Properties

Label 968.2.i.q.753.1
Level $968$
Weight $2$
Character 968.753
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [968,2,Mod(9,968)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("968.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(968, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,-3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.1305015625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 5x^{6} - 9x^{5} + 29x^{4} + 36x^{3} + 80x^{2} + 64x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 753.1
Root \(-0.791563 - 2.43618i\) of defining polynomial
Character \(\chi\) \(=\) 968.753
Dual form 968.2.i.q.9.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.07234 - 1.50564i) q^{3} +(-0.173529 + 0.534068i) q^{5} +(-4.14468 + 3.01129i) q^{7} +(1.10058 + 3.38724i) q^{9} +(-0.965093 - 2.97025i) q^{13} +(1.16373 - 0.845498i) q^{15} +(-0.618034 + 1.90211i) q^{17} +(-3.23607 - 2.35114i) q^{19} +13.1231 q^{21} +6.56155 q^{23} +(3.78997 + 2.75357i) q^{25} +(0.444505 - 1.36804i) q^{27} +(2.52665 - 1.83572i) q^{29} +(-0.444505 - 1.36804i) q^{31} +(-0.889009 - 2.73609i) q^{35} +(2.78176 - 2.02107i) q^{37} +(-2.47214 + 7.60845i) q^{39} +(5.76271 + 4.18686i) q^{41} -1.12311 q^{43} -2.00000 q^{45} +(-6.47214 - 4.70228i) q^{47} +(5.94741 - 18.3042i) q^{49} +(4.14468 - 3.01129i) q^{51} +(-1.31215 - 4.03839i) q^{53} +(3.16625 + 9.74473i) q^{57} +(10.3617 - 7.52821i) q^{59} +(2.20116 - 6.77448i) q^{61} +(-14.7615 - 10.7249i) q^{63} +1.75379 q^{65} +5.43845 q^{67} +(-13.5978 - 9.87936i) q^{69} +(1.13862 - 3.50432i) q^{71} +(-2.52665 + 1.83572i) q^{73} +(-3.70820 - 11.4127i) q^{75} +(0.889009 + 2.73609i) q^{79} +(5.66312 - 4.11450i) q^{81} +(-2.81919 + 8.67659i) q^{83} +(-0.908612 - 0.660145i) q^{85} -8.00000 q^{87} -9.68466 q^{89} +(12.9443 + 9.40456i) q^{91} +(-1.13862 + 3.50432i) q^{93} +(1.81722 - 1.32029i) q^{95} +(3.53467 + 10.8786i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 3 q^{5} - 2 q^{7} - 3 q^{9} - 2 q^{13} + 7 q^{15} + 4 q^{17} - 8 q^{19} + 72 q^{21} + 36 q^{23} - 3 q^{25} - 7 q^{27} - 2 q^{29} + 7 q^{31} + 14 q^{35} + 11 q^{37} + 16 q^{39} + 6 q^{41}+ \cdots - 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.07234 1.50564i −1.19647 0.869283i −0.202533 0.979275i \(-0.564917\pi\)
−0.993932 + 0.109992i \(0.964917\pi\)
\(4\) 0 0
\(5\) −0.173529 + 0.534068i −0.0776047 + 0.238843i −0.982331 0.187150i \(-0.940075\pi\)
0.904727 + 0.425993i \(0.140075\pi\)
\(6\) 0 0
\(7\) −4.14468 + 3.01129i −1.56654 + 1.13816i −0.636166 + 0.771553i \(0.719480\pi\)
−0.930376 + 0.366606i \(0.880520\pi\)
\(8\) 0 0
\(9\) 1.10058 + 3.38724i 0.366860 + 1.12908i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.965093 2.97025i −0.267669 0.823799i −0.991067 0.133368i \(-0.957421\pi\)
0.723398 0.690431i \(-0.242579\pi\)
\(14\) 0 0
\(15\) 1.16373 0.845498i 0.300473 0.218307i
\(16\) 0 0
\(17\) −0.618034 + 1.90211i −0.149895 + 0.461330i −0.997608 0.0691254i \(-0.977979\pi\)
0.847713 + 0.530456i \(0.177979\pi\)
\(18\) 0 0
\(19\) −3.23607 2.35114i −0.742405 0.539389i 0.151058 0.988525i \(-0.451732\pi\)
−0.893463 + 0.449136i \(0.851732\pi\)
\(20\) 0 0
\(21\) 13.1231 2.86370
\(22\) 0 0
\(23\) 6.56155 1.36818 0.684089 0.729398i \(-0.260200\pi\)
0.684089 + 0.729398i \(0.260200\pi\)
\(24\) 0 0
\(25\) 3.78997 + 2.75357i 0.757994 + 0.550715i
\(26\) 0 0
\(27\) 0.444505 1.36804i 0.0855450 0.263280i
\(28\) 0 0
\(29\) 2.52665 1.83572i 0.469186 0.340884i −0.327938 0.944699i \(-0.606354\pi\)
0.797124 + 0.603816i \(0.206354\pi\)
\(30\) 0 0
\(31\) −0.444505 1.36804i −0.0798354 0.245708i 0.903171 0.429282i \(-0.141233\pi\)
−0.983006 + 0.183574i \(0.941233\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.889009 2.73609i −0.150270 0.462483i
\(36\) 0 0
\(37\) 2.78176 2.02107i 0.457319 0.332262i −0.335160 0.942161i \(-0.608790\pi\)
0.792479 + 0.609900i \(0.208790\pi\)
\(38\) 0 0
\(39\) −2.47214 + 7.60845i −0.395859 + 1.21833i
\(40\) 0 0
\(41\) 5.76271 + 4.18686i 0.899985 + 0.653877i 0.938462 0.345382i \(-0.112251\pi\)
−0.0384774 + 0.999259i \(0.512251\pi\)
\(42\) 0 0
\(43\) −1.12311 −0.171272 −0.0856360 0.996326i \(-0.527292\pi\)
−0.0856360 + 0.996326i \(0.527292\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −6.47214 4.70228i −0.944058 0.685898i 0.00533600 0.999986i \(-0.498301\pi\)
−0.949394 + 0.314087i \(0.898301\pi\)
\(48\) 0 0
\(49\) 5.94741 18.3042i 0.849629 2.61489i
\(50\) 0 0
\(51\) 4.14468 3.01129i 0.580371 0.421664i
\(52\) 0 0
\(53\) −1.31215 4.03839i −0.180238 0.554715i 0.819596 0.572942i \(-0.194198\pi\)
−0.999834 + 0.0182268i \(0.994198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.16625 + 9.74473i 0.419381 + 1.29072i
\(58\) 0 0
\(59\) 10.3617 7.52821i 1.34898 0.980090i 0.349917 0.936781i \(-0.386210\pi\)
0.999062 0.0433092i \(-0.0137901\pi\)
\(60\) 0 0
\(61\) 2.20116 6.77448i 0.281830 0.867383i −0.705501 0.708709i \(-0.749278\pi\)
0.987331 0.158674i \(-0.0507219\pi\)
\(62\) 0 0
\(63\) −14.7615 10.7249i −1.85977 1.35120i
\(64\) 0 0
\(65\) 1.75379 0.217531
\(66\) 0 0
\(67\) 5.43845 0.664412 0.332206 0.943207i \(-0.392207\pi\)
0.332206 + 0.943207i \(0.392207\pi\)
\(68\) 0 0
\(69\) −13.5978 9.87936i −1.63698 1.18933i
\(70\) 0 0
\(71\) 1.13862 3.50432i 0.135130 0.415886i −0.860481 0.509483i \(-0.829837\pi\)
0.995610 + 0.0935972i \(0.0298366\pi\)
\(72\) 0 0
\(73\) −2.52665 + 1.83572i −0.295721 + 0.214854i −0.725746 0.687963i \(-0.758505\pi\)
