Properties

Label 960.3.bg.b.577.2
Level $960$
Weight $3$
Character 960.577
Analytic conductor $26.158$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,3,Mod(193,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-12,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 960.577
Dual form 960.3.bg.b.193.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.22474i) q^{3} +(-4.22474 - 2.67423i) q^{5} +(7.44949 + 7.44949i) q^{7} -3.00000i q^{9} +16.2474 q^{11} +(-12.2474 + 12.2474i) q^{13} +(-8.44949 + 1.89898i) q^{15} +(-7.55051 - 7.55051i) q^{17} +14.4949i q^{19} +18.2474 q^{21} +(-2.65153 + 2.65153i) q^{23} +(10.6969 + 22.5959i) q^{25} +(-3.67423 - 3.67423i) q^{27} +34.2474i q^{29} -20.4949 q^{31} +(19.8990 - 19.8990i) q^{33} +(-11.5505 - 51.3939i) q^{35} +(-7.34847 - 7.34847i) q^{37} +30.0000i q^{39} +25.5051 q^{41} +(-25.1010 + 25.1010i) q^{43} +(-8.02270 + 12.6742i) q^{45} +(22.0454 + 22.0454i) q^{47} +61.9898i q^{49} -18.4949 q^{51} +(35.3031 - 35.3031i) q^{53} +(-68.6413 - 43.4495i) q^{55} +(17.7526 + 17.7526i) q^{57} +88.7423i q^{59} +102.495 q^{61} +(22.3485 - 22.3485i) q^{63} +(84.4949 - 18.9898i) q^{65} +(24.6969 + 24.6969i) q^{67} +6.49490i q^{69} +77.9796 q^{71} +(-44.1918 + 44.1918i) q^{73} +(40.7753 + 14.5732i) q^{75} +(121.035 + 121.035i) q^{77} -48.4949i q^{79} -9.00000 q^{81} +(101.641 - 101.641i) q^{83} +(11.7071 + 52.0908i) q^{85} +(41.9444 + 41.9444i) q^{87} +156.969i q^{89} -182.474 q^{91} +(-25.1010 + 25.1010i) q^{93} +(38.7628 - 61.2372i) q^{95} +(55.4041 + 55.4041i) q^{97} -48.7423i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{5} + 20 q^{7} + 16 q^{11} - 24 q^{15} - 40 q^{17} + 24 q^{21} - 40 q^{23} - 16 q^{25} + 16 q^{31} + 60 q^{33} - 56 q^{35} + 200 q^{41} - 120 q^{43} + 12 q^{45} + 24 q^{51} + 200 q^{53} - 108 q^{55}+ \cdots + 300 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 1.22474i 0.408248 0.408248i
\(4\) 0 0
\(5\) −4.22474 2.67423i −0.844949 0.534847i
\(6\) 0 0
\(7\) 7.44949 + 7.44949i 1.06421 + 1.06421i 0.997792 + 0.0664211i \(0.0211581\pi\)
0.0664211 + 0.997792i \(0.478842\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) 16.2474 1.47704 0.738520 0.674231i \(-0.235525\pi\)
0.738520 + 0.674231i \(0.235525\pi\)
\(12\) 0 0
\(13\) −12.2474 + 12.2474i −0.942111 + 0.942111i −0.998414 0.0563023i \(-0.982069\pi\)
0.0563023 + 0.998414i \(0.482069\pi\)
\(14\) 0 0
\(15\) −8.44949 + 1.89898i −0.563299 + 0.126599i
\(16\) 0 0
\(17\) −7.55051 7.55051i −0.444148 0.444148i 0.449256 0.893403i \(-0.351689\pi\)
−0.893403 + 0.449256i \(0.851689\pi\)
\(18\) 0 0
\(19\) 14.4949i 0.762889i 0.924392 + 0.381445i \(0.124573\pi\)
−0.924392 + 0.381445i \(0.875427\pi\)
\(20\) 0 0
\(21\) 18.2474 0.868926
\(22\) 0 0
\(23\) −2.65153 + 2.65153i −0.115284 + 0.115284i −0.762395 0.647111i \(-0.775977\pi\)
0.647111 + 0.762395i \(0.275977\pi\)
\(24\) 0 0
\(25\) 10.6969 + 22.5959i 0.427878 + 0.903837i
\(26\) 0 0
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 0 0
\(29\) 34.2474i 1.18095i 0.807057 + 0.590473i \(0.201059\pi\)
−0.807057 + 0.590473i \(0.798941\pi\)
\(30\) 0 0
\(31\) −20.4949 −0.661126 −0.330563 0.943784i \(-0.607239\pi\)
−0.330563 + 0.943784i \(0.607239\pi\)
\(32\) 0 0
\(33\) 19.8990 19.8990i 0.602999 0.602999i
\(34\) 0 0
\(35\) −11.5505 51.3939i −0.330015 1.46840i
\(36\) 0 0
\(37\) −7.34847 7.34847i −0.198607 0.198607i 0.600795 0.799403i \(-0.294851\pi\)
−0.799403 + 0.600795i \(0.794851\pi\)
\(38\) 0 0
\(39\) 30.0000i 0.769231i
\(40\) 0 0
\(41\) 25.5051 0.622076 0.311038 0.950398i \(-0.399323\pi\)
0.311038 + 0.950398i \(0.399323\pi\)
\(42\) 0 0
\(43\) −25.1010 + 25.1010i −0.583745 + 0.583745i −0.935930 0.352186i \(-0.885439\pi\)
0.352186 + 0.935930i \(0.385439\pi\)
\(44\) 0 0
\(45\) −8.02270 + 12.6742i −0.178282 + 0.281650i
\(46\) 0 0
\(47\) 22.0454 + 22.0454i 0.469051 + 0.469051i 0.901607 0.432556i \(-0.142388\pi\)
−0.432556 + 0.901607i \(0.642388\pi\)
\(48\) 0 0
\(49\) 61.9898i 1.26510i
\(50\) 0 0
\(51\) −18.4949 −0.362645
\(52\) 0 0
\(53\) 35.3031 35.3031i 0.666096 0.666096i −0.290714 0.956810i \(-0.593893\pi\)
0.956810 + 0.290714i \(0.0938929\pi\)
\(54\) 0 0
\(55\) −68.6413 43.4495i −1.24802 0.789991i
\(56\) 0 0
\(57\) 17.7526 + 17.7526i 0.311448 + 0.311448i
\(58\) 0 0
\(59\) 88.7423i 1.50411i 0.659102 + 0.752054i \(0.270937\pi\)
−0.659102 + 0.752054i \(0.729063\pi\)
\(60\) 0 0
\(61\) 102.495 1.68024 0.840122 0.542397i \(-0.182483\pi\)
0.840122 + 0.542397i \(0.182483\pi\)
\(62\) 0 0
\(63\) 22.3485 22.3485i 0.354738 0.354738i
\(64\) 0 0
\(65\) 84.4949 18.9898i 1.29992 0.292151i
\(66\) 0 0
\(67\) 24.6969 + 24.6969i 0.368611 + 0.368611i 0.866970 0.498359i \(-0.166064\pi\)
−0.498359 + 0.866970i \(0.666064\pi\)
\(68\) 0 0
\(69\) 6.49490i 0.0941289i
\(70\) 0 0
\(71\) 77.9796 1.09830 0.549152 0.835722i \(-0.314951\pi\)
0.549152 + 0.835722i \(0.314951\pi\)
\(72\) 0 0
\(73\) −44.1918 + 44.1918i −0.605368 + 0.605368i −0.941732 0.336364i \(-0.890803\pi\)
0.336364 + 0.941732i \(0.390803\pi\)
\(74\) 0 0
\(75\) 40.7753 + 14.5732i 0.543670 + 0.194310i
\(76\) 0 0
\(77\) 121.035 + 121.035i 1.57189 + 1.57189i
\(78\) 0 0
