Properties

Label 9680.2.a.cv.1.3
Level $9680$
Weight $2$
Character 9680.1
Self dual yes
Analytic conductor $77.295$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9680,2,Mod(1,9680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9680.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,4,0,11,0,0,0,0,0,-7,0,2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2525.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.77748\) of defining polynomial
Character \(\chi\) \(=\) 9680.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.77748 q^{3} +1.00000 q^{5} +4.25800 q^{7} +0.159450 q^{9} -1.36004 q^{13} +1.77748 q^{15} -2.09855 q^{17} +0.604482 q^{19} +7.56852 q^{21} +4.39768 q^{23} +1.00000 q^{25} -5.04903 q^{27} +6.63159 q^{29} +2.19493 q^{31} +4.25800 q^{35} +6.16951 q^{37} -2.41745 q^{39} -7.40557 q^{41} +12.6671 q^{43} +0.159450 q^{45} +3.07446 q^{47} +11.1305 q^{49} -3.73013 q^{51} -6.65351 q^{53} +1.07446 q^{57} -12.0372 q^{59} +5.68899 q^{61} +0.678939 q^{63} -1.36004 q^{65} -9.86416 q^{67} +7.81681 q^{69} +5.23879 q^{71} +0.722795 q^{73} +1.77748 q^{75} +5.67056 q^{79} -9.45293 q^{81} -0.952648 q^{83} -2.09855 q^{85} +11.7875 q^{87} +1.24095 q^{89} -5.79104 q^{91} +3.90145 q^{93} +0.604482 q^{95} +11.5431 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{5} + 11 q^{7} - 7 q^{13} + 2 q^{15} - 3 q^{17} + 12 q^{19} + 6 q^{21} + 9 q^{23} + 4 q^{25} + 5 q^{27} + 8 q^{29} - 3 q^{31} + 11 q^{35} - 3 q^{37} - 3 q^{39} + 7 q^{41} + 21 q^{43}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.77748 1.02623 0.513116 0.858320i \(-0.328491\pi\)
0.513116 + 0.858320i \(0.328491\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.25800 1.60937 0.804686 0.593701i \(-0.202334\pi\)
0.804686 + 0.593701i \(0.202334\pi\)
\(8\) 0 0
\(9\) 0.159450 0.0531501
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.36004 −0.377207 −0.188603 0.982053i \(-0.560396\pi\)
−0.188603 + 0.982053i \(0.560396\pi\)
\(14\) 0 0
\(15\) 1.77748 0.458944
\(16\) 0 0
\(17\) −2.09855 −0.508972 −0.254486 0.967076i \(-0.581906\pi\)
−0.254486 + 0.967076i \(0.581906\pi\)
\(18\) 0 0
\(19\) 0.604482 0.138678 0.0693388 0.997593i \(-0.477911\pi\)
0.0693388 + 0.997593i \(0.477911\pi\)
\(20\) 0 0
\(21\) 7.56852 1.65159
\(22\) 0 0
\(23\) 4.39768 0.916979 0.458490 0.888700i \(-0.348391\pi\)
0.458490 + 0.888700i \(0.348391\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.04903 −0.971687
\(28\) 0 0
\(29\) 6.63159 1.23145 0.615727 0.787959i \(-0.288862\pi\)
0.615727 + 0.787959i \(0.288862\pi\)
\(30\) 0 0
\(31\) 2.19493 0.394221 0.197111 0.980381i \(-0.436844\pi\)
0.197111 + 0.980381i \(0.436844\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.25800 0.719733
\(36\) 0 0
\(37\) 6.16951 1.01426 0.507130 0.861869i \(-0.330706\pi\)
0.507130 + 0.861869i \(0.330706\pi\)
\(38\) 0 0
\(39\) −2.41745 −0.387101
\(40\) 0 0
\(41\) −7.40557 −1.15656 −0.578278 0.815840i \(-0.696275\pi\)
−0.578278 + 0.815840i \(0.696275\pi\)
\(42\) 0 0
\(43\) 12.6671 1.93171 0.965855 0.259084i \(-0.0834207\pi\)
0.965855 + 0.259084i \(0.0834207\pi\)
\(44\) 0 0
\(45\) 0.159450 0.0237694
\(46\) 0 0
\(47\) 3.07446 0.448456 0.224228 0.974537i \(-0.428014\pi\)
0.224228 + 0.974537i \(0.428014\pi\)
\(48\) 0 0
\(49\) 11.1305 1.59008
\(50\) 0 0
\(51\) −3.73013 −0.522323
\(52\) 0 0
\(53\) −6.65351 −0.913930 −0.456965 0.889485i \(-0.651064\pi\)
−0.456965 + 0.889485i \(0.651064\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.07446 0.142315
\(58\) 0 0
\(59\) −12.0372 −1.56710 −0.783552 0.621326i \(-0.786594\pi\)
−0.783552 + 0.621326i \(0.786594\pi\)
\(60\) 0 0
\(61\) 5.68899 0.728401 0.364201 0.931321i \(-0.381342\pi\)
0.364201 + 0.931321i \(0.381342\pi\)
\(62\) 0 0
\(63\) 0.678939 0.0855382
\(64\) 0 0
\(65\) −1.36004 −0.168692
\(66\) 0 0
\(67\) −9.86416 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(68\) 0 0
\(69\) 7.81681 0.941033
\(70\) 0 0
\(71\) 5.23879 0.621730 0.310865 0.950454i \(-0.399381\pi\)
0.310865 + 0.950454i \(0.399381\pi\)
\(72\) 0 0
\(73\) 0.722795 0.0845967 0.0422983 0.999105i \(-0.486532\pi\)
0.0422983 + 0.999105i \(0.486532\pi\)
\(74\) 0 0
\(75\) 1.77748 0.205246
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.67056 0.637988 0.318994 0.947757i \(-0.396655\pi\)
0.318994 + 0.947757i \(0.396655\pi\)