0.430024 + 0.902817i \(0.358505\pi\)
\(74\) 0 0
\(75\) −3.70820 11.4127i −0.428187 1.31782i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.889009 + 2.73609i 0.100021 + 0.307834i 0.988530 0.151026i \(-0.0482578\pi\)
−0.888508 + 0.458860i \(0.848258\pi\)
\(80\) 0 0
\(81\) 5.66312 4.11450i 0.629235 0.457166i
\(82\) 0 0
\(83\) −2.81919 + 8.67659i −0.309447 + 0.952379i 0.668533 + 0.743682i \(0.266922\pi\)
−0.977980 + 0.208697i \(0.933078\pi\)
\(84\) 0 0
\(85\) −0.908612 0.660145i −0.0985528 0.0716028i
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) −9.68466 −1.02657 −0.513286 0.858218i \(-0.671572\pi\)
−0.513286 + 0.858218i \(0.671572\pi\)
\(90\) 0 0
\(91\) 12.9443 + 9.40456i 1.35693 + 0.985866i
\(92\) 0 0
\(93\) −1.13862 + 3.50432i −0.118070 + 0.363381i
\(94\) 0 0
\(95\) 1.81722 1.32029i 0.186443 0.135459i
\(96\) 0 0
\(97\) 3.53467 + 10.8786i 0.358892 + 1.10456i 0.953718 + 0.300701i \(0.0972207\pi\)
−0.594827 + 0.803854i \(0.702779\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.618034 + 1.90211i 0.0614967 + 0.189267i 0.977085 0.212850i \(-0.0682745\pi\)
−0.915588 + 0.402117i \(0.868274\pi\)
\(102\) 0 0
\(103\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(104\) 0 0
\(105\) −2.27724 + 7.00864i −0.222236 + 0.683973i
\(106\) 0 0
\(107\) 9.19797 + 6.68272i 0.889201 + 0.646043i 0.935670 0.352877i \(-0.114797\pi\)
−0.0464683 + 0.998920i \(0.514797\pi\)
\(108\) 0 0
\(109\) 4.24621 0.406713 0.203357 0.979105i \(-0.434815\pi\)
0.203357 + 0.979105i \(0.434815\pi\)
\(110\) 0 0
\(111\) −8.80776 −0.835996
\(112\) 0 0
\(113\) 3.69037 + 2.68121i 0.347161 + 0.252227i 0.747677 0.664062i \(-0.231169\pi\)
−0.400516 + 0.916290i \(0.631169\pi\)
\(114\) 0 0
\(115\) −1.13862 + 3.50432i −0.106177 + 0.326779i
\(116\) 0 0
\(117\) 8.99878 6.53800i 0.831938 0.604438i
\(118\) 0 0
\(119\) −3.16625 9.74473i −0.290250 0.893298i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −5.63839 17.3532i −0.508396 1.56468i
\(124\) 0 0
\(125\) −4.39980 + 3.19664i −0.393530 + 0.285916i
\(126\) 0 0
\(127\) 3.16625 9.74473i 0.280960 0.864705i −0.706621 0.707592i \(-0.749781\pi\)
0.987581 0.157113i \(-0.0502185\pi\)
\(128\) 0 0
\(129\) 2.32746 + 1.69100i 0.204921 + 0.148884i
\(130\) 0 0
\(131\) 11.3693 0.993342 0.496671 0.867939i \(-0.334556\pi\)
0.496671 + 0.867939i \(0.334556\pi\)
\(132\) 0 0
\(133\) 20.4924 1.77692
\(134\) 0 0
\(135\) 0.653495 + 0.474792i 0.0562439 + 0.0408636i
\(136\) 0 0
\(137\) −3.88173 + 11.9467i −0.331639 + 1.02068i 0.636715 + 0.771099i \(0.280293\pi\)
−0.968354 + 0.249580i \(0.919707\pi\)
\(138\) 0 0
\(139\) 5.56352 4.04214i 0.471892 0.342850i −0.326286 0.945271i \(-0.605797\pi\)
0.798178 + 0.602421i \(0.205797\pi\)
\(140\) 0 0
\(141\) 6.33251 + 19.4895i 0.533293 + 1.64131i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.541951 + 1.66795i 0.0450065 + 0.138516i
\(146\) 0 0
\(147\) −39.8847 + 28.9779i −3.28963 + 2.39006i
\(148\) 0 0
\(149\) 3.78429 11.6468i 0.310021 0.954146i −0.667735 0.744399i \(-0.732736\pi\)
0.977756 0.209747i \(-0.0672640\pi\)
\(150\) 0 0
\(151\) 12.4340 + 9.03386i 1.01187 + 0.735165i 0.964600 0.263717i \(-0.0849486\pi\)
0.0472677 + 0.998882i \(0.484949\pi\)
\(152\) 0 0
\(153\) −7.12311 −0.575869
\(154\) 0 0
\(155\) 0.807764 0.0648812
\(156\) 0 0
\(157\) 6.92644 + 5.03235i 0.552790 + 0.401626i 0.828813 0.559525i \(-0.189017\pi\)
−0.276023 + 0.961151i \(0.589017\pi\)
\(158\) 0 0
\(159\) −3.36115 + 10.3445i −0.266556 + 0.820375i
\(160\) 0 0
\(161\) −27.1955 + 19.7587i −2.14331 + 1.55720i
\(162\) 0 0
\(163\) −1.23607 3.80423i −0.0968163 0.297970i 0.890906 0.454187i \(-0.150070\pi\)
−0.987723 + 0.156217i \(0.950070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.47214 7.60845i −0.191300 0.588760i −1.00000 0.000538710i \(-0.999829\pi\)
0.808700 0.588221i \(-0.200171\pi\)
\(168\) 0 0
\(169\) 2.62624 1.90808i 0.202018 0.146775i
\(170\) 0 0
\(171\) 4.40232 13.5490i 0.336654 1.03611i
\(172\) 0 0
\(173\) −3.43526 2.49586i −0.261178 0.189757i 0.449488 0.893286i \(-0.351606\pi\)
−0.710666 + 0.703529i \(0.751606\pi\)
\(174\) 0 0
\(175\) −24.0000 −1.81423
\(176\) 0 0
\(177\) −32.8078 −2.46598
\(178\) 0 0
\(179\) 8.54448 + 6.20792i 0.638644 + 0.464002i 0.859384 0.511331i \(-0.170847\pi\)
−0.220740 + 0.975333i \(0.570847\pi\)
\(180\) 0 0
\(181\) −4.22879 + 13.0149i −0.314324 + 0.967389i 0.661708 + 0.749761i \(0.269832\pi\)
−0.976032 + 0.217627i \(0.930168\pi\)
\(182\) 0 0
\(183\) −14.7615 + 10.7249i −1.09120 + 0.792804i
\(184\) 0 0
\(185\) 0.596672 + 1.83637i 0.0438682 + 0.135012i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.27724 + 7.00864i 0.165645 + 0.509803i
\(190\) 0 0
\(191\) 11.7805 8.55907i 0.852410 0.619312i −0.0733993 0.997303i \(-0.523385\pi\)
0.925810 + 0.377990i \(0.123385\pi\)
\(192\) 0 0
\(193\) 0.270975 0.833976i 0.0195052 0.0600309i −0.940830 0.338879i \(-0.889952\pi\)
0.960335 + 0.278848i \(0.0899524\pi\)
\(194\) 0 0
\(195\) −3.63445 2.64058i −0.260268 0.189096i
\(196\) 0 0
\(197\) −18.4924 −1.31753 −0.658765 0.752349i \(-0.728921\pi\)
−0.658765 + 0.752349i \(0.728921\pi\)
\(198\) 0 0
\(199\) 20.4924 1.45267 0.726335 0.687341i \(-0.241222\pi\)
0.726335 + 0.687341i \(0.241222\pi\)
\(200\) 0 0
\(201\) −11.2703 8.18836i −0.794946 0.577562i
\(202\) 0 0
\(203\) −4.94427 + 15.2169i −0.347020 + 1.06802i
\(204\) 0 0
\(205\) −3.23607 + 2.35114i −0.226017 + 0.164211i