\(79\) 48.4949i 0.613859i −0.951732 0.306930i \(-0.900698\pi\)
0.951732 0.306930i \(-0.0993017\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) 101.641 101.641i 1.22459 1.22459i 0.258613 0.965981i \(-0.416734\pi\)
0.965981 0.258613i \(-0.0832656\pi\)
\(84\) 0 0
\(85\) 11.7071 + 52.0908i 0.137731 + 0.612833i
\(86\) 0 0
\(87\) 41.9444 + 41.9444i 0.482119 + 0.482119i
\(88\) 0 0
\(89\) 156.969i 1.76370i 0.471529 + 0.881850i \(0.343702\pi\)
−0.471529 + 0.881850i \(0.656298\pi\)
\(90\) 0 0
\(91\) −182.474 −2.00521
\(92\) 0 0
\(93\) −25.1010 + 25.1010i −0.269903 + 0.269903i
\(94\) 0 0
\(95\) 38.7628 61.2372i 0.408029 0.644603i
\(96\) 0 0
\(97\) 55.4041 + 55.4041i 0.571176 + 0.571176i 0.932457 0.361281i \(-0.117660\pi\)
−0.361281 + 0.932457i \(0.617660\pi\)
\(98\) 0 0
\(99\) 48.7423i 0.492347i
\(100\) 0 0
\(101\) −45.7526 −0.452996 −0.226498 0.974012i \(-0.572728\pi\)
−0.226498 + 0.974012i \(0.572728\pi\)
\(102\) 0 0
\(103\) 23.1566 23.1566i 0.224822 0.224822i −0.585704 0.810525i \(-0.699182\pi\)
0.810525 + 0.585704i \(0.199182\pi\)
\(104\) 0 0
\(105\) −77.0908 48.7980i −0.734198 0.464742i
\(106\) 0 0
\(107\) −16.3383 16.3383i −0.152694 0.152694i 0.626626 0.779320i \(-0.284435\pi\)
−0.779320 + 0.626626i \(0.784435\pi\)
\(108\) 0 0
\(109\) 159.485i 1.46316i −0.681754 0.731581i \(-0.738783\pi\)
0.681754 0.731581i \(-0.261217\pi\)
\(110\) 0 0
\(111\) −18.0000 −0.162162
\(112\) 0 0
\(113\) 13.0556 13.0556i 0.115536 0.115536i −0.646975 0.762511i \(-0.723966\pi\)
0.762511 + 0.646975i \(0.223966\pi\)
\(114\) 0 0
\(115\) 18.2929 4.11123i 0.159068 0.0357498i
\(116\) 0 0
\(117\) 36.7423 + 36.7423i 0.314037 + 0.314037i
\(118\) 0 0
\(119\) 112.495i 0.945335i
\(120\) 0 0
\(121\) 142.980 1.18165
\(122\) 0 0
\(123\) 31.2372 31.2372i 0.253961 0.253961i
\(124\) 0 0
\(125\) 15.2350 124.068i 0.121880 0.992545i
\(126\) 0 0
\(127\) 7.44949 + 7.44949i 0.0586574 + 0.0586574i 0.735827 0.677170i \(-0.236794\pi\)
−0.677170 + 0.735827i \(0.736794\pi\)
\(128\) 0 0
\(129\) 61.4847i 0.476626i
\(130\) 0 0
\(131\) −19.7526 −0.150783 −0.0753914 0.997154i \(-0.524021\pi\)
−0.0753914 + 0.997154i \(0.524021\pi\)
\(132\) 0 0
\(133\) −107.980 + 107.980i −0.811877 + 0.811877i
\(134\) 0 0
\(135\) 5.69694 + 25.3485i 0.0421995 + 0.187766i
\(136\) 0 0
\(137\) −101.641 101.641i −0.741907 0.741907i 0.231037 0.972945i \(-0.425788\pi\)
−0.972945 + 0.231037i \(0.925788\pi\)
\(138\) 0 0
\(139\) 24.0204i 0.172809i −0.996260 0.0864044i \(-0.972462\pi\)
0.996260 0.0864044i \(-0.0275377\pi\)
\(140\) 0 0
\(141\) 54.0000 0.382979
\(142\) 0 0
\(143\) −198.990 + 198.990i −1.39154 + 1.39154i
\(144\) 0 0
\(145\) 91.5857 144.687i 0.631626 0.997840i
\(146\) 0 0
\(147\) 75.9217 + 75.9217i 0.516474 + 0.516474i
\(148\) 0 0
\(149\) 199.732i 1.34048i 0.742143 + 0.670242i \(0.233810\pi\)
−0.742143 + 0.670242i \(0.766190\pi\)
\(150\) 0 0
\(151\) −158.990 −1.05291 −0.526456 0.850202i \(-0.676480\pi\)
−0.526456 + 0.850202i \(0.676480\pi\)
\(152\) 0 0
\(153\) −22.6515 + 22.6515i −0.148049 + 0.148049i
\(154\) 0 0
\(155\) 86.5857 + 54.8082i 0.558618 + 0.353601i
\(156\) 0 0
\(157\) 37.3485 + 37.3485i 0.237888 + 0.237888i 0.815975 0.578087i \(-0.196201\pi\)
−0.578087 + 0.815975i \(0.696201\pi\)
\(158\) 0 0
\(159\) 86.4745i 0.543865i
\(160\) 0 0
\(161\) −39.5051 −0.245373
\(162\) 0 0
\(163\) −8.98979 + 8.98979i −0.0551521 + 0.0551521i −0.734145 0.678993i \(-0.762417\pi\)
0.678993 + 0.734145i \(0.262417\pi\)
\(164\) 0 0
\(165\) −137.283 + 30.8536i −0.832016 + 0.186991i
\(166\) 0 0
\(167\) 88.3587 + 88.3587i 0.529094 + 0.529094i 0.920302 0.391208i \(-0.127943\pi\)
−0.391208 + 0.920302i \(0.627943\pi\)
\(168\) 0 0
\(169\) 131.000i 0.775148i
\(170\) 0 0
\(171\) 43.4847 0.254296
\(172\) 0 0
\(173\) −170.631 + 170.631i −0.986307 + 0.986307i −0.999908 0.0136005i \(-0.995671\pi\)
0.0136005 + 0.999908i \(0.495671\pi\)
\(174\) 0 0
\(175\) −88.6413 + 248.015i −0.506522 + 1.41723i
\(176\) 0 0
\(177\) 108.687 + 108.687i 0.614049 + 0.614049i
\(178\) 0 0
\(179\) 75.7526i 0.423199i −0.977357 0.211599i \(-0.932133\pi\)
0.977357 0.211599i \(-0.0678672\pi\)
\(180\) 0 0
\(181\) 279.444 1.54389 0.771944 0.635690i \(-0.219284\pi\)
0.771944 + 0.635690i \(0.219284\pi\)
\(182\) 0 0
\(183\) 125.530 125.530i 0.685957 0.685957i
\(184\) 0 0
\(185\) 11.3939 + 50.6969i 0.0615885 + 0.274038i
\(186\) 0 0
\(187\) −122.677 122.677i −0.656024 0.656024i
\(188\) 0 0
\(189\) 54.7423i 0.289642i
\(190\) 0 0
\(191\) −69.4847 −0.363794 −0.181897 0.983318i \(-0.558224\pi\)
−0.181897 + 0.983318i \(0.558224\pi\)
\(192\) 0 0
\(193\) −53.5857 + 53.5857i −0.277646 + 0.277646i −0.832169 0.554523i \(-0.812901\pi\)
0.554523 + 0.832169i \(0.312901\pi\)
\(194\) 0 0
\(195\) 80.2270 126.742i 0.411421 0.649961i
\(196\) 0 0
\(197\) −260.252 260.252i −1.32108 1.32108i −0.912906 0.408171i \(-0.866167\pi\)
−0.408171 0.912906i \(-0.633833\pi\)
\(198\) 0 0
\(199\) 65.0102i 0.326684i −0.986569 0.163342i \(-0.947773\pi\)
0.986569 0.163342i \(-0.0522275\pi\)
\(200\) 0 0
\(201\) 60.4949 0.300970
\(202\) 0 0
\(203\) −255.126 + 255.126i −1.25678 + 1.25678i
\(204\) 0 0
\(205\) −107.753 68.2066i −0.525622 0.332715i