\(80\) 0 0
\(81\) −9.45293 −1.05033
\(82\) 0 0
\(83\) −0.952648 −0.104567 −0.0522833 0.998632i \(-0.516650\pi\)
−0.0522833 + 0.998632i \(0.516650\pi\)
\(84\) 0 0
\(85\) −2.09855 −0.227619
\(86\) 0 0
\(87\) 11.7875 1.26376
\(88\) 0 0
\(89\) 1.24095 0.131540 0.0657701 0.997835i \(-0.479050\pi\)
0.0657701 + 0.997835i \(0.479050\pi\)
\(90\) 0 0
\(91\) −5.79104 −0.607066
\(92\) 0 0
\(93\) 3.90145 0.404562
\(94\) 0 0
\(95\) 0.604482 0.0620185
\(96\) 0 0
\(97\) 11.5431 1.17202 0.586012 0.810302i \(-0.300697\pi\)
0.586012 + 0.810302i \(0.300697\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.80675 −0.279282 −0.139641 0.990202i \(-0.544595\pi\)
−0.139641 + 0.990202i \(0.544595\pi\)
\(102\) 0 0
\(103\) 0.406055 0.0400098 0.0200049 0.999800i \(-0.493632\pi\)
0.0200049 + 0.999800i \(0.493632\pi\)
\(104\) 0 0
\(105\) 7.56852 0.738612
\(106\) 0 0
\(107\) 15.3985 1.48863 0.744316 0.667827i \(-0.232776\pi\)
0.744316 + 0.667827i \(0.232776\pi\)
\(108\) 0 0
\(109\) 3.07312 0.294352 0.147176 0.989110i \(-0.452982\pi\)
0.147176 + 0.989110i \(0.452982\pi\)
\(110\) 0 0
\(111\) 10.9662 1.04087
\(112\) 0 0
\(113\) −11.2646 −1.05968 −0.529840 0.848098i \(-0.677748\pi\)
−0.529840 + 0.848098i \(0.677748\pi\)
\(114\) 0 0
\(115\) 4.39768 0.410086
\(116\) 0 0
\(117\) −0.216858 −0.0200486
\(118\) 0 0
\(119\) −8.93560 −0.819125
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −13.1633 −1.18689
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.113136 0.0100392 0.00501961 0.999987i \(-0.498402\pi\)
0.00501961 + 0.999987i \(0.498402\pi\)
\(128\) 0 0
\(129\) 22.5155 1.98238
\(130\) 0 0
\(131\) 0.474297 0.0414395 0.0207198 0.999785i \(-0.493404\pi\)
0.0207198 + 0.999785i \(0.493404\pi\)
\(132\) 0 0
\(133\) 2.57388 0.223184
\(134\) 0 0
\(135\) −5.04903 −0.434552
\(136\) 0 0
\(137\) −0.868693 −0.0742174 −0.0371087 0.999311i \(-0.511815\pi\)
−0.0371087 + 0.999311i \(0.511815\pi\)
\(138\) 0 0
\(139\) 19.3894 1.64459 0.822293 0.569065i \(-0.192695\pi\)
0.822293 + 0.569065i \(0.192695\pi\)
\(140\) 0 0
\(141\) 5.46480 0.460219
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.63159 0.550723
\(146\) 0 0
\(147\) 19.7843 1.63178
\(148\) 0 0
\(149\) 1.11258 0.0911460 0.0455730 0.998961i \(-0.485489\pi\)
0.0455730 + 0.998961i \(0.485489\pi\)
\(150\) 0 0
\(151\) 5.69465 0.463424 0.231712 0.972784i \(-0.425567\pi\)
0.231712 + 0.972784i \(0.425567\pi\)
\(152\) 0 0
\(153\) −0.334614 −0.0270519
\(154\) 0 0
\(155\) 2.19493 0.176301
\(156\) 0 0
\(157\) 1.04114 0.0830918 0.0415459 0.999137i \(-0.486772\pi\)
0.0415459 + 0.999137i \(0.486772\pi\)
\(158\) 0 0
\(159\) −11.8265 −0.937904
\(160\) 0 0
\(161\) 18.7253 1.47576
\(162\) 0 0
\(163\) 12.9115 1.01131 0.505654 0.862737i \(-0.331251\pi\)
0.505654 + 0.862737i \(0.331251\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.22601 0.327019 0.163509 0.986542i \(-0.447719\pi\)
0.163509 + 0.986542i \(0.447719\pi\)
\(168\) 0 0
\(169\) −11.1503 −0.857715
\(170\) 0 0
\(171\) 0.0963848 0.00737073
\(172\) 0 0
\(173\) −1.34571 −0.102312 −0.0511561 0.998691i \(-0.516291\pi\)
−0.0511561 + 0.998691i \(0.516291\pi\)
\(174\) 0 0
\(175\) 4.25800 0.321874
\(176\) 0 0
\(177\) −21.3959 −1.60821
\(178\) 0 0
\(179\) −12.4288 −0.928975 −0.464487 0.885580i \(-0.653761\pi\)
−0.464487 + 0.885580i \(0.653761\pi\)
\(180\) 0 0
\(181\) 17.3092 1.28658 0.643291 0.765622i \(-0.277569\pi\)
0.643291 + 0.765622i \(0.277569\pi\)
\(182\) 0 0
\(183\) 10.1121 0.747508
\(184\) 0 0
\(185\) 6.16951 0.453591
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −21.4988 −1.56380
\(190\) 0 0
\(191\) 19.6503 1.42185 0.710923 0.703269i \(-0.248277\pi\)
0.710923 + 0.703269i \(0.248277\pi\)
\(192\) 0 0
\(193\) −10.1616 −0.731449 −0.365724 0.930723i \(-0.619179\pi\)
−0.365724 + 0.930723i \(0.619179\pi\)
\(194\) 0 0
\(195\) −2.41745 −0.173117
\(196\) 0 0
\(197\) 8.45375 0.602305 0.301152 0.953576i \(-0.402629\pi\)
0.301152 + 0.953576i \(0.402629\pi\)
\(198\) 0 0
\(199\) 6.51033 0.461505 0.230753 0.973012i \(-0.425881\pi\)
0.230753 + 0.973012i \(0.425881\pi\)
\(200\) 0 0
\(201\) −17.5334 −1.23671
\(202\) 0 0
\(203\) 28.2373 1.98187
\(204\) 0 0
\(205\) −7.40557 −0.517228
\(206\) 0 0
\(207\) 0.701211 0.0487375
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.01403 0.276337 0.138169 0.990409i \(-0.455878\pi\)