\(206\) 0 0
\(207\) 7.22152 + 22.2255i 0.501930 + 1.54478i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.56857 + 23.2937i 0.521042 + 1.60360i 0.772012 + 0.635608i \(0.219251\pi\)
−0.250970 + 0.967995i \(0.580749\pi\)
\(212\) 0 0
\(213\) −7.63586 + 5.54778i −0.523201 + 0.380128i
\(214\) 0 0
\(215\) 0.194892 0.599815i 0.0132915 0.0409071i
\(216\) 0 0
\(217\) 5.96190 + 4.33158i 0.404720 + 0.294047i
\(218\) 0 0
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) 6.24621 0.420166
\(222\) 0 0
\(223\) −7.12563 5.17707i −0.477168 0.346683i 0.323061 0.946378i \(-0.395288\pi\)
−0.800228 + 0.599696i \(0.795288\pi\)
\(224\) 0 0
\(225\) −5.15584 + 15.8681i −0.343723 + 1.05787i
\(226\) 0 0
\(227\) 12.0357 8.74442i 0.798835 0.580387i −0.111737 0.993738i \(-0.535642\pi\)
0.910572 + 0.413350i \(0.135642\pi\)
\(228\) 0 0
\(229\) 0.715480 + 2.20202i 0.0472802 + 0.145514i 0.971910 0.235355i \(-0.0756251\pi\)
−0.924629 + 0.380868i \(0.875625\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.36741 16.5192i −0.351631 1.08221i −0.957937 0.286978i \(-0.907349\pi\)
0.606306 0.795231i \(-0.292651\pi\)
\(234\) 0 0
\(235\) 3.63445 2.64058i 0.237085 0.172252i
\(236\) 0 0
\(237\) 2.27724 7.00864i 0.147923 0.455260i
\(238\) 0 0
\(239\) −10.6168 7.71357i −0.686745 0.498949i 0.188844 0.982007i \(-0.439526\pi\)
−0.875588 + 0.483058i \(0.839526\pi\)
\(240\) 0 0
\(241\) −20.8769 −1.34480 −0.672399 0.740188i \(-0.734736\pi\)
−0.672399 + 0.740188i \(0.734736\pi\)
\(242\) 0 0
\(243\) −22.2462 −1.42710
\(244\) 0 0
\(245\) 8.74366 + 6.35264i 0.558612 + 0.405856i
\(246\) 0 0
\(247\) −3.86037 + 11.8810i −0.245630 + 0.755970i
\(248\) 0 0
\(249\) 18.9062 13.7361i 1.19813 0.870492i
\(250\) 0 0
\(251\) −0.791563 2.43618i −0.0499630 0.153770i 0.922962 0.384891i \(-0.125761\pi\)
−0.972925 + 0.231120i \(0.925761\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.889009 + 2.73609i 0.0556719 + 0.171341i
\(256\) 0 0
\(257\) −22.8517 + 16.6027i −1.42545 + 1.03565i −0.434606 + 0.900621i \(0.643112\pi\)
−0.990842 + 0.135028i \(0.956888\pi\)
\(258\) 0 0
\(259\) −5.44350 + 16.7534i −0.338242 + 1.04100i
\(260\) 0 0
\(261\) 8.99878 + 6.53800i 0.557011 + 0.404692i
\(262\) 0 0
\(263\) −10.8769 −0.670698 −0.335349 0.942094i \(-0.608854\pi\)
−0.335349 + 0.942094i \(0.608854\pi\)
\(264\) 0 0
\(265\) 2.38447 0.146477
\(266\) 0 0
\(267\) 20.0699 + 14.5816i 1.22826 + 0.892382i
\(268\) 0 0
\(269\) 8.88073 27.3321i 0.541467 1.66647i −0.187777 0.982212i \(-0.560128\pi\)
0.729244 0.684254i \(-0.239872\pi\)
\(270\) 0 0
\(271\) 3.63445 2.64058i 0.220777 0.160404i −0.471899 0.881652i \(-0.656431\pi\)
0.692676 + 0.721249i \(0.256431\pi\)
\(272\) 0 0
\(273\) −12.6650 38.9789i −0.766521 2.35911i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.56231 + 17.1190i 0.334207 + 1.02858i 0.967112 + 0.254353i \(0.0818624\pi\)
−0.632905 + 0.774229i \(0.718138\pi\)
\(278\) 0 0
\(279\) 4.14468 3.01129i 0.248135 0.180281i
\(280\) 0 0
\(281\) 0.0760835 0.234161i 0.00453876 0.0139689i −0.948761 0.315993i \(-0.897662\pi\)
0.953300 + 0.302024i \(0.0976624\pi\)
\(282\) 0 0
\(283\) 16.1803 + 11.7557i 0.961821 + 0.698804i 0.953573 0.301162i \(-0.0973744\pi\)
0.00824833 + 0.999966i \(0.497374\pi\)
\(284\) 0 0
\(285\) −5.75379 −0.340825
\(286\) 0 0
\(287\) −36.4924 −2.15408
\(288\) 0 0
\(289\) 10.5172 + 7.64121i 0.618660 + 0.449483i
\(290\) 0 0
\(291\) 9.05426 27.8661i 0.530770 1.63354i
\(292\) 0 0
\(293\) 17.2881 12.5606i 1.00998 0.733796i 0.0457782 0.998952i \(-0.485423\pi\)
0.964206 + 0.265155i \(0.0854232\pi\)
\(294\) 0 0
\(295\) 2.22252 + 6.84022i 0.129400 + 0.398253i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.33251 19.4895i −0.366218 1.12710i
\(300\) 0 0
\(301\) 4.65491 3.38199i 0.268305 0.194935i
\(302\) 0 0
\(303\) 1.58313 4.87236i 0.0909483 0.279910i
\(304\) 0 0
\(305\) 3.23607 + 2.35114i 0.185297 + 0.134626i
\(306\) 0 0
\(307\) −0.492423 −0.0281040 −0.0140520 0.999901i \(-0.504473\pi\)
−0.0140520 + 0.999901i \(0.504473\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2336 15.4271i −1.20405 0.874793i −0.209372 0.977836i \(-0.567142\pi\)
−0.994677 + 0.103043i \(0.967142\pi\)
\(312\) 0 0
\(313\) 3.33978 10.2788i 0.188776 0.580992i −0.811217 0.584745i \(-0.801195\pi\)
0.999993 + 0.00375303i \(0.00119463\pi\)
\(314\) 0 0
\(315\) 8.28936 6.02257i 0.467052 0.339333i
\(316\) 0 0
\(317\) −10.7562 33.1042i −0.604128 1.85931i −0.502678 0.864474i \(-0.667652\pi\)
−0.101450 0.994841i \(-0.532348\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −8.99953 27.6977i −0.502305 1.54594i
\(322\) 0 0
\(323\) 6.47214 4.70228i 0.360119 0.261642i
\(324\) 0 0
\(325\) 4.52113 13.9146i 0.250787 0.771843i
\(326\) 0 0
\(327\) −8.79959 6.39328i −0.486619 0.353549i
\(328\) 0 0
\(329\) 40.9848 2.25957
\(330\) 0 0
\(331\) 6.06913 0.333590 0.166795 0.985992i \(-0.446658\pi\)
0.166795 + 0.985992i \(0.446658\pi\)
\(332\) 0 0
\(333\) 9.90739 + 7.19814i 0.542922 + 0.394456i
\(334\) 0 0
\(335\) −0.943730 + 2.90450i −0.0515615 + 0.158690i
\(336\) 0 0
\(337\) 26.4861 19.2433i 1.44279 1.04825i 0.455340 0.890317i \(-0.349518\pi\)
0.987450 0.157931i \(-0.0504824\pi\)
\(338\) 0 0
\(339\) −3.61076 11.1128i −0.196109 0.603563i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.3873 + 59.6680i 1.04682 + 3.22177i
\(344\) 0 0
\(345\) 7.63586 5.54778i 0.411101 0.298682i
\(346\) 0 0