\(206\) 0 0
\(207\) 7.95459 + 7.95459i 0.0384280 + 0.0384280i
\(208\) 0 0
\(209\) 235.505i 1.12682i
\(210\) 0 0
\(211\) −12.0204 −0.0569688 −0.0284844 0.999594i \(-0.509068\pi\)
−0.0284844 + 0.999594i \(0.509068\pi\)
\(212\) 0 0
\(213\) 95.5051 95.5051i 0.448381 0.448381i
\(214\) 0 0
\(215\) 173.171 38.9194i 0.805448 0.181020i
\(216\) 0 0
\(217\) −152.677 152.677i −0.703578 0.703578i
\(218\) 0 0
\(219\) 108.247i 0.494281i
\(220\) 0 0
\(221\) 184.949 0.836873
\(222\) 0 0
\(223\) −239.722 + 239.722i −1.07499 + 1.07499i −0.0780357 + 0.996951i \(0.524865\pi\)
−0.996951 + 0.0780357i \(0.975135\pi\)
\(224\) 0 0
\(225\) 67.7878 32.0908i 0.301279 0.142626i
\(226\) 0 0
\(227\) −2.02041 2.02041i −0.00890049 0.00890049i 0.702643 0.711543i \(-0.252003\pi\)
−0.711543 + 0.702643i \(0.752003\pi\)
\(228\) 0 0
\(229\) 284.969i 1.24441i 0.782855 + 0.622204i \(0.213763\pi\)
−0.782855 + 0.622204i \(0.786237\pi\)
\(230\) 0 0
\(231\) 296.474 1.28344
\(232\) 0 0
\(233\) 151.237 151.237i 0.649087 0.649087i −0.303685 0.952772i \(-0.598217\pi\)
0.952772 + 0.303685i \(0.0982172\pi\)
\(234\) 0 0
\(235\) −34.1816 152.091i −0.145454 0.647195i
\(236\) 0 0
\(237\) −59.3939 59.3939i −0.250607 0.250607i
\(238\) 0 0
\(239\) 50.9694i 0.213261i −0.994299 0.106631i \(-0.965994\pi\)
0.994299 0.106631i \(-0.0340062\pi\)
\(240\) 0 0
\(241\) −32.0000 −0.132780 −0.0663900 0.997794i \(-0.521148\pi\)
−0.0663900 + 0.997794i \(0.521148\pi\)
\(242\) 0 0
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 165.775 261.891i 0.676634 1.06894i
\(246\) 0 0
\(247\) −177.526 177.526i −0.718727 0.718727i
\(248\) 0 0
\(249\) 248.969i 0.999877i
\(250\) 0 0
\(251\) 373.237 1.48700 0.743500 0.668735i \(-0.233164\pi\)
0.743500 + 0.668735i \(0.233164\pi\)
\(252\) 0 0
\(253\) −43.0806 + 43.0806i −0.170279 + 0.170279i
\(254\) 0 0
\(255\) 78.1362 + 49.4597i 0.306417 + 0.193960i
\(256\) 0 0
\(257\) −206.136 206.136i −0.802086 0.802086i 0.181335 0.983421i \(-0.441958\pi\)
−0.983421 + 0.181335i \(0.941958\pi\)
\(258\) 0 0
\(259\) 109.485i 0.422721i
\(260\) 0 0
\(261\) 102.742 0.393649
\(262\) 0 0
\(263\) 210.833 210.833i 0.801647 0.801647i −0.181706 0.983353i \(-0.558162\pi\)
0.983353 + 0.181706i \(0.0581619\pi\)
\(264\) 0 0
\(265\) −243.555 + 54.7378i −0.919076 + 0.206558i
\(266\) 0 0
\(267\) 192.247 + 192.247i 0.720028 + 0.720028i
\(268\) 0 0
\(269\) 205.258i 0.763040i −0.924361 0.381520i \(-0.875401\pi\)
0.924361 0.381520i \(-0.124599\pi\)
\(270\) 0 0
\(271\) −66.0000 −0.243542 −0.121771 0.992558i \(-0.538857\pi\)
−0.121771 + 0.992558i \(0.538857\pi\)
\(272\) 0 0
\(273\) −223.485 + 223.485i −0.818625 + 0.818625i
\(274\) 0 0
\(275\) 173.798 + 367.126i 0.631993 + 1.33500i
\(276\) 0 0
\(277\) −148.157 148.157i −0.534861 0.534861i 0.387154 0.922015i \(-0.373458\pi\)
−0.922015 + 0.387154i \(0.873458\pi\)
\(278\) 0 0
\(279\) 61.4847i 0.220375i
\(280\) 0 0
\(281\) 324.434 1.15457 0.577284 0.816543i \(-0.304113\pi\)
0.577284 + 0.816543i \(0.304113\pi\)
\(282\) 0 0
\(283\) −304.747 + 304.747i −1.07684 + 1.07684i −0.0800537 + 0.996791i \(0.525509\pi\)
−0.996791 + 0.0800537i \(0.974491\pi\)
\(284\) 0 0
\(285\) −27.5255 122.474i −0.0965807 0.429735i
\(286\) 0 0
\(287\) 190.000 + 190.000i 0.662021 + 0.662021i
\(288\) 0 0
\(289\) 174.980i 0.605466i
\(290\) 0 0
\(291\) 135.712 0.466363
\(292\) 0 0
\(293\) 145.151 145.151i 0.495396 0.495396i −0.414605 0.910001i \(-0.636080\pi\)
0.910001 + 0.414605i \(0.136080\pi\)
\(294\) 0 0
\(295\) 237.318 374.914i 0.804467 1.27089i
\(296\) 0 0
\(297\) −59.6969 59.6969i −0.201000 0.201000i
\(298\) 0 0
\(299\) 64.9490i 0.217221i
\(300\) 0 0
\(301\) −373.980 −1.24246
\(302\) 0 0
\(303\) −56.0352 + 56.0352i −0.184935 + 0.184935i
\(304\) 0 0
\(305\) −433.015 274.095i −1.41972 0.898673i
\(306\) 0 0
\(307\) −120.606 120.606i −0.392854 0.392854i 0.482850 0.875703i \(-0.339602\pi\)
−0.875703 + 0.482850i \(0.839602\pi\)
\(308\) 0 0
\(309\) 56.7219i 0.183566i
\(310\) 0 0
\(311\) −18.0204 −0.0579434 −0.0289717 0.999580i \(-0.509223\pi\)
−0.0289717 + 0.999580i \(0.509223\pi\)
\(312\) 0 0
\(313\) −323.586 + 323.586i −1.03382 + 1.03382i −0.0344125 + 0.999408i \(0.510956\pi\)
−0.999408 + 0.0344125i \(0.989044\pi\)
\(314\) 0 0
\(315\) −154.182 + 34.6515i −0.489465 + 0.110005i
\(316\) 0 0
\(317\) −62.4495 62.4495i −0.197002 0.197002i 0.601712 0.798713i \(-0.294486\pi\)
−0.798713 + 0.601712i \(0.794486\pi\)
\(318\) 0 0
\(319\) 556.434i 1.74431i
\(320\) 0 0
\(321\) −40.0204 −0.124674
\(322\) 0 0
\(323\) 109.444 109.444i 0.338836 0.338836i
\(324\) 0 0
\(325\) −407.753 145.732i −1.25462 0.448407i
\(326\) 0 0
\(327\) −195.328 195.328i −0.597334 0.597334i
\(328\) 0 0
\(329\) 328.454i 0.998341i
\(330\) 0 0
\(331\) −618.413 −1.86832 −0.934159 0.356857i \(-0.883848\pi\)
−0.934159 + 0.356857i \(0.883848\pi\)
\(332\) 0 0
\(333\) −22.0454 + 22.0454i −0.0662024 + 0.0662024i
\(334\) 0 0
\(335\) −38.2929 170.384i −0.114307 0.508608i
\(336\) 0 0
\(337\) −55.4041 55.4041i −0.164404 0.164404i 0.620111 0.784514i \(-0.287088\pi\)
−0.784514 + 0.620111i \(0.787088\pi\)
\(338\) 0 0
\(339\) 31.9796i 0.0943351i