0.138169 + 0.990409i \(0.455878\pi\)
\(212\) 0 0
\(213\) 9.31186 0.638038
\(214\) 0 0
\(215\) 12.6671 0.863887
\(216\) 0 0
\(217\) 9.34600 0.634448
\(218\) 0 0
\(219\) 1.28476 0.0868158
\(220\) 0 0
\(221\) 2.85410 0.191988
\(222\) 0 0
\(223\) −15.3070 −1.02503 −0.512517 0.858677i \(-0.671287\pi\)
−0.512517 + 0.858677i \(0.671287\pi\)
\(224\) 0 0
\(225\) 0.159450 0.0106300
\(226\) 0 0
\(227\) 11.5019 0.763407 0.381703 0.924285i \(-0.375338\pi\)
0.381703 + 0.924285i \(0.375338\pi\)
\(228\) 0 0
\(229\) −27.5272 −1.81905 −0.909523 0.415653i \(-0.863553\pi\)
−0.909523 + 0.415653i \(0.863553\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.20227 −0.602861 −0.301430 0.953488i \(-0.597464\pi\)
−0.301430 + 0.953488i \(0.597464\pi\)
\(234\) 0 0
\(235\) 3.07446 0.200555
\(236\) 0 0
\(237\) 10.0793 0.654723
\(238\) 0 0
\(239\) 12.6560 0.818647 0.409323 0.912389i \(-0.365765\pi\)
0.409323 + 0.912389i \(0.365765\pi\)
\(240\) 0 0
\(241\) −7.33167 −0.472275 −0.236137 0.971720i \(-0.575882\pi\)
−0.236137 + 0.971720i \(0.575882\pi\)
\(242\) 0 0
\(243\) −1.65533 −0.106190
\(244\) 0 0
\(245\) 11.1305 0.711103
\(246\) 0 0
\(247\) −0.822118 −0.0523101
\(248\) 0 0
\(249\) −1.69332 −0.107310
\(250\) 0 0
\(251\) −31.2579 −1.97298 −0.986489 0.163826i \(-0.947617\pi\)
−0.986489 + 0.163826i \(0.947617\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.73013 −0.233590
\(256\) 0 0
\(257\) −8.32028 −0.519005 −0.259503 0.965742i \(-0.583559\pi\)
−0.259503 + 0.965742i \(0.583559\pi\)
\(258\) 0 0
\(259\) 26.2697 1.63232
\(260\) 0 0
\(261\) 1.05741 0.0654519
\(262\) 0 0
\(263\) −2.87171 −0.177077 −0.0885386 0.996073i \(-0.528220\pi\)
−0.0885386 + 0.996073i \(0.528220\pi\)
\(264\) 0 0
\(265\) −6.65351 −0.408722
\(266\) 0 0
\(267\) 2.20576 0.134991
\(268\) 0 0
\(269\) −0.123970 −0.00755859 −0.00377929 0.999993i \(-0.501203\pi\)
−0.00377929 + 0.999993i \(0.501203\pi\)
\(270\) 0 0
\(271\) −17.0328 −1.03467 −0.517336 0.855783i \(-0.673076\pi\)
−0.517336 + 0.855783i \(0.673076\pi\)
\(272\) 0 0
\(273\) −10.2935 −0.622990
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −22.7411 −1.36638 −0.683190 0.730241i \(-0.739408\pi\)
−0.683190 + 0.730241i \(0.739408\pi\)
\(278\) 0 0
\(279\) 0.349982 0.0209529
\(280\) 0 0
\(281\) 12.9499 0.772528 0.386264 0.922388i \(-0.373765\pi\)
0.386264 + 0.922388i \(0.373765\pi\)
\(282\) 0 0
\(283\) 15.8178 0.940273 0.470137 0.882594i \(-0.344205\pi\)
0.470137 + 0.882594i \(0.344205\pi\)
\(284\) 0 0
\(285\) 1.07446 0.0636453
\(286\) 0 0
\(287\) −31.5329 −1.86133
\(288\) 0 0
\(289\) −12.5961 −0.740947
\(290\) 0 0
\(291\) 20.5177 1.20277
\(292\) 0 0
\(293\) 24.9306 1.45646 0.728230 0.685333i \(-0.240343\pi\)
0.728230 + 0.685333i \(0.240343\pi\)
\(294\) 0 0
\(295\) −12.0372 −0.700831
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.98101 −0.345891
\(300\) 0 0
\(301\) 53.9363 3.10884
\(302\) 0 0
\(303\) −4.98895 −0.286608
\(304\) 0 0
\(305\) 5.68899 0.325751
\(306\) 0 0
\(307\) −4.95566 −0.282835 −0.141417 0.989950i \(-0.545166\pi\)
−0.141417 + 0.989950i \(0.545166\pi\)
\(308\) 0 0
\(309\) 0.721756 0.0410593
\(310\) 0 0
\(311\) 9.59477 0.544070 0.272035 0.962287i \(-0.412303\pi\)
0.272035 + 0.962287i \(0.412303\pi\)
\(312\) 0 0
\(313\) −26.9858 −1.52533 −0.762665 0.646794i \(-0.776109\pi\)
−0.762665 + 0.646794i \(0.776109\pi\)
\(314\) 0 0
\(315\) 0.678939 0.0382539
\(316\) 0 0
\(317\) −14.2207 −0.798714 −0.399357 0.916795i \(-0.630767\pi\)
−0.399357 + 0.916795i \(0.630767\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 27.3707 1.52768
\(322\) 0 0
\(323\) −1.26853 −0.0705830
\(324\) 0 0
\(325\) −1.36004 −0.0754413
\(326\) 0 0
\(327\) 5.46242 0.302073
\(328\) 0 0
\(329\) 13.0910 0.721732
\(330\) 0 0
\(331\) 8.55985 0.470492 0.235246 0.971936i \(-0.424410\pi\)
0.235246 + 0.971936i \(0.424410\pi\)
\(332\) 0 0
\(333\) 0.983729 0.0539080
\(334\) 0 0
\(335\) −9.86416 −0.538937
\(336\) 0 0
\(337\) 15.6841 0.854368 0.427184 0.904165i \(-0.359506\pi\)
0.427184 + 0.904165i \(0.359506\pi\)
\(338\) 0 0
\(339\) −20.0226 −1.08748
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.5878 0.949651
\(344\) 0 0
\(345\) 7.81681 0.420843
\(346\) 0 0
\(347\) 7.45509 0.400210 0.200105 0.979774i \(-0.435872\pi\)
0.200105 + 0.979774i \(0.435872\pi\)
\(348\) 0 0