\(347\) 8.26269 25.4300i 0.443565 1.36515i −0.440486 0.897760i \(-0.645194\pi\)
0.884050 0.467392i \(-0.154806\pi\)
\(348\) 0 0
\(349\) −12.7451 9.25984i −0.682229 0.495668i 0.191868 0.981421i \(-0.438546\pi\)
−0.874096 + 0.485753i \(0.838546\pi\)
\(350\) 0 0
\(351\) −4.49242 −0.239788
\(352\) 0 0
\(353\) 13.0540 0.694793 0.347397 0.937718i \(-0.387066\pi\)
0.347397 + 0.937718i \(0.387066\pi\)
\(354\) 0 0
\(355\) 1.67396 + 1.21620i 0.0888447 + 0.0645494i
\(356\) 0 0
\(357\) −8.11053 + 24.9616i −0.429255 + 1.32111i
\(358\) 0 0
\(359\) −23.0509 + 16.7474i −1.21658 + 0.883895i −0.995811 0.0914314i \(-0.970856\pi\)
−0.220766 + 0.975327i \(0.570856\pi\)
\(360\) 0 0
\(361\) −0.927051 2.85317i −0.0487922 0.150167i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.541951 1.66795i −0.0283670 0.0873046i
\(366\) 0 0
\(367\) 4.79817 3.48608i 0.250463 0.181972i −0.455469 0.890252i \(-0.650528\pi\)
0.705932 + 0.708280i \(0.250528\pi\)
\(368\) 0 0
\(369\) −7.83955 + 24.1277i −0.408111 + 1.25604i
\(370\) 0 0
\(371\) 17.5992 + 12.7866i 0.913704 + 0.663845i
\(372\) 0 0
\(373\) −8.24621 −0.426973 −0.213486 0.976946i \(-0.568482\pi\)
−0.213486 + 0.976946i \(0.568482\pi\)
\(374\) 0 0
\(375\) 13.9309 0.719387
\(376\) 0 0
\(377\) −7.89098 5.73313i −0.406406 0.295271i
\(378\) 0 0
\(379\) 6.42995 19.7894i 0.330284 1.01651i −0.638714 0.769444i \(-0.720533\pi\)
0.968998 0.247067i \(-0.0794667\pi\)
\(380\) 0 0
\(381\) −21.2336 + 15.4271i −1.08783 + 0.790356i
\(382\) 0 0
\(383\) 10.8323 + 33.3383i 0.553503 + 1.70351i 0.699863 + 0.714277i \(0.253244\pi\)
−0.146360 + 0.989231i \(0.546756\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.23607 3.80423i −0.0628329 0.193380i
\(388\) 0 0
\(389\) 0.454306 0.330072i 0.0230342 0.0167353i −0.576209 0.817303i \(-0.695468\pi\)
0.599243 + 0.800567i \(0.295468\pi\)
\(390\) 0 0
\(391\) −4.05526 + 12.4808i −0.205083 + 0.631182i
\(392\) 0 0
\(393\) −23.5611 17.1181i −1.18850 0.863496i
\(394\) 0 0
\(395\) −1.61553 −0.0812860
\(396\) 0 0
\(397\) −22.4924 −1.12886 −0.564431 0.825480i \(-0.690904\pi\)
−0.564431 + 0.825480i \(0.690904\pi\)
\(398\) 0 0
\(399\) −42.4673 30.8543i −2.12602 1.54465i
\(400\) 0 0
\(401\) −0.770201 + 2.37043i −0.0384620 + 0.118374i −0.968444 0.249231i \(-0.919822\pi\)
0.929982 + 0.367605i \(0.119822\pi\)
\(402\) 0 0
\(403\) −3.63445 + 2.64058i −0.181045 + 0.131537i
\(404\) 0 0
\(405\) 1.21471 + 3.73848i 0.0603592 + 0.185767i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 3.24234 + 9.97889i 0.160323 + 0.493424i 0.998661 0.0517265i \(-0.0164724\pi\)
−0.838338 + 0.545151i \(0.816472\pi\)
\(410\) 0 0
\(411\) 26.0318 18.9132i 1.28405 0.932920i
\(412\) 0 0
\(413\) −20.2763 + 62.4041i −0.997732 + 3.07070i
\(414\) 0 0
\(415\) −4.14468 3.01129i −0.203454 0.147818i
\(416\) 0 0
\(417\) −17.6155 −0.862636
\(418\) 0 0
\(419\) 0.492423 0.0240564 0.0120282 0.999928i \(-0.496171\pi\)
0.0120282 + 0.999928i \(0.496171\pi\)
\(420\) 0 0
\(421\) 24.6689 + 17.9230i 1.20229 + 0.873513i 0.994508 0.104662i \(-0.0333761\pi\)
0.207780 + 0.978176i \(0.433376\pi\)
\(422\) 0 0
\(423\) 8.80464 27.0979i 0.428096 1.31755i
\(424\) 0 0
\(425\) −7.57994 + 5.50715i −0.367681 + 0.267136i
\(426\) 0 0
\(427\) 11.2768 + 34.7064i 0.545722 + 1.67956i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.83328 17.9530i −0.280979 0.864765i −0.987575 0.157148i \(-0.949770\pi\)
0.706596 0.707617i \(-0.250230\pi\)
\(432\) 0 0
\(433\) 8.34529 6.06321i 0.401049 0.291379i −0.368919 0.929461i \(-0.620272\pi\)
0.769968 + 0.638082i \(0.220272\pi\)
\(434\) 0 0
\(435\) 1.38823 4.27255i 0.0665608 0.204853i
\(436\) 0 0
\(437\) −21.2336 15.4271i −1.01574 0.737980i
\(438\) 0 0
\(439\) 28.4924 1.35987 0.679935 0.733273i \(-0.262008\pi\)
0.679935 + 0.733273i \(0.262008\pi\)
\(440\) 0 0
\(441\) 68.5464 3.26411
\(442\) 0 0
\(443\) −19.1613 13.9215i −0.910380 0.661430i 0.0307306 0.999528i \(-0.490217\pi\)
−0.941111 + 0.338098i \(0.890217\pi\)
\(444\) 0 0
\(445\) 1.68057 5.17227i 0.0796668 0.245189i
\(446\) 0 0
\(447\) −25.3783 + 18.4384i −1.20035 + 0.872107i
\(448\) 0 0
\(449\) 10.3664 + 31.9045i 0.489221 + 1.50567i 0.825773 + 0.564003i \(0.190739\pi\)
−0.336552 + 0.941665i \(0.609261\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −12.1658 37.4424i −0.571599 1.75920i
\(454\) 0 0
\(455\) −7.26889 + 5.28116i −0.340771 + 0.247585i
\(456\) 0 0
\(457\) 10.4639 32.2044i 0.489478 1.50646i −0.335910 0.941894i \(-0.609044\pi\)
0.825388 0.564565i \(-0.190956\pi\)
\(458\) 0 0
\(459\) 2.32746 + 1.69100i 0.108636 + 0.0789289i
\(460\) 0 0
\(461\) 7.12311 0.331756 0.165878 0.986146i \(-0.446954\pi\)
0.165878 + 0.986146i \(0.446954\pi\)
\(462\) 0 0
\(463\) 27.6847 1.28662 0.643308 0.765608i \(-0.277562\pi\)
0.643308 + 0.765608i \(0.277562\pi\)
\(464\) 0 0
\(465\) −1.67396 1.21620i −0.0776281 0.0564001i
\(466\) 0 0
\(467\) −7.81819 + 24.0619i −0.361783 + 1.11345i 0.590189 + 0.807265i \(0.299053\pi\)
−0.951971 + 0.306187i \(0.900947\pi\)
\(468\) 0 0
\(469\) −22.5406 + 16.3767i −1.04083 + 0.756207i
\(470\) 0 0
\(471\) −6.77701 20.8575i −0.312268 0.961063i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −5.79056 17.8215i −0.265689 0.817706i
\(476\) 0 0
\(477\) 12.2348 8.88914i 0.560195 0.407006i
\(478\) 0 0
\(479\) 4.94427 15.2169i 0.225910 0.695278i −0.772288 0.635272i \(-0.780888\pi\)
0.998198 0.0600061i \(-0.0191120\pi\)
\(480\) 0 0
\(481\) −8.68774 6.31201i −0.396127 0.287803i
\(482\) 0 0