\(340\) 0 0
\(341\) −332.990 −0.976510
\(342\) 0 0
\(343\) −96.7673 + 96.7673i −0.282121 + 0.282121i
\(344\) 0 0
\(345\) 17.3689 27.4393i 0.0503446 0.0795342i
\(346\) 0 0
\(347\) −413.081 413.081i −1.19043 1.19043i −0.976946 0.213488i \(-0.931517\pi\)
−0.213488 0.976946i \(-0.568483\pi\)
\(348\) 0 0
\(349\) 258.454i 0.740556i 0.928921 + 0.370278i \(0.120738\pi\)
−0.928921 + 0.370278i \(0.879262\pi\)
\(350\) 0 0
\(351\) 90.0000 0.256410
\(352\) 0 0
\(353\) −83.9138 + 83.9138i −0.237716 + 0.237716i −0.815904 0.578188i \(-0.803760\pi\)
0.578188 + 0.815904i \(0.303760\pi\)
\(354\) 0 0
\(355\) −329.444 208.536i −0.928011 0.587425i
\(356\) 0 0
\(357\) −137.778 137.778i −0.385932 0.385932i
\(358\) 0 0
\(359\) 138.515i 0.385837i −0.981215 0.192918i \(-0.938205\pi\)
0.981215 0.192918i \(-0.0617952\pi\)
\(360\) 0 0
\(361\) 150.898 0.418000
\(362\) 0 0
\(363\) 175.114 175.114i 0.482406 0.482406i
\(364\) 0 0
\(365\) 304.879 68.5199i 0.835284 0.187726i
\(366\) 0 0
\(367\) −408.964 408.964i −1.11434 1.11434i −0.992556 0.121786i \(-0.961138\pi\)
−0.121786 0.992556i \(-0.538862\pi\)
\(368\) 0 0
\(369\) 76.5153i 0.207359i
\(370\) 0 0
\(371\) 525.980 1.41773
\(372\) 0 0
\(373\) 143.106 143.106i 0.383661 0.383661i −0.488758 0.872419i \(-0.662550\pi\)
0.872419 + 0.488758i \(0.162550\pi\)
\(374\) 0 0
\(375\) −133.293 170.611i −0.355448 0.454962i
\(376\) 0 0
\(377\) −419.444 419.444i −1.11258 1.11258i
\(378\) 0 0
\(379\) 194.000i 0.511873i 0.966694 + 0.255937i \(0.0823839\pi\)
−0.966694 + 0.255937i \(0.917616\pi\)
\(380\) 0 0
\(381\) 18.2474 0.0478936
\(382\) 0 0
\(383\) 51.4893 51.4893i 0.134437 0.134437i −0.636686 0.771123i \(-0.719695\pi\)
0.771123 + 0.636686i \(0.219695\pi\)
\(384\) 0 0
\(385\) −187.666 835.019i −0.487445 2.16888i
\(386\) 0 0
\(387\) 75.3031 + 75.3031i 0.194582 + 0.194582i
\(388\) 0 0
\(389\) 35.1964i 0.0904792i 0.998976 + 0.0452396i \(0.0144051\pi\)
−0.998976 + 0.0452396i \(0.985595\pi\)
\(390\) 0 0
\(391\) 40.0408 0.102406
\(392\) 0 0
\(393\) −24.1918 + 24.1918i −0.0615568 + 0.0615568i
\(394\) 0 0
\(395\) −129.687 + 204.879i −0.328321 + 0.518680i
\(396\) 0 0
\(397\) −409.267 409.267i −1.03090 1.03090i −0.999507 0.0313917i \(-0.990006\pi\)
−0.0313917 0.999507i \(-0.509994\pi\)
\(398\) 0 0
\(399\) 264.495i 0.662894i
\(400\) 0 0
\(401\) 375.898 0.937401 0.468701 0.883357i \(-0.344722\pi\)
0.468701 + 0.883357i \(0.344722\pi\)
\(402\) 0 0
\(403\) 251.010 251.010i 0.622854 0.622854i
\(404\) 0 0
\(405\) 38.0227 + 24.0681i 0.0938832 + 0.0594274i
\(406\) 0 0
\(407\) −119.394 119.394i −0.293351 0.293351i
\(408\) 0 0
\(409\) 207.959i 0.508458i 0.967144 + 0.254229i \(0.0818216\pi\)
−0.967144 + 0.254229i \(0.918178\pi\)
\(410\) 0 0
\(411\) −248.969 −0.605765
\(412\) 0 0
\(413\) −661.085 + 661.085i −1.60069 + 1.60069i
\(414\) 0 0
\(415\) −701.221 + 157.596i −1.68969 + 0.379749i
\(416\) 0 0
\(417\) −29.4189 29.4189i −0.0705489 0.0705489i
\(418\) 0 0
\(419\) 810.186i 1.93362i −0.255499 0.966809i \(-0.582240\pi\)
0.255499 0.966809i \(-0.417760\pi\)
\(420\) 0 0
\(421\) 505.959 1.20180 0.600902 0.799323i \(-0.294808\pi\)
0.600902 + 0.799323i \(0.294808\pi\)
\(422\) 0 0
\(423\) 66.1362 66.1362i 0.156350 0.156350i
\(424\) 0 0
\(425\) 89.8434 251.378i 0.211396 0.591478i
\(426\) 0 0
\(427\) 763.535 + 763.535i 1.78814 + 1.78814i
\(428\) 0 0
\(429\) 487.423i 1.13619i
\(430\) 0 0
\(431\) −92.4541 −0.214511 −0.107255 0.994232i \(-0.534206\pi\)
−0.107255 + 0.994232i \(0.534206\pi\)
\(432\) 0 0
\(433\) 69.8990 69.8990i 0.161430 0.161430i −0.621770 0.783200i \(-0.713586\pi\)
0.783200 + 0.621770i \(0.213586\pi\)
\(434\) 0 0
\(435\) −65.0352 289.373i −0.149506 0.665226i
\(436\) 0 0
\(437\) −38.4337 38.4337i −0.0879489 0.0879489i
\(438\) 0 0
\(439\) 128.929i 0.293687i 0.989160 + 0.146843i \(0.0469114\pi\)
−0.989160 + 0.146843i \(0.953089\pi\)
\(440\) 0 0
\(441\) 185.969 0.421699
\(442\) 0 0
\(443\) 335.555 335.555i 0.757461 0.757461i −0.218399 0.975860i \(-0.570083\pi\)
0.975860 + 0.218399i \(0.0700834\pi\)
\(444\) 0 0
\(445\) 419.773 663.156i 0.943310 1.49024i
\(446\) 0 0
\(447\) 244.621 + 244.621i 0.547250 + 0.547250i
\(448\) 0 0
\(449\) 521.423i 1.16130i −0.814153 0.580650i \(-0.802799\pi\)
0.814153 0.580650i \(-0.197201\pi\)
\(450\) 0 0
\(451\) 414.393 0.918831
\(452\) 0 0
\(453\) −194.722 + 194.722i −0.429850 + 0.429850i
\(454\) 0 0
\(455\) 770.908 + 487.980i 1.69430 + 1.07248i
\(456\) 0 0
\(457\) 548.939 + 548.939i 1.20118 + 1.20118i 0.973808 + 0.227371i \(0.0730129\pi\)
0.227371 + 0.973808i \(0.426987\pi\)
\(458\) 0 0
\(459\) 55.4847i 0.120882i
\(460\) 0 0
\(461\) −142.288 −0.308651 −0.154326 0.988020i \(-0.549320\pi\)
−0.154326 + 0.988020i \(0.549320\pi\)
\(462\) 0 0
\(463\) 537.045 537.045i 1.15993 1.15993i 0.175434 0.984491i \(-0.443867\pi\)
0.984491 0.175434i \(-0.0561329\pi\)
\(464\) 0 0
\(465\) 173.171 38.9194i 0.372412 0.0836976i
\(466\) 0 0
\(467\) 367.044 + 367.044i 0.785962 + 0.785962i 0.980830 0.194867i \(-0.0624276\pi\)
−0.194867 + 0.980830i \(0.562428\pi\)
\(468\) 0 0
\(469\) 367.959i 0.784561i
\(470\) 0 0
\(471\) 91.4847 0.194235
\(472\) 0 0