\(349\) 30.4733 1.63120 0.815600 0.578616i \(-0.196407\pi\)
0.815600 + 0.578616i \(0.196407\pi\)
\(350\) 0 0
\(351\) 6.86688 0.366527
\(352\) 0 0
\(353\) −17.5379 −0.933449 −0.466725 0.884403i \(-0.654566\pi\)
−0.466725 + 0.884403i \(0.654566\pi\)
\(354\) 0 0
\(355\) 5.23879 0.278046
\(356\) 0 0
\(357\) −15.8829 −0.840611
\(358\) 0 0
\(359\) −3.00432 −0.158562 −0.0792810 0.996852i \(-0.525262\pi\)
−0.0792810 + 0.996852i \(0.525262\pi\)
\(360\) 0 0
\(361\) −18.6346 −0.980769
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.722795 0.0378328
\(366\) 0 0
\(367\) −6.18319 −0.322760 −0.161380 0.986892i \(-0.551594\pi\)
−0.161380 + 0.986892i \(0.551594\pi\)
\(368\) 0 0
\(369\) −1.18082 −0.0614711
\(370\) 0 0
\(371\) −28.3306 −1.47085
\(372\) 0 0
\(373\) −20.8707 −1.08064 −0.540321 0.841459i \(-0.681697\pi\)
−0.540321 + 0.841459i \(0.681697\pi\)
\(374\) 0 0
\(375\) 1.77748 0.0917889
\(376\) 0 0
\(377\) −9.01921 −0.464513
\(378\) 0 0
\(379\) 2.46424 0.126580 0.0632898 0.997995i \(-0.479841\pi\)
0.0632898 + 0.997995i \(0.479841\pi\)
\(380\) 0 0
\(381\) 0.201098 0.0103026
\(382\) 0 0
\(383\) −17.2036 −0.879063 −0.439532 0.898227i \(-0.644856\pi\)
−0.439532 + 0.898227i \(0.644856\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.01977 0.102671
\(388\) 0 0
\(389\) −18.0548 −0.915413 −0.457706 0.889103i \(-0.651329\pi\)
−0.457706 + 0.889103i \(0.651329\pi\)
\(390\) 0 0
\(391\) −9.22873 −0.466717
\(392\) 0 0
\(393\) 0.843055 0.0425265
\(394\) 0 0
\(395\) 5.67056 0.285317
\(396\) 0 0
\(397\) −16.7432 −0.840317 −0.420159 0.907451i \(-0.638026\pi\)
−0.420159 + 0.907451i \(0.638026\pi\)
\(398\) 0 0
\(399\) 4.57503 0.229038
\(400\) 0 0
\(401\) 28.9395 1.44517 0.722584 0.691283i \(-0.242954\pi\)
0.722584 + 0.691283i \(0.242954\pi\)
\(402\) 0 0
\(403\) −2.98519 −0.148703
\(404\) 0 0
\(405\) −9.45293 −0.469720
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 29.8733 1.47714 0.738569 0.674178i \(-0.235502\pi\)
0.738569 + 0.674178i \(0.235502\pi\)
\(410\) 0 0
\(411\) −1.54409 −0.0761642
\(412\) 0 0
\(413\) −51.2542 −2.52205
\(414\) 0 0
\(415\) −0.952648 −0.0467636
\(416\) 0 0
\(417\) 34.4643 1.68772
\(418\) 0 0
\(419\) 8.29831 0.405399 0.202699 0.979241i \(-0.435029\pi\)
0.202699 + 0.979241i \(0.435029\pi\)
\(420\) 0 0
\(421\) −22.8672 −1.11448 −0.557239 0.830352i \(-0.688139\pi\)
−0.557239 + 0.830352i \(0.688139\pi\)
\(422\) 0 0
\(423\) 0.490223 0.0238355
\(424\) 0 0
\(425\) −2.09855 −0.101794
\(426\) 0 0
\(427\) 24.2237 1.17227
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.3617 −0.980789 −0.490395 0.871500i \(-0.663147\pi\)
−0.490395 + 0.871500i \(0.663147\pi\)
\(432\) 0 0
\(433\) 21.3889 1.02788 0.513942 0.857825i \(-0.328185\pi\)
0.513942 + 0.857825i \(0.328185\pi\)
\(434\) 0 0
\(435\) 11.7875 0.565169
\(436\) 0 0
\(437\) 2.65832 0.127165
\(438\) 0 0
\(439\) −35.2311 −1.68149 −0.840744 0.541432i \(-0.817882\pi\)
−0.840744 + 0.541432i \(0.817882\pi\)
\(440\) 0 0
\(441\) 1.77477 0.0845127
\(442\) 0 0
\(443\) −23.2623 −1.10523 −0.552613 0.833438i \(-0.686369\pi\)
−0.552613 + 0.833438i \(0.686369\pi\)
\(444\) 0 0
\(445\) 1.24095 0.0588265
\(446\) 0 0
\(447\) 1.97759 0.0935369
\(448\) 0 0
\(449\) 24.8518 1.17283 0.586415 0.810011i \(-0.300539\pi\)
0.586415 + 0.810011i \(0.300539\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 10.1222 0.475580
\(454\) 0 0
\(455\) −5.79104 −0.271488
\(456\) 0 0
\(457\) −5.90831 −0.276379 −0.138190 0.990406i \(-0.544128\pi\)
−0.138190 + 0.990406i \(0.544128\pi\)
\(458\) 0 0
\(459\) 10.5956 0.494561
\(460\) 0 0
\(461\) 17.3587 0.808475 0.404238 0.914654i \(-0.367537\pi\)
0.404238 + 0.914654i \(0.367537\pi\)
\(462\) 0 0
\(463\) −34.6937 −1.61235 −0.806176 0.591675i \(-0.798467\pi\)
−0.806176 + 0.591675i \(0.798467\pi\)
\(464\) 0 0
\(465\) 3.90145 0.180926
\(466\) 0 0
\(467\) −9.16601 −0.424152 −0.212076 0.977253i \(-0.568022\pi\)
−0.212076 + 0.977253i \(0.568022\pi\)
\(468\) 0 0
\(469\) −42.0015 −1.93945
\(470\) 0 0
\(471\) 1.85061 0.0852714
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.604482 0.0277355
\(476\) 0 0
\(477\) −1.06090 −0.0485755
\(478\) 0 0
\(479\) −40.8320 −1.86566 −0.932831 0.360315i \(-0.882669\pi\)
−0.932831 + 0.360315i \(0.882669\pi\)
\(480\) 0 0
\(481\) −8.39076 −0.382586
\(482\) 0 0
\(483\) 33.2839 1.51447