\(483\) 86.1080 3.91805
\(484\) 0 0
\(485\) −6.42329 −0.291667
\(486\) 0 0
\(487\) 11.2703 + 8.18836i 0.510707 + 0.371050i 0.813092 0.582136i \(-0.197783\pi\)
−0.302385 + 0.953186i \(0.597783\pi\)
\(488\) 0 0
\(489\) −3.16625 + 9.74473i −0.143183 + 0.440672i
\(490\) 0 0
\(491\) 24.4697 17.7783i 1.10430 0.802322i 0.122545 0.992463i \(-0.460894\pi\)
0.981757 + 0.190141i \(0.0608944\pi\)
\(492\) 0 0
\(493\) 1.93019 + 5.94050i 0.0869312 + 0.267547i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.83328 + 17.9530i 0.261658 + 0.805302i
\(498\) 0 0
\(499\) −29.9214 + 21.7391i −1.33946 + 0.973178i −0.340001 + 0.940425i \(0.610427\pi\)
−0.999463 + 0.0327527i \(0.989573\pi\)
\(500\) 0 0
\(501\) −6.33251 + 19.4895i −0.282916 + 0.870724i
\(502\) 0 0
\(503\) 7.77913 + 5.65187i 0.346854 + 0.252004i 0.747548 0.664208i \(-0.231231\pi\)
−0.400694 + 0.916212i \(0.631231\pi\)
\(504\) 0 0
\(505\) −1.12311 −0.0499775
\(506\) 0 0
\(507\) −8.31534 −0.369297
\(508\) 0 0
\(509\) −28.5585 20.7489i −1.26583 0.919680i −0.266803 0.963751i \(-0.585967\pi\)
−0.999028 + 0.0440711i \(0.985967\pi\)
\(510\) 0 0
\(511\) 4.94427 15.2169i 0.218722 0.673156i
\(512\) 0 0
\(513\) −4.65491 + 3.38199i −0.205519 + 0.149319i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 3.36115 + 10.3445i 0.147538 + 0.454075i
\(520\) 0 0
\(521\) −11.0711 + 8.04364i −0.485035 + 0.352398i −0.803272 0.595613i \(-0.796909\pi\)
0.318237 + 0.948011i \(0.396909\pi\)
\(522\) 0 0
\(523\) 3.70820 11.4127i 0.162148 0.499042i −0.836666 0.547713i \(-0.815499\pi\)
0.998815 + 0.0486712i \(0.0154987\pi\)
\(524\) 0 0
\(525\) 49.7362 + 36.1354i 2.17066 + 1.57708i
\(526\) 0 0
\(527\) 2.87689 0.125319
\(528\) 0 0
\(529\) 20.0540 0.871912
\(530\) 0 0
\(531\) 36.9037 + 26.8121i 1.60149 + 1.16355i
\(532\) 0 0
\(533\) 6.87446 21.1574i 0.297766 0.916429i
\(534\) 0 0
\(535\) −5.16515 + 3.75270i −0.223309 + 0.162243i
\(536\) 0 0
\(537\) −8.36014 25.7299i −0.360767 1.11033i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.4639 32.2044i −0.449876 1.38458i −0.877047 0.480405i \(-0.840490\pi\)
0.427170 0.904171i \(-0.359510\pi\)
\(542\) 0 0
\(543\) 28.3593 20.6042i 1.21701 0.884211i
\(544\) 0 0
\(545\) −0.736842 + 2.26777i −0.0315629 + 0.0971405i
\(546\) 0 0
\(547\) −20.8353 15.1377i −0.890851 0.647241i 0.0452487 0.998976i \(-0.485592\pi\)
−0.936100 + 0.351735i \(0.885592\pi\)
\(548\) 0 0
\(549\) 25.3693 1.08274
\(550\) 0 0
\(551\) −12.4924 −0.532195
\(552\) 0 0
\(553\) −11.9238 8.66315i −0.507052 0.368395i
\(554\) 0 0
\(555\) 1.52841 4.70395i 0.0648772 0.199672i
\(556\) 0 0
\(557\) −16.3795 + 11.9004i −0.694023 + 0.504237i −0.877980 0.478697i \(-0.841109\pi\)
0.183957 + 0.982934i \(0.441109\pi\)
\(558\) 0 0
\(559\) 1.08390 + 3.33590i 0.0458441 + 0.141094i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.62430 + 8.07677i 0.110601 + 0.340395i 0.991004 0.133831i \(-0.0427279\pi\)
−0.880403 + 0.474226i \(0.842728\pi\)
\(564\) 0 0
\(565\) −2.07234 + 1.50564i −0.0871840 + 0.0633429i
\(566\) 0 0
\(567\) −11.0819 + 34.1065i −0.465396 + 1.43234i
\(568\) 0 0
\(569\) −28.4152 20.6448i −1.19123 0.865477i −0.197833 0.980236i \(-0.563390\pi\)
−0.993393 + 0.114759i \(0.963390\pi\)
\(570\) 0 0
\(571\) 16.4924 0.690186 0.345093 0.938568i \(-0.387847\pi\)
0.345093 + 0.938568i \(0.387847\pi\)
\(572\) 0 0
\(573\) −37.3002 −1.55824
\(574\) 0 0
\(575\) 24.8681 + 18.0677i 1.03707 + 0.753476i
\(576\) 0 0
\(577\) 3.53467 10.8786i 0.147150 0.452882i −0.850131 0.526572i \(-0.823477\pi\)
0.997281 + 0.0736891i \(0.0234772\pi\)
\(578\) 0 0
\(579\) −1.81722 + 1.32029i −0.0755212 + 0.0548694i
\(580\) 0 0
\(581\) −14.4430 44.4511i −0.599198 1.84414i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.93019 + 5.94050i 0.0798033 + 0.245609i
\(586\) 0 0
\(587\) −6.87051 + 4.99172i −0.283576 + 0.206030i −0.720476 0.693480i \(-0.756077\pi\)
0.436899 + 0.899510i \(0.356077\pi\)
\(588\) 0 0
\(589\) −1.77802 + 5.47218i −0.0732620 + 0.225477i
\(590\) 0 0
\(591\) 38.3226 + 27.8430i 1.57638 + 1.14531i
\(592\) 0 0
\(593\) 21.3693 0.877533 0.438766 0.898601i \(-0.355416\pi\)
0.438766 + 0.898601i \(0.355416\pi\)
\(594\) 0 0
\(595\) 5.75379 0.235882
\(596\) 0 0
\(597\) −42.4673 30.8543i −1.73807 1.26278i
\(598\) 0 0
\(599\) −4.94427 + 15.2169i −0.202017 + 0.621746i 0.797805 + 0.602915i \(0.205994\pi\)
−0.999823 + 0.0188306i \(0.994006\pi\)
\(600\) 0 0
\(601\) 16.3795 11.9004i 0.668135 0.485428i −0.201265 0.979537i \(-0.564505\pi\)
0.869400 + 0.494108i \(0.164505\pi\)
\(602\) 0 0
\(603\) 5.98545 + 18.4213i 0.243746 + 0.750174i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.66548 11.2812i −0.148777 0.457889i 0.848700 0.528874i \(-0.177386\pi\)
−0.997477 + 0.0709851i \(0.977386\pi\)
\(608\) 0 0
\(609\) 33.1574 24.0903i 1.34361 0.976188i
\(610\) 0 0
\(611\) −7.72074 + 23.7620i −0.312348 + 0.961308i
\(612\) 0 0
\(613\) −37.1029 26.9569i −1.49857 1.08878i −0.970945 0.239301i \(-0.923082\pi\)
−0.527628 0.849476i \(-0.676918\pi\)
\(614\) 0 0
\(615\) 10.2462 0.413167
\(616\) 0 0
\(617\) 30.4924 1.22758 0.613789 0.789470i \(-0.289644\pi\)
0.613789 + 0.789470i \(0.289644\pi\)
\(618\) 0 0
\(619\) 8.03424 + 5.83722i 0.322923 + 0.234618i 0.737422 0.675432i \(-0.236043\pi\)
−0.414498 + 0.910050i \(0.636043\pi\)
\(620\) 0 0
\(621\) 2.91664 8.97650i 0.117041 0.360214i
\(622\) 0 0
\(623\) 40.1398 29.1633i 1.60817 1.16840i
\(624\) 0 0