\(473\) −407.828 + 407.828i −0.862215 + 0.862215i
\(474\) 0 0
\(475\) −327.526 + 155.051i −0.689527 + 0.326423i
\(476\) 0 0
\(477\) −105.909 105.909i −0.222032 0.222032i
\(478\) 0 0
\(479\) 94.9694i 0.198266i 0.995074 + 0.0991330i \(0.0316069\pi\)
−0.995074 + 0.0991330i \(0.968393\pi\)
\(480\) 0 0
\(481\) 180.000 0.374220
\(482\) 0 0
\(483\) −48.3837 + 48.3837i −0.100173 + 0.100173i
\(484\) 0 0
\(485\) −85.9046 382.232i −0.177123 0.788106i
\(486\) 0 0
\(487\) 244.621 + 244.621i 0.502302 + 0.502302i 0.912153 0.409851i \(-0.134419\pi\)
−0.409851 + 0.912153i \(0.634419\pi\)
\(488\) 0 0
\(489\) 22.0204i 0.0450315i
\(490\) 0 0
\(491\) −163.217 −0.332417 −0.166209 0.986091i \(-0.553153\pi\)
−0.166209 + 0.986091i \(0.553153\pi\)
\(492\) 0 0
\(493\) 258.586 258.586i 0.524515 0.524515i
\(494\) 0 0
\(495\) −130.348 + 205.924i −0.263330 + 0.416008i
\(496\) 0 0
\(497\) 580.908 + 580.908i 1.16883 + 1.16883i
\(498\) 0 0
\(499\) 8.55613i 0.0171465i −0.999963 0.00857327i \(-0.997271\pi\)
0.999963 0.00857327i \(-0.00272899\pi\)
\(500\) 0 0
\(501\) 216.434 0.432003
\(502\) 0 0
\(503\) 46.5903 46.5903i 0.0926249 0.0926249i −0.659276 0.751901i \(-0.729137\pi\)
0.751901 + 0.659276i \(0.229137\pi\)
\(504\) 0 0
\(505\) 193.293 + 122.353i 0.382758 + 0.242283i
\(506\) 0 0
\(507\) −160.442 160.442i −0.316453 0.316453i
\(508\) 0 0
\(509\) 336.227i 0.660564i 0.943882 + 0.330282i \(0.107144\pi\)
−0.943882 + 0.330282i \(0.892856\pi\)
\(510\) 0 0
\(511\) −658.413 −1.28848
\(512\) 0 0
\(513\) 53.2577 53.2577i 0.103816 0.103816i
\(514\) 0 0
\(515\) −159.757 + 35.9046i −0.310208 + 0.0697177i
\(516\) 0 0
\(517\) 358.182 + 358.182i 0.692808 + 0.692808i
\(518\) 0 0
\(519\) 417.959i 0.805316i
\(520\) 0 0
\(521\) 252.556 0.484753 0.242376 0.970182i \(-0.422073\pi\)
0.242376 + 0.970182i \(0.422073\pi\)
\(522\) 0 0
\(523\) 33.6867 33.6867i 0.0644106 0.0644106i −0.674168 0.738578i \(-0.735498\pi\)
0.738578 + 0.674168i \(0.235498\pi\)
\(524\) 0 0
\(525\) 195.192 + 412.318i 0.371794 + 0.785367i
\(526\) 0 0
\(527\) 154.747 + 154.747i 0.293637 + 0.293637i
\(528\) 0 0
\(529\) 514.939i 0.973419i
\(530\) 0 0
\(531\) 266.227 0.501369
\(532\) 0 0
\(533\) −312.372 + 312.372i −0.586065 + 0.586065i
\(534\) 0 0
\(535\) 25.3326 + 112.717i 0.0473507 + 0.210687i
\(536\) 0 0
\(537\) −92.7775 92.7775i −0.172770 0.172770i
\(538\) 0 0
\(539\) 1007.18i 1.86860i
\(540\) 0 0
\(541\) 604.474 1.11733 0.558664 0.829394i \(-0.311314\pi\)
0.558664 + 0.829394i \(0.311314\pi\)
\(542\) 0 0
\(543\) 342.247 342.247i 0.630290 0.630290i
\(544\) 0 0
\(545\) −426.499 + 673.782i −0.782568 + 1.23630i
\(546\) 0 0
\(547\) −615.353 615.353i −1.12496 1.12496i −0.990985 0.133975i \(-0.957226\pi\)
−0.133975 0.990985i \(-0.542774\pi\)
\(548\) 0 0
\(549\) 307.485i 0.560081i
\(550\) 0 0
\(551\) −496.413 −0.900931
\(552\) 0 0
\(553\) 361.262 361.262i 0.653277 0.653277i
\(554\) 0 0
\(555\) 76.0454 + 48.1362i 0.137019 + 0.0867319i
\(556\) 0 0
\(557\) 439.040 + 439.040i 0.788222 + 0.788222i 0.981203 0.192980i \(-0.0618154\pi\)
−0.192980 + 0.981203i \(0.561815\pi\)
\(558\) 0 0
\(559\) 614.847i 1.09991i
\(560\) 0 0
\(561\) −300.495 −0.535642
\(562\) 0 0
\(563\) 52.5765 52.5765i 0.0933864 0.0933864i −0.658870 0.752257i \(-0.728965\pi\)
0.752257 + 0.658870i \(0.228965\pi\)
\(564\) 0 0
\(565\) −90.0704 + 20.2429i −0.159417 + 0.0358281i
\(566\) 0 0
\(567\) −67.0454 67.0454i −0.118246 0.118246i
\(568\) 0 0
\(569\) 680.929i 1.19671i −0.801231 0.598356i \(-0.795821\pi\)
0.801231 0.598356i \(-0.204179\pi\)
\(570\) 0 0
\(571\) −254.495 −0.445700 −0.222850 0.974853i \(-0.571536\pi\)
−0.222850 + 0.974853i \(0.571536\pi\)
\(572\) 0 0
\(573\) −85.1010 + 85.1010i −0.148518 + 0.148518i
\(574\) 0 0
\(575\) −88.2770 31.5505i −0.153525 0.0548705i
\(576\) 0 0
\(577\) −279.999 279.999i −0.485267 0.485267i 0.421542 0.906809i \(-0.361489\pi\)
−0.906809 + 0.421542i \(0.861489\pi\)
\(578\) 0 0
\(579\) 131.258i 0.226697i
\(580\) 0 0
\(581\) 1514.35 2.60646
\(582\) 0 0
\(583\) 573.585 573.585i 0.983850 0.983850i
\(584\) 0 0
\(585\) −56.9694 253.485i −0.0973836 0.433307i
\(586\) 0 0
\(587\) −312.347 312.347i −0.532108 0.532108i 0.389091 0.921199i \(-0.372789\pi\)
−0.921199 + 0.389091i \(0.872789\pi\)
\(588\) 0 0
\(589\) 297.071i 0.504366i
\(590\) 0 0
\(591\) −637.485 −1.07865
\(592\) 0 0
\(593\) −424.570 + 424.570i −0.715969 + 0.715969i −0.967777 0.251808i \(-0.918975\pi\)
0.251808 + 0.967777i \(0.418975\pi\)
\(594\) 0 0
\(595\) −300.838 + 475.262i −0.505610 + 0.798760i
\(596\) 0 0
\(597\) −79.6209 79.6209i −0.133368 0.133368i
\(598\) 0 0
\(599\) 396.536i 0.661996i −0.943631 0.330998i \(-0.892615\pi\)
0.943631 0.330998i \(-0.107385\pi\)
\(600\) 0 0
\(601\) 238.908 0.397518 0.198759 0.980048i \(-0.436309\pi\)
0.198759 + 0.980048i \(0.436309\pi\)
\(602\) 0 0
\(603\) 74.0908 74.0908i 0.122870 0.122870i
\(604\) 0 0
\(605\) −604.052 382.361i −0.998434 0.632002i
\(606\) 0 0
\(607\) 92.8025 + 92.8025i 0.152887 + 0.152887i 0.779406 0.626519i \(-0.215521\pi\)
−0.626519 + 0.779406i \(0.715521\pi\)
\(608\) 0 0
\(609\) 624.929i 1.02616i
\(610\) 0 0
\(611\) −540.000 −0.883797
\(612\) 0 0