\(484\) 0 0
\(485\) 11.5431 0.524145
\(486\) 0 0
\(487\) 26.1598 1.18541 0.592707 0.805418i \(-0.298059\pi\)
0.592707 + 0.805418i \(0.298059\pi\)
\(488\) 0 0
\(489\) 22.9500 1.03784
\(490\) 0 0
\(491\) 23.0012 1.03803 0.519015 0.854765i \(-0.326299\pi\)
0.519015 + 0.854765i \(0.326299\pi\)
\(492\) 0 0
\(493\) −13.9167 −0.626776
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.3067 1.00059
\(498\) 0 0
\(499\) 26.2140 1.17350 0.586750 0.809768i \(-0.300407\pi\)
0.586750 + 0.809768i \(0.300407\pi\)
\(500\) 0 0
\(501\) 7.51167 0.335597
\(502\) 0 0
\(503\) 1.68460 0.0751124 0.0375562 0.999295i \(-0.488043\pi\)
0.0375562 + 0.999295i \(0.488043\pi\)
\(504\) 0 0
\(505\) −2.80675 −0.124899
\(506\) 0 0
\(507\) −19.8195 −0.880214
\(508\) 0 0
\(509\) 17.8483 0.791112 0.395556 0.918442i \(-0.370552\pi\)
0.395556 + 0.918442i \(0.370552\pi\)
\(510\) 0 0
\(511\) 3.07766 0.136147
\(512\) 0 0
\(513\) −3.05205 −0.134751
\(514\) 0 0
\(515\) 0.406055 0.0178929
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.39197 −0.104996
\(520\) 0 0
\(521\) −9.54339 −0.418104 −0.209052 0.977905i \(-0.567038\pi\)
−0.209052 + 0.977905i \(0.567038\pi\)
\(522\) 0 0
\(523\) −21.7454 −0.950862 −0.475431 0.879753i \(-0.657708\pi\)
−0.475431 + 0.879753i \(0.657708\pi\)
\(524\) 0 0
\(525\) 7.56852 0.330317
\(526\) 0 0
\(527\) −4.60616 −0.200648
\(528\) 0 0
\(529\) −3.66042 −0.159149
\(530\) 0 0
\(531\) −1.91933 −0.0832918
\(532\) 0 0
\(533\) 10.0719 0.436261
\(534\) 0 0
\(535\) 15.3985 0.665737
\(536\) 0 0
\(537\) −22.0921 −0.953343
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −13.4876 −0.579876 −0.289938 0.957045i \(-0.593635\pi\)
−0.289938 + 0.957045i \(0.593635\pi\)
\(542\) 0 0
\(543\) 30.7668 1.32033
\(544\) 0 0
\(545\) 3.07312 0.131638
\(546\) 0 0
\(547\) −24.4217 −1.04419 −0.522097 0.852886i \(-0.674850\pi\)
−0.522097 + 0.852886i \(0.674850\pi\)
\(548\) 0 0
\(549\) 0.907112 0.0387146
\(550\) 0 0
\(551\) 4.00867 0.170775
\(552\) 0 0
\(553\) 24.1452 1.02676
\(554\) 0 0
\(555\) 10.9662 0.465489
\(556\) 0 0
\(557\) 25.7940 1.09293 0.546464 0.837483i \(-0.315974\pi\)
0.546464 + 0.837483i \(0.315974\pi\)
\(558\) 0 0
\(559\) −17.2277 −0.728654
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −40.3703 −1.70140 −0.850702 0.525649i \(-0.823823\pi\)
−0.850702 + 0.525649i \(0.823823\pi\)
\(564\) 0 0
\(565\) −11.2646 −0.473903
\(566\) 0 0
\(567\) −40.2505 −1.69036
\(568\) 0 0
\(569\) 10.5541 0.442453 0.221226 0.975222i \(-0.428994\pi\)
0.221226 + 0.975222i \(0.428994\pi\)
\(570\) 0 0
\(571\) −9.77700 −0.409155 −0.204577 0.978850i \(-0.565582\pi\)
−0.204577 + 0.978850i \(0.565582\pi\)
\(572\) 0 0
\(573\) 34.9281 1.45914
\(574\) 0 0
\(575\) 4.39768 0.183396
\(576\) 0 0
\(577\) −16.2960 −0.678411 −0.339205 0.940712i \(-0.610158\pi\)
−0.339205 + 0.940712i \(0.610158\pi\)
\(578\) 0 0
\(579\) −18.0621 −0.750635
\(580\) 0 0
\(581\) −4.05637 −0.168287
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.216858 −0.00896599
\(586\) 0 0
\(587\) −33.6827 −1.39023 −0.695117 0.718896i \(-0.744648\pi\)
−0.695117 + 0.718896i \(0.744648\pi\)
\(588\) 0 0
\(589\) 1.32680 0.0546697
\(590\) 0 0
\(591\) 15.0264 0.618104
\(592\) 0 0
\(593\) 21.3355 0.876143 0.438071 0.898940i \(-0.355662\pi\)
0.438071 + 0.898940i \(0.355662\pi\)
\(594\) 0 0
\(595\) −8.93560 −0.366324
\(596\) 0 0
\(597\) 11.5720 0.473611
\(598\) 0 0
\(599\) 16.4096 0.670476 0.335238 0.942133i \(-0.391183\pi\)
0.335238 + 0.942133i \(0.391183\pi\)
\(600\) 0 0
\(601\) 13.7954 0.562726 0.281363 0.959601i \(-0.409213\pi\)
0.281363 + 0.959601i \(0.409213\pi\)
\(602\) 0 0
\(603\) −1.57284 −0.0640511
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −5.64351 −0.229063 −0.114531 0.993420i \(-0.536537\pi\)
−0.114531 + 0.993420i \(0.536537\pi\)
\(608\) 0 0
\(609\) 50.1913 2.03385
\(610\) 0 0
\(611\) −4.18138 −0.169160
\(612\) 0 0
\(613\) 3.33104 0.134539 0.0672697 0.997735i \(-0.478571\pi\)
0.0672697 + 0.997735i \(0.478571\pi\)
\(614\) 0 0
\(615\) −13.1633 −0.530795
\(616\) 0 0
\(617\) −9.45854 −0.380786 −0.190393 0.981708i \(-0.560976\pi\)
−0.190393 + 0.981708i \(0.560976\pi\)
\(618\) 0 0
\(619\) 27.2070 1.09354 0.546771 0.837282i \(-0.315857\pi\)
0.546771 + 0.837282i \(0.315857\pi\)
\(620\) 0 0
\(621\) −22.2040 −0.891017
\(622\) 0 0
\(623\) 5.28395 0.211697