\(625\) 6.29447 + 19.3724i 0.251779 + 0.774895i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.12508 + 6.54032i 0.0847324 + 0.260779i
\(630\) 0 0
\(631\) 4.00142 2.90720i 0.159294 0.115734i −0.505283 0.862954i \(-0.668612\pi\)
0.664577 + 0.747220i \(0.268612\pi\)
\(632\) 0 0
\(633\) 19.3873 59.6680i 0.770576 2.37159i
\(634\) 0 0
\(635\) 4.65491 + 3.38199i 0.184725 + 0.134210i
\(636\) 0 0
\(637\) −60.1080 −2.38156
\(638\) 0 0
\(639\) 13.1231 0.519142
\(640\) 0 0
\(641\) −5.90597 4.29094i −0.233272 0.169482i 0.465009 0.885306i \(-0.346051\pi\)
−0.698281 + 0.715824i \(0.746051\pi\)
\(642\) 0 0
\(643\) 11.1793 34.4064i 0.440870 1.35686i −0.446080 0.894993i \(-0.647180\pi\)
0.886950 0.461865i \(-0.152820\pi\)
\(644\) 0 0
\(645\) −1.30699 + 0.949584i −0.0514627 + 0.0373898i
\(646\) 0 0
\(647\) 2.91664 + 8.97650i 0.114665 + 0.352903i 0.991877 0.127201i \(-0.0405992\pi\)
−0.877212 + 0.480103i \(0.840599\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −5.83328 17.9530i −0.228624 0.703633i
\(652\) 0 0
\(653\) 8.23343 5.98194i 0.322199 0.234091i −0.414914 0.909861i \(-0.636188\pi\)
0.737113 + 0.675769i \(0.236188\pi\)
\(654\) 0 0
\(655\) −1.97291 + 6.07199i −0.0770880 + 0.237252i
\(656\) 0 0
\(657\) −8.99878 6.53800i −0.351076 0.255072i
\(658\) 0 0
\(659\) −29.6155 −1.15366 −0.576829 0.816865i \(-0.695710\pi\)
−0.576829 + 0.816865i \(0.695710\pi\)
\(660\) 0 0
\(661\) 21.1922 0.824282 0.412141 0.911120i \(-0.364781\pi\)
0.412141 + 0.911120i \(0.364781\pi\)
\(662\) 0 0
\(663\) −12.9443 9.40456i −0.502714 0.365243i
\(664\) 0 0
\(665\) −3.55604 + 10.9444i −0.137897 + 0.424404i
\(666\) 0 0
\(667\) 16.5787 12.0451i 0.641931 0.466390i
\(668\) 0 0
\(669\) 6.97190 + 21.4573i 0.269549 + 0.829588i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 15.2132 + 46.8215i 0.586427 + 1.80484i 0.593463 + 0.804862i \(0.297761\pi\)
−0.00703553 + 0.999975i \(0.502239\pi\)
\(674\) 0 0
\(675\) 5.45167 3.96087i 0.209835 0.152454i
\(676\) 0 0
\(677\) −8.88073 + 27.3321i −0.341314 + 1.05046i 0.622214 + 0.782848i \(0.286234\pi\)
−0.963528 + 0.267609i \(0.913766\pi\)
\(678\) 0 0
\(679\) −47.4087 34.4444i −1.81938 1.32186i
\(680\) 0 0
\(681\) −38.1080 −1.46030
\(682\) 0 0
\(683\) −42.7386 −1.63535 −0.817674 0.575681i \(-0.804737\pi\)
−0.817674 + 0.575681i \(0.804737\pi\)
\(684\) 0 0
\(685\) −5.70679 4.14622i −0.218045 0.158419i
\(686\) 0 0
\(687\) 1.83274 5.64059i 0.0699234 0.215202i
\(688\) 0 0
\(689\) −10.7287 + 7.79484i −0.408730 + 0.296960i
\(690\) 0 0
\(691\) −14.5405 44.7510i −0.553146 1.70241i −0.700790 0.713367i \(-0.747169\pi\)
0.147644 0.989041i \(-0.452831\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.19334 + 3.67273i 0.0452661 + 0.139315i
\(696\) 0 0
\(697\) −11.5254 + 8.37371i −0.436557 + 0.317177i
\(698\) 0 0
\(699\) −13.7489 + 42.3148i −0.520032 + 1.60049i
\(700\) 0 0
\(701\) 14.1639 + 10.2907i 0.534964 + 0.388674i 0.822211 0.569182i \(-0.192740\pi\)
−0.287247 + 0.957856i \(0.592740\pi\)
\(702\) 0 0
\(703\) −13.7538 −0.518734
\(704\) 0 0
\(705\) −11.5076 −0.433400
\(706\) 0 0
\(707\) −8.28936 6.02257i −0.311753 0.226502i
\(708\) 0 0
\(709\) 7.04799 21.6915i 0.264693 0.814640i −0.727071 0.686562i \(-0.759119\pi\)
0.991764 0.128078i \(-0.0408809\pi\)
\(710\) 0 0
\(711\) −8.28936 + 6.02257i −0.310875 + 0.225864i
\(712\) 0 0
\(713\) −2.91664 8.97650i −0.109229 0.336172i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3878 + 31.9703i 0.387938 + 1.19395i
\(718\) 0 0
\(719\) 21.3769 15.5312i 0.797224 0.579217i −0.112875 0.993609i \(-0.536006\pi\)
0.910098 + 0.414392i \(0.136006\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 43.2640 + 31.4331i 1.60901 + 1.16901i
\(724\) 0 0
\(725\) 14.6307 0.543370
\(726\) 0 0
\(727\) −35.6847 −1.32347 −0.661735 0.749737i \(-0.730180\pi\)
−0.661735 + 0.749737i \(0.730180\pi\)
\(728\) 0 0
\(729\) 29.1124 + 21.1514i 1.07824 + 0.783384i
\(730\) 0 0
\(731\) 0.694117 2.13627i 0.0256729 0.0790129i
\(732\) 0 0
\(733\) −5.76271 + 4.18686i −0.212851 + 0.154645i −0.689103 0.724664i \(-0.741995\pi\)
0.476252 + 0.879309i \(0.341995\pi\)
\(734\) 0 0
\(735\) −8.55503 26.3297i −0.315557 0.971185i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 8.45758 + 26.0298i 0.311117 + 0.957520i 0.977323 + 0.211753i \(0.0679171\pi\)
−0.666206 + 0.745768i \(0.732083\pi\)
\(740\) 0 0
\(741\) 25.8885 18.8091i 0.951039 0.690971i
\(742\) 0 0
\(743\) 11.9709 36.8426i 0.439170 1.35163i −0.449583 0.893238i \(-0.648428\pi\)
0.888753 0.458387i \(-0.151572\pi\)
\(744\) 0 0
\(745\) 5.56352 + 4.04214i 0.203832 + 0.148092i
\(746\) 0 0
\(747\) −32.4924 −1.18884
\(748\) 0 0
\(749\) −58.2462 −2.12827
\(750\) 0 0
\(751\) −1.16373 0.845498i −0.0424650 0.0308527i 0.566350 0.824165i \(-0.308355\pi\)
−0.608815 + 0.793312i \(0.708355\pi\)
\(752\) 0 0
\(753\) −2.02763 + 6.24041i −0.0738910 + 0.227413i
\(754\) 0 0
\(755\) −6.98237 + 5.07299i −0.254114 + 0.184625i
\(756\) 0 0
\(757\) 9.96463 + 30.6680i 0.362171 + 1.11465i 0.951734 + 0.306924i \(0.0992998\pi\)
−0.589563 + 0.807722i \(0.700700\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.965093 + 2.97025i 0.0349846 + 0.107671i 0.967024 0.254686i \(-0.0819720\pi\)
−0.932039 + 0.362357i \(0.881972\pi\)
\(762\) 0 0
\(763\) −17.5992 + 12.7866i −0.637133 + 0.462904i
\(764\) 0 0
\(765\) 1.23607 3.80423i 0.0446901 0.137542i
\(766\) 0 0
\(767\) −32.3607 23.5114i −1.16848 0.848948i
\(768\) 0 0