\(613\) −301.943 + 301.943i −0.492567 + 0.492567i −0.909114 0.416547i \(-0.863240\pi\)
0.416547 + 0.909114i \(0.363240\pi\)
\(614\) 0 0
\(615\) −215.505 + 48.4337i −0.350415 + 0.0787539i
\(616\) 0 0
\(617\) −372.904 372.904i −0.604382 0.604382i 0.337090 0.941472i \(-0.390557\pi\)
−0.941472 + 0.337090i \(0.890557\pi\)
\(618\) 0 0
\(619\) 815.939i 1.31816i 0.752074 + 0.659078i \(0.229053\pi\)
−0.752074 + 0.659078i \(0.770947\pi\)
\(620\) 0 0
\(621\) 19.4847 0.0313763
\(622\) 0 0
\(623\) −1169.34 + 1169.34i −1.87695 + 1.87695i
\(624\) 0 0
\(625\) −396.151 + 483.414i −0.633842 + 0.773463i
\(626\) 0 0
\(627\) 288.434 + 288.434i 0.460022 + 0.460022i
\(628\) 0 0
\(629\) 110.969i 0.176422i
\(630\) 0 0
\(631\) 550.434 0.872320 0.436160 0.899869i \(-0.356338\pi\)
0.436160 + 0.899869i \(0.356338\pi\)
\(632\) 0 0
\(633\) −14.7219 + 14.7219i −0.0232574 + 0.0232574i
\(634\) 0 0
\(635\) −11.5505 51.3939i −0.0181898 0.0809352i
\(636\) 0 0
\(637\) −759.217 759.217i −1.19186 1.19186i
\(638\) 0 0
\(639\) 233.939i 0.366101i
\(640\) 0 0
\(641\) 927.939 1.44764 0.723821 0.689988i \(-0.242384\pi\)
0.723821 + 0.689988i \(0.242384\pi\)
\(642\) 0 0
\(643\) −190.960 + 190.960i −0.296983 + 0.296983i −0.839831 0.542848i \(-0.817346\pi\)
0.542848 + 0.839831i \(0.317346\pi\)
\(644\) 0 0
\(645\) 164.424 259.757i 0.254922 0.402724i
\(646\) 0 0
\(647\) −637.146 637.146i −0.984770 0.984770i 0.0151154 0.999886i \(-0.495188\pi\)
−0.999886 + 0.0151154i \(0.995188\pi\)
\(648\) 0 0
\(649\) 1441.84i 2.22163i
\(650\) 0 0
\(651\) −373.980 −0.574469
\(652\) 0 0
\(653\) 404.116 404.116i 0.618860 0.618860i −0.326379 0.945239i \(-0.605828\pi\)
0.945239 + 0.326379i \(0.105828\pi\)
\(654\) 0 0
\(655\) 83.4495 + 52.8230i 0.127404 + 0.0806457i
\(656\) 0 0
\(657\) 132.576 + 132.576i 0.201789 + 0.201789i
\(658\) 0 0
\(659\) 453.196i 0.687703i −0.939024 0.343852i \(-0.888268\pi\)
0.939024 0.343852i \(-0.111732\pi\)
\(660\) 0 0
\(661\) −717.546 −1.08555 −0.542773 0.839879i \(-0.682626\pi\)
−0.542773 + 0.839879i \(0.682626\pi\)
\(662\) 0 0
\(663\) 226.515 226.515i 0.341652 0.341652i
\(664\) 0 0
\(665\) 744.949 167.423i 1.12022 0.251765i
\(666\) 0 0
\(667\) −90.8082 90.8082i −0.136144 0.136144i
\(668\) 0 0
\(669\) 587.196i 0.877723i
\(670\) 0 0
\(671\) 1665.28 2.48179
\(672\) 0 0
\(673\) −121.413 + 121.413i −0.180406 + 0.180406i −0.791533 0.611127i \(-0.790717\pi\)
0.611127 + 0.791533i \(0.290717\pi\)
\(674\) 0 0
\(675\) 43.7196 122.326i 0.0647698 0.181223i
\(676\) 0 0
\(677\) 671.943 + 671.943i 0.992531 + 0.992531i 0.999972 0.00744150i \(-0.00236873\pi\)
−0.00744150 + 0.999972i \(0.502369\pi\)
\(678\) 0 0
\(679\) 825.464i 1.21571i
\(680\) 0 0
\(681\) −4.94897 −0.00726722
\(682\) 0 0
\(683\) −802.095 + 802.095i −1.17437 + 1.17437i −0.193214 + 0.981157i \(0.561891\pi\)
−0.981157 + 0.193214i \(0.938109\pi\)
\(684\) 0 0
\(685\) 157.596 + 701.221i 0.230067 + 1.02368i
\(686\) 0 0
\(687\) 349.015 + 349.015i 0.508027 + 0.508027i
\(688\) 0 0
\(689\) 864.745i 1.25507i
\(690\) 0 0
\(691\) 1146.49 1.65918 0.829591 0.558371i \(-0.188574\pi\)
0.829591 + 0.558371i \(0.188574\pi\)
\(692\) 0 0
\(693\) 363.106 363.106i 0.523962 0.523962i
\(694\) 0 0
\(695\) −64.2362 + 101.480i −0.0924262 + 0.146015i
\(696\) 0 0
\(697\) −192.577 192.577i −0.276293 0.276293i
\(698\) 0 0
\(699\) 370.454i 0.529977i
\(700\) 0 0
\(701\) 673.217 0.960366 0.480183 0.877168i \(-0.340570\pi\)
0.480183 + 0.877168i \(0.340570\pi\)
\(702\) 0 0
\(703\) 106.515 106.515i 0.151515 0.151515i
\(704\) 0 0
\(705\) −228.136 144.409i −0.323597 0.204835i
\(706\) 0 0
\(707\) −340.833 340.833i −0.482084 0.482084i
\(708\) 0 0
\(709\) 955.939i 1.34829i 0.738598 + 0.674146i \(0.235488\pi\)
−0.738598 + 0.674146i \(0.764512\pi\)
\(710\) 0 0
\(711\) −145.485 −0.204620
\(712\) 0 0
\(713\) 54.3429 54.3429i 0.0762172 0.0762172i
\(714\) 0 0
\(715\) 1372.83 308.536i 1.92004 0.431518i
\(716\) 0 0
\(717\) −62.4245 62.4245i −0.0870634 0.0870634i
\(718\) 0 0
\(719\) 89.0306i 0.123826i 0.998082 + 0.0619128i \(0.0197201\pi\)
−0.998082 + 0.0619128i \(0.980280\pi\)
\(720\) 0 0
\(721\) 345.010 0.478516
\(722\) 0 0
\(723\) −39.1918 + 39.1918i −0.0542072 + 0.0542072i
\(724\) 0 0
\(725\) −773.853 + 366.343i −1.06738 + 0.505300i
\(726\) 0 0
\(727\) 332.703 + 332.703i 0.457638 + 0.457638i 0.897879 0.440242i \(-0.145107\pi\)
−0.440242 + 0.897879i \(0.645107\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 379.051 0.518538
\(732\) 0 0
\(733\) −229.823 + 229.823i −0.313537 + 0.313537i −0.846278 0.532741i \(-0.821162\pi\)
0.532741 + 0.846278i \(0.321162\pi\)
\(734\) 0 0
\(735\) −117.717 523.782i −0.160160 0.712629i
\(736\) 0 0
\(737\) 401.262 + 401.262i 0.544454 + 0.544454i
\(738\) 0 0
\(739\) 923.281i 1.24936i −0.780879 0.624682i \(-0.785228\pi\)
0.780879 0.624682i \(-0.214772\pi\)
\(740\) 0 0
\(741\) −434.847 −0.586838
\(742\) 0 0
\(743\) −585.782 + 585.782i −0.788401 + 0.788401i −0.981232 0.192831i \(-0.938233\pi\)
0.192831 + 0.981232i \(0.438233\pi\)
\(744\) 0 0
\(745\) 534.131 843.817i 0.716954 1.13264i
\(746\) 0 0
\(747\) −304.924 304.924i −0.408198 0.408198i
\(748\) 0 0