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.9470 −0.516230
\(630\) 0 0
\(631\) 30.3287 1.20737 0.603683 0.797224i \(-0.293699\pi\)
0.603683 + 0.797224i \(0.293699\pi\)
\(632\) 0 0
\(633\) 7.13488 0.283586
\(634\) 0 0
\(635\) 0.113136 0.00448968
\(636\) 0 0
\(637\) −15.1379 −0.599787
\(638\) 0 0
\(639\) 0.835326 0.0330450
\(640\) 0 0
\(641\) 39.8313 1.57324 0.786620 0.617437i \(-0.211829\pi\)
0.786620 + 0.617437i \(0.211829\pi\)
\(642\) 0 0
\(643\) 27.3517 1.07864 0.539322 0.842100i \(-0.318681\pi\)
0.539322 + 0.842100i \(0.318681\pi\)
\(644\) 0 0
\(645\) 22.5155 0.886547
\(646\) 0 0
\(647\) −22.2738 −0.875675 −0.437837 0.899054i \(-0.644255\pi\)
−0.437837 + 0.899054i \(0.644255\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.6124 0.651090
\(652\) 0 0
\(653\) 29.3913 1.15017 0.575085 0.818094i \(-0.304969\pi\)
0.575085 + 0.818094i \(0.304969\pi\)
\(654\) 0 0
\(655\) 0.474297 0.0185323
\(656\) 0 0
\(657\) 0.115250 0.00449632
\(658\) 0 0
\(659\) 22.8429 0.889832 0.444916 0.895572i \(-0.353234\pi\)
0.444916 + 0.895572i \(0.353234\pi\)
\(660\) 0 0
\(661\) 32.0302 1.24583 0.622916 0.782289i \(-0.285948\pi\)
0.622916 + 0.782289i \(0.285948\pi\)
\(662\) 0 0
\(663\) 5.07312 0.197024
\(664\) 0 0
\(665\) 2.57388 0.0998108
\(666\) 0 0
\(667\) 29.1636 1.12922
\(668\) 0 0
\(669\) −27.2080 −1.05192
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.5740 −0.523238 −0.261619 0.965171i \(-0.584256\pi\)
−0.261619 + 0.965171i \(0.584256\pi\)
\(674\) 0 0
\(675\) −5.04903 −0.194337
\(676\) 0 0
\(677\) −1.58263 −0.0608254 −0.0304127 0.999537i \(-0.509682\pi\)
−0.0304127 + 0.999537i \(0.509682\pi\)
\(678\) 0 0
\(679\) 49.1505 1.88622
\(680\) 0 0
\(681\) 20.4444 0.783432
\(682\) 0 0
\(683\) −33.8348 −1.29465 −0.647325 0.762214i \(-0.724113\pi\)
−0.647325 + 0.762214i \(0.724113\pi\)
\(684\) 0 0
\(685\) −0.868693 −0.0331910
\(686\) 0 0
\(687\) −48.9291 −1.86676
\(688\) 0 0
\(689\) 9.04903 0.344741
\(690\) 0 0
\(691\) 33.7446 1.28371 0.641853 0.766828i \(-0.278166\pi\)
0.641853 + 0.766828i \(0.278166\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.3894 0.735481
\(696\) 0 0
\(697\) 15.5409 0.588655
\(698\) 0 0
\(699\) −16.3569 −0.618674
\(700\) 0 0
\(701\) −1.88737 −0.0712851 −0.0356426 0.999365i \(-0.511348\pi\)
−0.0356426 + 0.999365i \(0.511348\pi\)
\(702\) 0 0
\(703\) 3.72935 0.140655
\(704\) 0 0
\(705\) 5.46480 0.205816
\(706\) 0 0
\(707\) −11.9511 −0.449468
\(708\) 0 0
\(709\) −7.03820 −0.264325 −0.132163 0.991228i \(-0.542192\pi\)
−0.132163 + 0.991228i \(0.542192\pi\)
\(710\) 0 0
\(711\) 0.904173 0.0339091
\(712\) 0 0
\(713\) 9.65260 0.361493
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 22.4958 0.840121
\(718\) 0 0
\(719\) −8.02849 −0.299412 −0.149706 0.988731i \(-0.547833\pi\)
−0.149706 + 0.988731i \(0.547833\pi\)
\(720\) 0 0
\(721\) 1.72898 0.0643906
\(722\) 0 0
\(723\) −13.0319 −0.484663
\(724\) 0 0
\(725\) 6.63159 0.246291
\(726\) 0 0
\(727\) 29.8123 1.10568 0.552838 0.833289i \(-0.313545\pi\)
0.552838 + 0.833289i \(0.313545\pi\)
\(728\) 0 0
\(729\) 25.4165 0.941350
\(730\) 0 0
\(731\) −26.5824 −0.983186
\(732\) 0 0
\(733\) −40.9187 −1.51137 −0.755683 0.654938i \(-0.772695\pi\)
−0.755683 + 0.654938i \(0.772695\pi\)
\(734\) 0 0
\(735\) 19.7843 0.729756
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.36478 −0.160561 −0.0802805 0.996772i \(-0.525582\pi\)
−0.0802805 + 0.996772i \(0.525582\pi\)
\(740\) 0 0
\(741\) −1.46130 −0.0536823
\(742\) 0 0
\(743\) 19.7055 0.722926 0.361463 0.932386i \(-0.382277\pi\)
0.361463 + 0.932386i \(0.382277\pi\)
\(744\) 0 0
\(745\) 1.11258 0.0407617
\(746\) 0 0
\(747\) −0.151900 −0.00555773
\(748\) 0 0
\(749\) 65.5669 2.39576
\(750\) 0 0
\(751\) 38.9543 1.42146 0.710731 0.703464i \(-0.248364\pi\)
0.710731 + 0.703464i \(0.248364\pi\)
\(752\) 0 0
\(753\) −55.5604 −2.02473
\(754\) 0 0
\(755\) 5.69465 0.207250
\(756\) 0 0
\(757\) 53.1675 1.93241 0.966203 0.257783i \(-0.0829918\pi\)
0.966203 + 0.257783i \(0.0829918\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −51.2783 −1.85884 −0.929418 0.369029i \(-0.879690\pi\)
−0.929418 + 0.369029i \(0.879690\pi\)
\(762\) 0 0
\(763\) 13.0853 0.473721
\(764\) 0 0
\(765\) −0.334614 −0.0120980
\(766\) 0 0
\(767\) 16.3710 0.591122
\(768\) 0 0