\(769\) 15.6155 0.563110 0.281555 0.959545i \(-0.409150\pi\)
0.281555 + 0.959545i \(0.409150\pi\)
\(770\) 0 0
\(771\) 72.3542 2.60577
\(772\) 0 0
\(773\) 7.06970 + 5.13644i 0.254280 + 0.184745i 0.707621 0.706592i \(-0.249768\pi\)
−0.453342 + 0.891337i \(0.649768\pi\)
\(774\) 0 0
\(775\) 2.08235 6.40882i 0.0748003 0.230212i
\(776\) 0 0
\(777\) 36.5054 26.5227i 1.30962 0.951496i
\(778\) 0 0
\(779\) −8.80464 27.0979i −0.315459 0.970883i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.38823 4.27255i −0.0496115 0.152688i
\(784\) 0 0
\(785\) −3.88956 + 2.82593i −0.138824 + 0.100862i
\(786\) 0 0
\(787\) 14.2909 43.9828i 0.509414 1.56782i −0.283806 0.958882i \(-0.591597\pi\)
0.793221 0.608934i \(-0.208403\pi\)
\(788\) 0 0
\(789\) 22.5406 + 16.3767i 0.802467 + 0.583027i
\(790\) 0 0
\(791\) −23.3693 −0.830917
\(792\) 0 0
\(793\) −22.2462 −0.789986
\(794\) 0 0
\(795\) −4.94144 3.59016i −0.175255 0.127330i
\(796\) 0 0
\(797\) −10.7562 + 33.1042i −0.381004 + 1.17261i 0.558334 + 0.829616i \(0.311441\pi\)
−0.939338 + 0.342993i \(0.888559\pi\)
\(798\) 0 0
\(799\) 12.9443 9.40456i 0.457935 0.332710i
\(800\) 0 0
\(801\) −10.6587 32.8042i −0.376608 1.15908i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −5.83328 17.9530i −0.205596 0.632760i
\(806\) 0 0
\(807\) −59.5562 + 43.2701i −2.09648 + 1.52318i
\(808\) 0 0
\(809\) 1.35488 4.16988i 0.0476349 0.146605i −0.924410 0.381400i \(-0.875442\pi\)
0.972045 + 0.234795i \(0.0754419\pi\)
\(810\) 0 0
\(811\) 0.908612 + 0.660145i 0.0319057 + 0.0231808i 0.603624 0.797269i \(-0.293723\pi\)
−0.571718 + 0.820450i \(0.693723\pi\)
\(812\) 0 0
\(813\) −11.5076 −0.403588
\(814\) 0 0
\(815\) 2.24621 0.0786813
\(816\) 0 0
\(817\) 3.63445 + 2.64058i 0.127153 + 0.0923822i
\(818\) 0 0
\(819\) −17.6093 + 54.1958i −0.615318 + 1.89375i
\(820\) 0 0
\(821\) 18.5951 13.5102i 0.648975 0.471508i −0.213947 0.976845i \(-0.568632\pi\)
0.862922 + 0.505338i \(0.168632\pi\)
\(822\) 0 0
\(823\) 4.80410 + 14.7855i 0.167460 + 0.515390i 0.999209 0.0397620i \(-0.0126600\pi\)
−0.831749 + 0.555152i \(0.812660\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.31842 + 10.2130i 0.115393 + 0.355142i 0.992029 0.126012i \(-0.0402177\pi\)
−0.876636 + 0.481154i \(0.840218\pi\)
\(828\) 0 0
\(829\) −35.5408 + 25.8219i −1.23438 + 0.896832i −0.997211 0.0746352i \(-0.976221\pi\)
−0.237173 + 0.971467i \(0.576221\pi\)
\(830\) 0 0
\(831\) 14.2481 43.8513i 0.494263 1.52118i
\(832\) 0 0
\(833\) 31.1410 + 22.6253i 1.07897 + 0.783919i
\(834\) 0 0
\(835\) 4.49242 0.155467
\(836\) 0 0
\(837\) −2.06913 −0.0715196
\(838\) 0 0
\(839\) −0.653495 0.474792i −0.0225611 0.0163916i 0.576448 0.817134i \(-0.304439\pi\)
−0.599009 + 0.800743i \(0.704439\pi\)
\(840\) 0 0
\(841\) −5.94741 + 18.3042i −0.205083 + 0.631181i
\(842\) 0 0
\(843\) −0.510233 + 0.370706i −0.0175734 + 0.0127678i
\(844\) 0 0
\(845\) 0.563313 + 1.73370i 0.0193786 + 0.0596411i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −15.8313 48.7236i −0.543328 1.67219i
\(850\) 0 0
\(851\) 18.2527 13.2613i 0.625694 0.454593i
\(852\) 0 0
\(853\) 4.17407 12.8465i 0.142917 0.439855i −0.853820 0.520569i \(-0.825720\pi\)
0.996737 + 0.0807139i \(0.0257200\pi\)
\(854\) 0 0
\(855\) 6.47214 + 4.70228i 0.221342 + 0.160815i
\(856\) 0 0
\(857\) 44.1080 1.50670 0.753349 0.657620i \(-0.228437\pi\)
0.753349 + 0.657620i \(0.228437\pi\)
\(858\) 0 0
\(859\) −7.05398 −0.240679 −0.120339 0.992733i \(-0.538398\pi\)
−0.120339 + 0.992733i \(0.538398\pi\)
\(860\) 0 0
\(861\) 75.6247 + 54.9446i 2.57728 + 1.87251i
\(862\) 0 0
\(863\) −1.08390 + 3.33590i −0.0368964 + 0.113556i −0.967808 0.251688i \(-0.919014\pi\)
0.930912 + 0.365244i \(0.119014\pi\)
\(864\) 0 0
\(865\) 1.92908 1.40156i 0.0655906 0.0476544i
\(866\) 0 0
\(867\) −10.2903 31.6704i −0.349478 1.07558i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −5.24861 16.1535i −0.177842 0.547342i
\(872\) 0 0
\(873\) −32.9582 + 23.9456i −1.11547 + 0.810435i
\(874\) 0 0
\(875\) 8.60975 26.4981i 0.291063 0.895799i
\(876\) 0 0
\(877\) 24.7807 + 18.0043i 0.836786 + 0.607961i 0.921471 0.388447i \(-0.126988\pi\)
−0.0846848 + 0.996408i \(0.526988\pi\)
\(878\) 0 0
\(879\) −54.7386 −1.84629
\(880\) 0 0
\(881\) −19.3002 −0.650240 −0.325120 0.945673i \(-0.605405\pi\)
−0.325120 + 0.945673i \(0.605405\pi\)
\(882\) 0 0
\(883\) 19.8148 + 14.3963i 0.666821 + 0.484474i 0.868959 0.494883i \(-0.164789\pi\)
−0.202139 + 0.979357i \(0.564789\pi\)
\(884\) 0 0
\(885\) 5.69311 17.5216i 0.191372 0.588982i
\(886\) 0 0
\(887\) −7.77913 + 5.65187i −0.261197 + 0.189771i −0.710675 0.703521i \(-0.751610\pi\)
0.449477 + 0.893292i \(0.351610\pi\)
\(888\) 0 0
\(889\) 16.2211 + 49.9233i 0.544037 + 1.67437i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.88854 + 30.4338i 0.330908 + 1.01843i
\(894\) 0 0
\(895\) −4.79817 + 3.48608i −0.160385 + 0.116527i
\(896\) 0 0
\(897\) −16.2211 + 49.9233i −0.541605 + 1.66689i
\(898\) 0 0
\(899\) −3.63445 2.64058i −0.121216 0.0880683i
\(900\) 0 0
\(901\) 8.49242 0.282924
\(902\) 0 0
\(903\) −14.7386 −0.490471
\(904\) 0 0
\(905\) −6.21702 4.51693i −0.206661 0.150148i
\(906\) 0 0
\(907\) −5.09644 + 15.6852i −0.169224 + 0.520819i −0.999323 0.0367978i \(-0.988284\pi\)
0.830098 + 0.557617i \(0.188284\pi\)
\(908\) 0 0
\(909\) −5.76271 + 4.18686i −0.191137 + 0.138869i
\(910\) 0 0
\(911\) 7.02662 + 21.6257i 0.232802 + 0.716492i 0.997405 + 0.0719905i \(0.0229351\pi\)
