 1.14550i | −1.49507 | − | 0.196829i | 0.398779 | − | 1.48827i | 1.59493 | − | 1.81867i | −2.45738 | + | 1.41877i | 0.0473419 | − | 0.139465i | 0.330691 | + | 0.798360i | −0.701291 | − | 0.187910i | 0.297698 | − | 4.54199i |
3.8 | 1.94052 | − | 1.48902i | 0.232841 | + | 0.0306541i | 1.03083 | − | 3.84709i | −2.33385 | + | 2.66124i | 0.497478 | − | 0.287219i | −0.782817 | + | 2.30610i | −1.85597 | − | 4.48072i | −2.84450 | − | 0.762182i | −0.566253 | + | 8.63935i |
11.1 | −0.335606 | − | 2.54918i | −1.83458 | + | 2.39087i | −4.45382 | + | 1.19340i | −2.15137 | + | 0.730293i | 6.71043 | + | 3.87427i | −0.179816 | + | 0.157694i | 2.56902 | + | 6.20217i | −1.57411 | − | 5.87467i | 2.58366 | + | 5.23914i |
11.2 | −0.294083 | − | 2.23378i | 0.644162 | − | 0.839488i | −2.97146 | + | 0.796200i | 3.40291 | − | 1.15513i | −2.06467 | − | 1.19204i | −3.05237 | + | 2.67686i | 0.927978 | + | 2.24034i | 0.486661 | + | 1.81625i | −3.58106 | − | 7.26167i |
11.3 | −0.129856 | − | 0.986358i | −0.567607 | + | 0.739719i | 0.975813 | − | 0.261468i | 0.354879 | − | 0.120465i | 0.803335 | + | 0.463806i | 1.84879 | − | 1.62135i | −1.14606 | − | 2.76683i | 0.551450 | + | 2.05804i | −0.164905 | − | 0.334394i |
11.4 | −0.0400576 | − | 0.304268i | 1.22544 | − | 1.59703i | 1.84088 | − | 0.493262i | −2.23081 | + | 0.757256i | −0.535013 | − | 0.308890i | −1.44599 | + | 1.26810i | −0.458710 | − | 1.10743i | −0.272333 | − | 1.01636i | 0.319769 | + | 0.648428i |
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
97.k | even | 48 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 97.2.k.a | ✓ | 128 |
3.b | odd | 2 | 1 | 873.2.bu.d | 128 | ||
97.k | even | 48 | 1 | inner | 97.2.k.a | ✓ | 128 |
97.l | odd | 96 | 2 | 9409.2.a.o | 128 | ||
291.v | odd | 48 | 1 | 873.2.bu.d | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
97.2.k.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
97.2.k.a | ✓ | 128 | 97.k | even | 48 | 1 | inner |
873.2.bu.d | 128 | 3.b | odd | 2 | 1 | ||
873.2.bu.d | 128 | 291.v | odd | 48 | 1 | ||
9409.2.a.o | 128 | 97.l | odd | 96 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(97, [\chi])\).