\(769\) −45.0332 −1.62394 −0.811970 0.583699i \(-0.801605\pi\)
−0.811970 + 0.583699i \(0.801605\pi\)
\(770\) 0 0
\(771\) −14.7892 −0.532619
\(772\) 0 0
\(773\) −49.9436 −1.79635 −0.898173 0.439641i \(-0.855106\pi\)
−0.898173 + 0.439641i \(0.855106\pi\)
\(774\) 0 0
\(775\) 2.19493 0.0788442
\(776\) 0 0
\(777\) 46.6940 1.67514
\(778\) 0 0
\(779\) −4.47653 −0.160388
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −33.4831 −1.19659
\(784\) 0 0
\(785\) 1.04114 0.0371598
\(786\) 0 0
\(787\) 9.78526 0.348807 0.174403 0.984674i \(-0.444200\pi\)
0.174403 + 0.984674i \(0.444200\pi\)
\(788\) 0 0
\(789\) −5.10442 −0.181722
\(790\) 0 0
\(791\) −47.9644 −1.70542
\(792\) 0 0
\(793\) −7.73725 −0.274758
\(794\) 0 0
\(795\) −11.8265 −0.419443
\(796\) 0 0
\(797\) 36.1647 1.28102 0.640509 0.767950i \(-0.278723\pi\)
0.640509 + 0.767950i \(0.278723\pi\)
\(798\) 0 0
\(799\) −6.45189 −0.228251
\(800\) 0 0
\(801\) 0.197869 0.00699137
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 18.7253 0.659980
\(806\) 0 0
\(807\) −0.220355 −0.00775686
\(808\) 0 0
\(809\) −16.3357 −0.574332 −0.287166 0.957881i \(-0.592713\pi\)
−0.287166 + 0.957881i \(0.592713\pi\)
\(810\) 0 0
\(811\) 51.6959 1.81529 0.907643 0.419742i \(-0.137879\pi\)
0.907643 + 0.419742i \(0.137879\pi\)
\(812\) 0 0
\(813\) −30.2756 −1.06181
\(814\) 0 0
\(815\) 12.9115 0.452270
\(816\) 0 0
\(817\) 7.65701 0.267885
\(818\) 0 0
\(819\) −0.923382 −0.0322656
\(820\) 0 0
\(821\) −38.6713 −1.34964 −0.674819 0.737983i \(-0.735778\pi\)
−0.674819 + 0.737983i \(0.735778\pi\)
\(822\) 0 0
\(823\) 5.30457 0.184906 0.0924528 0.995717i \(-0.470529\pi\)
0.0924528 + 0.995717i \(0.470529\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.8642 −0.412558 −0.206279 0.978493i \(-0.566135\pi\)
−0.206279 + 0.978493i \(0.566135\pi\)
\(828\) 0 0
\(829\) −49.3457 −1.71385 −0.856923 0.515445i \(-0.827627\pi\)
−0.856923 + 0.515445i \(0.827627\pi\)
\(830\) 0 0
\(831\) −40.4219 −1.40222
\(832\) 0 0
\(833\) −23.3579 −0.809304
\(834\) 0 0
\(835\) 4.22601 0.146247
\(836\) 0 0
\(837\) −11.0823 −0.383059
\(838\) 0 0
\(839\) 21.4081 0.739089 0.369544 0.929213i \(-0.379514\pi\)
0.369544 + 0.929213i \(0.379514\pi\)
\(840\) 0 0
\(841\) 14.9779 0.516481
\(842\) 0 0
\(843\) 23.0183 0.792792
\(844\) 0 0
\(845\) −11.1503 −0.383582
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 28.1160 0.964938
\(850\) 0 0
\(851\) 27.1315 0.930056
\(852\) 0 0
\(853\) −31.0811 −1.06420 −0.532098 0.846683i \(-0.678596\pi\)
−0.532098 + 0.846683i \(0.678596\pi\)
\(854\) 0 0
\(855\) 0.0963848 0.00329629
\(856\) 0 0
\(857\) −33.2665 −1.13636 −0.568181 0.822904i \(-0.692353\pi\)
−0.568181 + 0.822904i \(0.692353\pi\)
\(858\) 0 0
\(859\) 18.9045 0.645012 0.322506 0.946567i \(-0.395475\pi\)
0.322506 + 0.946567i \(0.395475\pi\)
\(860\) 0 0
\(861\) −56.0492 −1.91015
\(862\) 0 0
\(863\) −13.8324 −0.470862 −0.235431 0.971891i \(-0.575650\pi\)
−0.235431 + 0.971891i \(0.575650\pi\)
\(864\) 0 0
\(865\) −1.34571 −0.0457554
\(866\) 0 0
\(867\) −22.3894 −0.760383
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 13.4156 0.454571
\(872\) 0 0
\(873\) 1.84055 0.0622932
\(874\) 0 0
\(875\) 4.25800 0.143947
\(876\) 0 0
\(877\) 48.3403 1.63233 0.816167 0.577816i \(-0.196095\pi\)
0.816167 + 0.577816i \(0.196095\pi\)
\(878\) 0 0
\(879\) 44.3137 1.49466
\(880\) 0 0
\(881\) −33.4457 −1.12682 −0.563408 0.826179i \(-0.690510\pi\)
−0.563408 + 0.826179i \(0.690510\pi\)
\(882\) 0 0
\(883\) −18.2657 −0.614689 −0.307345 0.951598i \(-0.599440\pi\)
−0.307345 + 0.951598i \(0.599440\pi\)
\(884\) 0 0
\(885\) −21.3959 −0.719214
\(886\) 0 0
\(887\) −15.6871 −0.526721 −0.263361 0.964697i \(-0.584831\pi\)
−0.263361 + 0.964697i \(0.584831\pi\)
\(888\) 0 0
\(889\) 0.481734 0.0161568
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.85845 0.0621908
\(894\) 0 0
\(895\) −12.4288 −0.415450
\(896\) 0 0
\(897\) −10.6312 −0.354964
\(898\) 0 0
\(899\) 14.5559 0.485465
\(900\) 0 0
\(901\) 13.9627 0.465165
\(902\) 0 0
\(903\) 95.8710 3.19039
\(904\) 0 0
\(905\) 17.3092 0.575377
\(906\) 0 0
\(907\) 25.8952 0.859835 0.429918 0.902868i \(-0.358543\pi\)
0.429918 + 0.902868i \(0.358543\pi\)
\(908\) 0 0
\(909\) −0.447537 −0.0148439
\(910\) 0 0
\(911\) −15.4526 −0.511967 −0.255983 0.966681i \(-0.582399\pi\)