−0.764603 + 0.644502i \(0.777065\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −3.16625 9.74473i −0.104673 0.322151i
\(916\) 0 0
\(917\) −47.1222 + 34.2363i −1.55611 + 1.13058i
\(918\) 0 0
\(919\) −9.69365 + 29.8340i −0.319764 + 0.984133i 0.653985 + 0.756508i \(0.273096\pi\)
−0.973749 + 0.227625i \(0.926904\pi\)
\(920\) 0 0
\(921\) 1.02047 + 0.741412i 0.0336255 + 0.0244304i
\(922\) 0 0
\(923\) −11.5076 −0.378777
\(924\) 0 0
\(925\) 16.1080 0.529626
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.17407 12.8465i 0.136947 0.421479i −0.858941 0.512075i \(-0.828877\pi\)
0.995888 + 0.0905957i \(0.0288771\pi\)
\(930\) 0 0
\(931\) −62.2820 + 45.2506i −2.04121 + 1.48303i
\(932\) 0 0
\(933\) 20.7755 + 63.9405i 0.680161 + 2.09332i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.92190 30.5365i −0.324134 0.997583i −0.971830 0.235684i \(-0.924267\pi\)
0.647695 0.761899i \(-0.275733\pi\)
\(938\) 0 0
\(939\) −22.3974 + 16.2726i −0.730910 + 0.531037i
\(940\) 0 0
\(941\) 4.86819 14.9827i 0.158698 0.488423i −0.839818 0.542867i \(-0.817339\pi\)
0.998517 + 0.0544439i \(0.0173386\pi\)
\(942\) 0 0
\(943\) 37.8123 + 27.4723i 1.23134 + 0.894621i
\(944\) 0 0
\(945\) −4.13826 −0.134618
\(946\) 0 0
\(947\) −0.315342 −0.0102472 −0.00512361 0.999987i \(-0.501631\pi\)
−0.00512361 + 0.999987i \(0.501631\pi\)
\(948\) 0 0
\(949\) 7.89098 + 5.73313i 0.256152 + 0.186105i
\(950\) 0 0
\(951\) −27.5526 + 84.7980i −0.893453 + 2.74976i
\(952\) 0 0
\(953\) −13.1435 + 9.54928i −0.425758 + 0.309332i −0.779951 0.625841i \(-0.784756\pi\)
0.354192 + 0.935173i \(0.384756\pi\)
\(954\) 0 0
\(955\) 2.52686 + 7.77687i 0.0817672 + 0.251653i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −19.8865 61.2044i −0.642170 1.97639i
\(960\) 0 0
\(961\) 23.4056 17.0051i 0.755018 0.548553i
\(962\) 0 0
\(963\) −12.5128 + 38.5106i −0.403221 + 1.24099i
\(964\) 0 0
\(965\) 0.398378 + 0.289439i 0.0128242 + 0.00931736i
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) −20.4924 −0.658311
\(970\) 0 0
\(971\) −28.7576 20.8936i −0.922877 0.670509i 0.0213618 0.999772i \(-0.493200\pi\)
−0.944238 + 0.329263i \(0.893200\pi\)
\(972\) 0 0
\(973\) −10.8870 + 33.5067i −0.349021 + 1.07418i
\(974\) 0 0
\(975\) −30.3197 + 22.0286i −0.971009 + 0.705479i
\(976\) 0 0
\(977\) 10.2570 + 31.5677i 0.328149 + 1.00994i 0.969999 + 0.243109i \(0.0781674\pi\)
−0.641850 + 0.766831i \(0.721833\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 4.67330 + 14.3829i 0.149207 + 0.459212i
\(982\) 0 0
\(983\) −1.67396 + 1.21620i −0.0533911 + 0.0387909i −0.614161 0.789181i \(-0.710505\pi\)
0.560770 + 0.827972i \(0.310505\pi\)
\(984\) 0 0
\(985\) 3.20898 9.87622i 0.102247 0.314683i
\(986\) 0 0
\(987\) −84.9345 61.7085i −2.70350 1.96420i
\(988\) 0 0
\(989\) −7.36932 −0.234331
\(990\) 0 0
\(991\) 28.4924 0.905092 0.452546 0.891741i \(-0.350516\pi\)
0.452546 + 0.891741i \(0.350516\pi\)
\(992\) 0 0
\(993\) −12.5773 9.13794i −0.399129 0.289984i
\(994\) 0 0
\(995\) −3.55604 + 10.9444i −0.112734 + 0.346959i
\(996\) 0 0
\(997\) 28.9254 21.0155i 0.916077 0.665569i −0.0264672 0.999650i \(-0.508426\pi\)
0.942545 + 0.334081i \(0.108426\pi\)
\(998\) 0 0
\(999\) −1.52841 4.70395i −0.0483566 0.148826i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.i.q.753.1 8
11.2 odd 10 968.2.i.r.9.1 8
11.3 even 5 968.2.a.j.1.2 2
11.4 even 5 inner 968.2.i.q.729.2 8
11.5 even 5 inner 968.2.i.q.81.2 8
11.6 odd 10 968.2.i.r.81.2 8
11.7 odd 10 968.2.i.r.729.2 8
11.8 odd 10 88.2.a.b.1.2 2
11.9 even 5 inner 968.2.i.q.9.1 8
11.10 odd 2 968.2.i.r.753.1 8
33.8 even 10 792.2.a.h.1.2 2
33.14 odd 10 8712.2.a.bb.1.2 2
44.3 odd 10 1936.2.a.r.1.1 2
44.19 even 10 176.2.a.d.1.1 2
55.8 even 20 2200.2.b.g.1849.4 4
55.19 odd 10 2200.2.a.o.1.1 2
55.52 even 20 2200.2.b.g.1849.1 4
77.41 even 10 4312.2.a.n.1.1 2
88.3 odd 10 7744.2.a.cl.1.2 2
88.19 even 10 704.2.a.p.1.2 2
88.69 even 10 7744.2.a.by.1.1 2
88.85 odd 10 704.2.a.m.1.1 2
132.107 odd 10 1584.2.a.t.1.2 2
176.19 even 20 2816.2.c.p.1409.1 4
176.85 odd 20 2816.2.c.w.1409.1 4
176.107 even 20 2816.2.c.p.1409.4 4
176.173 odd 20 2816.2.c.w.1409.4 4
220.19 even 10 4400.2.a.bp.1.2 2
220.63 odd 20 4400.2.b.v.4049.1 4
220.107 odd 20 4400.2.b.v.4049.4 4
264.107 odd 10 6336.2.a.cx.1.1 2
264.173 even 10 6336.2.a.cu.1.1 2
308.195 odd 10 8624.2.a.cb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.a.b.1.2 2 11.8 odd 10
176.2.a.d.1.1 2 44.19 even 10
704.2.a.m.1.1 2 88.85 odd 10
704.2.a.p.1.2 2 88.19 even 10
792.2.a.h.1.2 2 33.8 even 10
968.2.a.j.1.2 2 11.3 even 5
968.2.i.q.9.1 8 11.9 even 5 inner
968.2.i.q.81.2 8 11.5 even 5 inner
968.2.i.q.729.2 8 11.4 even 5 inner
968.2.i.q.753.1 8 1.1 even 1 trivial
968.2.i.r.9.1 8 11.2 odd 10
968.2.i.r.81.2 8 11.6 odd 10
968.2.i.r.729.2 8 11.7 odd 10
968.2.i.r.753.1 8 11.10 odd 2
1584.2.a.t.1.2 2 132.107 odd 10
1936.2.a.r.1.1 2 44.3 odd 10
2200.2.a.o.1.1 2 55.19 odd 10
2200.2.b.g.1849.1 4 55.52 even 20
2200.2.b.g.1849.4 4 55.8 even 20
2816.2.c.p.1409.1 4 176.19 even 20
2816.2.c.p.1409.4 4 176.107 even 20
2816.2.c.w.1409.1 4 176.85 odd 20
2816.2.c.w.1409.4 4 176.173 odd 20
4312.2.a.n.1.1 2 77.41 even 10
4400.2.a.bp.1.2 2 220.19 even 10
4400.2.b.v.4049.1 4 220.63 odd 20
4400.2.b.v.4049.4 4 220.107 odd 20
6336.2.a.cu.1.1 2 264.173 even 10
6336.2.a.cx.1.1 2 264.107 odd 10
7744.2.a.by.1.1 2 88.69 even 10
7744.2.a.cl.1.2 2 88.3 odd 10
8624.2.a.cb.1.2 2 308.195 odd 10
8712.2.a.bb.1.2 2 33.14 odd 10