\(749\) 243.423i 0.324998i
\(750\) 0 0
\(751\) 1354.27 1.80329 0.901645 0.432477i \(-0.142361\pi\)
0.901645 + 0.432477i \(0.142361\pi\)
\(752\) 0 0
\(753\) 457.120 457.120i 0.607066 0.607066i
\(754\) 0 0
\(755\) 671.691 + 425.176i 0.889657 + 0.563147i
\(756\) 0 0
\(757\) 985.832 + 985.832i 1.30229 + 1.30229i 0.926846 + 0.375442i \(0.122509\pi\)
0.375442 + 0.926846i \(0.377491\pi\)
\(758\) 0 0
\(759\) 105.526i 0.139032i
\(760\) 0 0
\(761\) 206.495 0.271347 0.135673 0.990754i \(-0.456680\pi\)
0.135673 + 0.990754i \(0.456680\pi\)
\(762\) 0 0
\(763\) 1188.08 1188.08i 1.55712 1.55712i
\(764\) 0 0
\(765\) 156.272 35.1214i 0.204278 0.0459104i
\(766\) 0 0
\(767\) −1086.87 1086.87i −1.41704 1.41704i
\(768\) 0 0
\(769\) 852.969i 1.10919i −0.832119 0.554596i \(-0.812873\pi\)
0.832119 0.554596i \(-0.187127\pi\)
\(770\) 0 0
\(771\) −504.929 −0.654901
\(772\) 0 0
\(773\) 491.035 491.035i 0.635233 0.635233i −0.314143 0.949376i \(-0.601717\pi\)
0.949376 + 0.314143i \(0.101717\pi\)
\(774\) 0 0
\(775\) −219.233 463.101i −0.282881 0.597550i
\(776\) 0 0
\(777\) −134.091 134.091i −0.172575 0.172575i
\(778\) 0 0
\(779\) 369.694i 0.474575i
\(780\) 0 0
\(781\) 1266.97 1.62224
\(782\) 0 0
\(783\) 125.833 125.833i 0.160706 0.160706i
\(784\) 0 0
\(785\) −57.9092 257.666i −0.0737697 0.328237i
\(786\) 0 0
\(787\) 958.586 + 958.586i 1.21803 + 1.21803i 0.968323 + 0.249702i \(0.0803328\pi\)
0.249702 + 0.968323i \(0.419667\pi\)
\(788\) 0 0
\(789\) 516.434i 0.654542i
\(790\) 0 0
\(791\) 194.515 0.245911
\(792\) 0 0
\(793\) −1255.30 + 1255.30i −1.58298 + 1.58298i
\(794\) 0 0
\(795\) −231.253 + 365.333i −0.290884 + 0.459538i
\(796\) 0 0
\(797\) −169.065 169.065i −0.212126 0.212126i 0.593044 0.805170i \(-0.297926\pi\)
−0.805170 + 0.593044i \(0.797926\pi\)
\(798\) 0 0
\(799\) 332.908i 0.416656i
\(800\) 0 0
\(801\) 470.908 0.587900
\(802\) 0 0
\(803\) −718.005 + 718.005i −0.894153 + 0.894153i
\(804\) 0 0
\(805\) 166.899 + 105.646i 0.207328 + 0.131237i
\(806\) 0 0
\(807\) −251.388 251.388i −0.311510 0.311510i
\(808\) 0 0
\(809\) 126.082i 0.155849i −0.996959 0.0779244i \(-0.975171\pi\)
0.996959 0.0779244i \(-0.0248293\pi\)
\(810\) 0 0
\(811\) −32.9286 −0.0406024 −0.0203012 0.999794i \(-0.506463\pi\)
−0.0203012 + 0.999794i \(0.506463\pi\)
\(812\) 0 0
\(813\) −80.8332 + 80.8332i −0.0994258 + 0.0994258i
\(814\) 0 0
\(815\) 62.0204 13.9388i 0.0760987 0.0171028i
\(816\) 0 0
\(817\) −363.837 363.837i −0.445333 0.445333i
\(818\) 0 0
\(819\) 547.423i 0.668405i
\(820\) 0 0
\(821\) −980.064 −1.19374 −0.596872 0.802337i \(-0.703590\pi\)
−0.596872 + 0.802337i \(0.703590\pi\)
\(822\) 0 0
\(823\) −503.863 + 503.863i −0.612227 + 0.612227i −0.943526 0.331299i \(-0.892513\pi\)
0.331299 + 0.943526i \(0.392513\pi\)
\(824\) 0 0
\(825\) 662.494 + 236.778i 0.803023 + 0.287003i
\(826\) 0 0
\(827\) −1078.84 1078.84i −1.30452 1.30452i −0.925311 0.379208i \(-0.876196\pi\)
−0.379208 0.925311i \(-0.623804\pi\)
\(828\) 0 0
\(829\) 124.352i 0.150002i −0.997183 0.0750012i \(-0.976104\pi\)
0.997183 0.0750012i \(-0.0238961\pi\)
\(830\) 0 0
\(831\) −362.908 −0.436713
\(832\) 0 0
\(833\) 468.055 468.055i 0.561890 0.561890i
\(834\) 0 0
\(835\) −137.001 609.585i −0.164073 0.730042i
\(836\) 0 0
\(837\) 75.3031 + 75.3031i 0.0899678 + 0.0899678i
\(838\) 0 0
\(839\) 1125.48i 1.34146i −0.741702 0.670730i \(-0.765981\pi\)
0.741702 0.670730i \(-0.234019\pi\)
\(840\) 0 0
\(841\) −331.888 −0.394635
\(842\) 0 0
\(843\) 397.348 397.348i 0.471350 0.471350i
\(844\) 0 0
\(845\) −350.325 + 553.442i −0.414585 + 0.654960i
\(846\) 0 0
\(847\) 1065.12 + 1065.12i 1.25753 + 1.25753i
\(848\) 0 0
\(849\) 746.474i 0.879240i
\(850\) 0 0
\(851\) 38.9694 0.0457925
\(852\) 0 0
\(853\) −1039.87 + 1039.87i −1.21908 + 1.21908i −0.251122 + 0.967955i \(0.580799\pi\)
−0.967955 + 0.251122i \(0.919201\pi\)
\(854\) 0 0
\(855\) −183.712 116.288i −0.214868 0.136010i
\(856\) 0 0
\(857\) 620.177 + 620.177i 0.723660 + 0.723660i 0.969349 0.245688i \(-0.0790140\pi\)
−0.245688 + 0.969349i \(0.579014\pi\)
\(858\) 0 0
\(859\) 948.888i 1.10464i −0.833631 0.552321i \(-0.813742\pi\)
0.833631 0.552321i \(-0.186258\pi\)
\(860\) 0 0
\(861\) 465.403 0.540538
\(862\) 0 0
\(863\) −1064.42 + 1064.42i −1.23339 + 1.23339i −0.270740 + 0.962652i \(0.587268\pi\)
−0.962652 + 0.270740i \(0.912732\pi\)
\(864\) 0 0
\(865\) 1177.18 264.565i 1.36090 0.305856i
\(866\) 0 0
\(867\) −214.305 214.305i −0.247180 0.247180i
\(868\) 0 0
\(869\) 787.918i 0.906695i
\(870\) 0 0
\(871\) −604.949 −0.694545
\(872\) 0 0
\(873\) 166.212 166.212i 0.190392 0.190392i
\(874\) 0 0
\(875\) 1037.74 810.752i 1.18598 0.926573i
\(876\) 0 0
\(877\) 329.975 + 329.975i 0.376254 + 0.376254i 0.869749 0.493495i \(-0.164281\pi\)
−0.493495 + 0.869749i \(0.664281\pi\)
\(878\) 0 0
\(879\) 355.546i 0.404489i
\(880\) 0 0
\(881\) 135.857 0.154208 0.0771039 0.997023i \(-0.475433\pi\)
0.0771039 + 0.997023i \(0.475433\pi\)
\(882\) 0 0
\(883\) 46.8694 46.8694i 0.0530797 0.0530797i −0.680069 0.733148i \(-0.738050\pi\)
0.733148 + 0.680069i \(0.238050\pi\)
\(884\) 0 0
\(885\) −168.520 749.828i −0.190418 0.847263i
\(886\) 0 0