−0.255983 + 0.966681i \(0.582399\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 10.1121 0.334296
\(916\) 0 0
\(917\) 2.01955 0.0666916
\(918\) 0 0
\(919\) 47.7134 1.57392 0.786959 0.617005i \(-0.211654\pi\)
0.786959 + 0.617005i \(0.211654\pi\)
\(920\) 0 0
\(921\) −8.80861 −0.290254
\(922\) 0 0
\(923\) −7.12495 −0.234521
\(924\) 0 0
\(925\) 6.16951 0.202852
\(926\) 0 0
\(927\) 0.0647456 0.00212652
\(928\) 0 0
\(929\) −37.7533 −1.23865 −0.619323 0.785136i \(-0.712593\pi\)
−0.619323 + 0.785136i \(0.712593\pi\)
\(930\) 0 0
\(931\) 6.72820 0.220508
\(932\) 0 0
\(933\) 17.0546 0.558341
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 49.6382 1.62161 0.810805 0.585316i \(-0.199030\pi\)
0.810805 + 0.585316i \(0.199030\pi\)
\(938\) 0 0
\(939\) −47.9669 −1.56534
\(940\) 0 0
\(941\) −33.3188 −1.08616 −0.543081 0.839680i \(-0.682742\pi\)
−0.543081 + 0.839680i \(0.682742\pi\)
\(942\) 0 0
\(943\) −32.5673 −1.06054
\(944\) 0 0
\(945\) −21.4988 −0.699355
\(946\) 0 0
\(947\) 22.6463 0.735907 0.367954 0.929844i \(-0.380059\pi\)
0.367954 + 0.929844i \(0.380059\pi\)
\(948\) 0 0
\(949\) −0.983028 −0.0319104
\(950\) 0 0
\(951\) −25.2771 −0.819665
\(952\) 0 0
\(953\) −48.5378 −1.57229 −0.786147 0.618040i \(-0.787927\pi\)
−0.786147 + 0.618040i \(0.787927\pi\)
\(954\) 0 0
\(955\) 19.6503 0.635869
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.69889 −0.119443
\(960\) 0 0
\(961\) −26.1823 −0.844590
\(962\) 0 0
\(963\) 2.45530 0.0791209
\(964\) 0 0
\(965\) −10.1616 −0.327114
\(966\) 0 0
\(967\) −47.2983 −1.52101 −0.760505 0.649332i \(-0.775048\pi\)
−0.760505 + 0.649332i \(0.775048\pi\)
\(968\) 0 0
\(969\) −2.25480 −0.0724345
\(970\) 0 0
\(971\) −19.2817 −0.618780 −0.309390 0.950935i \(-0.600125\pi\)
−0.309390 + 0.950935i \(0.600125\pi\)
\(972\) 0 0
\(973\) 82.5599 2.64675
\(974\) 0 0
\(975\) −2.41745 −0.0774202
\(976\) 0 0
\(977\) 31.8772 1.01984 0.509920 0.860222i \(-0.329675\pi\)
0.509920 + 0.860222i \(0.329675\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.490010 0.0156448
\(982\) 0 0
\(983\) −1.60184 −0.0510908 −0.0255454 0.999674i \(-0.508132\pi\)
−0.0255454 + 0.999674i \(0.508132\pi\)
\(984\) 0 0
\(985\) 8.45375 0.269359
\(986\) 0 0
\(987\) 23.2691 0.740663
\(988\) 0 0
\(989\) 55.7057 1.77134
\(990\) 0 0
\(991\) −48.3005 −1.53432 −0.767158 0.641458i \(-0.778330\pi\)
−0.767158 + 0.641458i \(0.778330\pi\)
\(992\) 0 0
\(993\) 15.2150 0.482833
\(994\) 0 0
\(995\) 6.51033 0.206391
\(996\) 0 0
\(997\) 22.8677 0.724228 0.362114 0.932134i \(-0.382055\pi\)
0.362114 + 0.932134i \(0.382055\pi\)
\(998\) 0 0
\(999\) −31.1500 −0.985544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9680.2.a.cv.1.3 4
4.3 odd 2 605.2.a.i.1.4 4
11.7 odd 10 880.2.bo.e.401.1 8
11.8 odd 10 880.2.bo.e.801.1 8
11.10 odd 2 9680.2.a.cs.1.3 4
12.11 even 2 5445.2.a.bu.1.1 4
20.19 odd 2 3025.2.a.be.1.1 4
44.3 odd 10 605.2.g.n.251.2 8
44.7 even 10 55.2.g.a.16.1 8
44.15 odd 10 605.2.g.n.511.2 8
44.19 even 10 55.2.g.a.31.1 yes 8
44.27 odd 10 605.2.g.g.366.1 8
44.31 odd 10 605.2.g.g.81.1 8
44.35 even 10 605.2.g.j.81.2 8
44.39 even 10 605.2.g.j.366.2 8
44.43 even 2 605.2.a.l.1.1 4
132.95 odd 10 495.2.n.f.181.2 8
132.107 odd 10 495.2.n.f.361.2 8
132.131 odd 2 5445.2.a.bg.1.4 4
220.7 odd 20 275.2.z.b.49.3 16
220.19 even 10 275.2.h.b.251.2 8
220.63 odd 20 275.2.z.b.174.3 16
220.107 odd 20 275.2.z.b.174.2 16
220.139 even 10 275.2.h.b.126.2 8
220.183 odd 20 275.2.z.b.49.2 16
220.219 even 2 3025.2.a.v.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.a.16.1 8 44.7 even 10
55.2.g.a.31.1 yes 8 44.19 even 10
275.2.h.b.126.2 8 220.139 even 10
275.2.h.b.251.2 8 220.19 even 10
275.2.z.b.49.2 16 220.183 odd 20
275.2.z.b.49.3 16 220.7 odd 20
275.2.z.b.174.2 16 220.107 odd 20
275.2.z.b.174.3 16 220.63 odd 20
495.2.n.f.181.2 8 132.95 odd 10
495.2.n.f.361.2 8 132.107 odd 10
605.2.a.i.1.4 4 4.3 odd 2
605.2.a.l.1.1 4 44.43 even 2
605.2.g.g.81.1 8 44.31 odd 10
605.2.g.g.366.1 8 44.27 odd 10
605.2.g.j.81.2 8 44.35 even 10
605.2.g.j.366.2 8 44.39 even 10
605.2.g.n.251.2 8 44.3 odd 10
605.2.g.n.511.2 8 44.15 odd 10
880.2.bo.e.401.1 8 11.7 odd 10
880.2.bo.e.801.1 8 11.8 odd 10
3025.2.a.v.1.4 4 220.219 even 2
3025.2.a.be.1.1 4 20.19 odd 2
5445.2.a.bg.1.4 4 132.131 odd 2
5445.2.a.bu.1.1 4 12.11 even 2
9680.2.a.cs.1.3 4 11.10 odd 2
9680.2.a.cv.1.3 4 1.1 even 1 trivial