\(887\) −43.5097 43.5097i −0.0490526 0.0490526i 0.682155 0.731208i \(-0.261043\pi\)
−0.731208 + 0.682155i \(0.761043\pi\)
\(888\) 0 0
\(889\) 110.990i 0.124848i
\(890\) 0 0
\(891\) −146.227 −0.164116
\(892\) 0 0
\(893\) −319.546 + 319.546i −0.357834 + 0.357834i
\(894\) 0 0
\(895\) −202.580 + 320.035i −0.226346 + 0.357581i
\(896\) 0 0
\(897\) −79.5459 79.5459i −0.0886800 0.0886800i
\(898\) 0 0
\(899\) 701.898i 0.780754i
\(900\) 0 0
\(901\) −533.112 −0.591690
\(902\) 0 0
\(903\) −458.030 + 458.030i −0.507231 + 0.507231i
\(904\) 0 0
\(905\) −1180.58 747.298i −1.30451 0.825744i
\(906\) 0 0
\(907\) −638.938 638.938i −0.704452 0.704452i 0.260911 0.965363i \(-0.415977\pi\)
−0.965363 + 0.260911i \(0.915977\pi\)
\(908\) 0 0
\(909\) 137.258i 0.150999i
\(910\) 0 0
\(911\) 347.546 0.381499 0.190750 0.981639i \(-0.438908\pi\)
0.190750 + 0.981639i \(0.438908\pi\)
\(912\) 0 0
\(913\) 1651.41 1651.41i 1.80878 1.80878i
\(914\) 0 0
\(915\) −866.030 + 194.636i −0.946480 + 0.212717i
\(916\) 0 0
\(917\) −147.146 147.146i −0.160465 0.160465i
\(918\) 0 0
\(919\) 27.6684i 0.0301071i 0.999887 + 0.0150535i \(0.00479187\pi\)
−0.999887 + 0.0150535i \(0.995208\pi\)
\(920\) 0 0
\(921\) −295.423 −0.320764
\(922\) 0 0
\(923\) −955.051 + 955.051i −1.03472 + 1.03472i
\(924\) 0 0
\(925\) 87.4393 244.652i 0.0945290 0.264488i
\(926\) 0 0
\(927\) −69.4699 69.4699i −0.0749406 0.0749406i
\(928\) 0 0
\(929\) 1070.49i 1.15231i 0.817341 + 0.576154i \(0.195447\pi\)
−0.817341 + 0.576154i \(0.804553\pi\)
\(930\) 0 0
\(931\) −898.536 −0.965130
\(932\) 0 0
\(933\) −22.0704 + 22.0704i −0.0236553 + 0.0236553i
\(934\) 0 0
\(935\) 190.211 + 846.343i 0.203434 + 0.905180i
\(936\) 0 0
\(937\) 60.5551 + 60.5551i 0.0646266 + 0.0646266i 0.738681 0.674055i \(-0.235449\pi\)
−0.674055 + 0.738681i \(0.735449\pi\)
\(938\) 0 0
\(939\) 792.620i 0.844111i
\(940\) 0 0
\(941\) 264.064 0.280620 0.140310 0.990108i \(-0.455190\pi\)
0.140310 + 0.990108i \(0.455190\pi\)
\(942\) 0 0
\(943\) −67.6276 + 67.6276i −0.0717153 + 0.0717153i
\(944\) 0 0
\(945\) −146.394 + 231.272i −0.154914 + 0.244733i
\(946\) 0 0
\(947\) 115.455 + 115.455i 0.121917 + 0.121917i 0.765433 0.643516i \(-0.222525\pi\)
−0.643516 + 0.765433i \(0.722525\pi\)
\(948\) 0 0
\(949\) 1082.47i 1.14065i
\(950\) 0 0
\(951\) −152.969 −0.160851
\(952\) 0 0
\(953\) −378.359 + 378.359i −0.397019 + 0.397019i −0.877180 0.480162i \(-0.840578\pi\)
0.480162 + 0.877180i \(0.340578\pi\)
\(954\) 0 0
\(955\) 293.555 + 185.818i 0.307388 + 0.194574i
\(956\) 0 0
\(957\) 681.489 + 681.489i 0.712110 + 0.712110i
\(958\) 0 0
\(959\) 1514.35i 1.57909i
\(960\) 0 0
\(961\) −540.959 −0.562913
\(962\) 0 0
\(963\) −49.0148 + 49.0148i −0.0508980 + 0.0508980i
\(964\) 0 0
\(965\) 369.687 83.0852i 0.383095 0.0860987i
\(966\) 0 0
\(967\) −52.1964 52.1964i −0.0539777 0.0539777i 0.679603 0.733580i \(-0.262152\pi\)
−0.733580 + 0.679603i \(0.762152\pi\)
\(968\) 0 0
\(969\) 268.082i 0.276658i
\(970\) 0 0
\(971\) 1545.61 1.59177 0.795886 0.605447i \(-0.207006\pi\)
0.795886 + 0.605447i \(0.207006\pi\)
\(972\) 0 0
\(973\) 178.940 178.940i 0.183905 0.183905i
\(974\) 0 0
\(975\) −677.878 + 320.908i −0.695259 + 0.329137i
\(976\) 0 0
\(977\) −843.206 843.206i −0.863056 0.863056i 0.128636 0.991692i \(-0.458940\pi\)
−0.991692 + 0.128636i \(0.958940\pi\)
\(978\) 0 0
\(979\) 2550.35i 2.60506i
\(980\) 0 0
\(981\) −478.454 −0.487721
\(982\) 0 0
\(983\) 1241.39 1241.39i 1.26286 1.26286i 0.313153 0.949703i \(-0.398615\pi\)
0.949703 0.313153i \(-0.101385\pi\)
\(984\) 0 0
\(985\) 403.523 + 1795.47i 0.409668 + 1.82282i
\(986\) 0 0
\(987\) 402.272 + 402.272i 0.407571 + 0.407571i
\(988\) 0 0
\(989\) 133.112i 0.134593i
\(990\) 0 0
\(991\) 219.816 0.221813 0.110906 0.993831i \(-0.464625\pi\)
0.110906 + 0.993831i \(0.464625\pi\)
\(992\) 0 0
\(993\) −757.398 + 757.398i −0.762738 + 0.762738i
\(994\) 0 0
\(995\) −173.853 + 274.652i −0.174726 + 0.276032i
\(996\) 0 0
\(997\) −599.571 599.571i −0.601375 0.601375i 0.339302 0.940677i \(-0.389809\pi\)
−0.940677 + 0.339302i \(0.889809\pi\)
\(998\) 0 0
\(999\) 54.0000i 0.0540541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.bg.b.577.2 4
4.3 odd 2 960.3.bg.a.577.1 4
5.3 odd 4 inner 960.3.bg.b.193.2 4
8.3 odd 2 240.3.bg.d.97.2 4
8.5 even 2 60.3.k.a.37.1 yes 4
20.3 even 4 960.3.bg.a.193.1 4
24.5 odd 2 180.3.l.b.37.1 4
24.11 even 2 720.3.bh.f.577.1 4
40.3 even 4 240.3.bg.d.193.2 4
40.13 odd 4 60.3.k.a.13.1 4
40.19 odd 2 1200.3.bg.o.1057.1 4
40.27 even 4 1200.3.bg.o.193.1 4
40.29 even 2 300.3.k.a.157.2 4
40.37 odd 4 300.3.k.a.193.2 4
120.29 odd 2 900.3.l.b.757.1 4
120.53 even 4 180.3.l.b.73.1 4
120.77 even 4 900.3.l.b.793.1 4
120.83 odd 4 720.3.bh.f.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.k.a.13.1 4 40.13 odd 4
60.3.k.a.37.1 yes 4 8.5 even 2
180.3.l.b.37.1 4 24.5 odd 2
180.3.l.b.73.1 4 120.53 even 4
240.3.bg.d.97.2 4 8.3 odd 2
240.3.bg.d.193.2 4 40.3 even 4
300.3.k.a.157.2 4 40.29 even 2
300.3.k.a.193.2 4 40.37 odd 4
720.3.bh.f.433.1 4 120.83 odd 4
720.3.bh.f.577.1 4 24.11 even 2
900.3.l.b.757.1 4 120.29 odd 2
900.3.l.b.793.1 4 120.77 even 4
960.3.bg.a.193.1 4 20.3 even 4
960.3.bg.a.577.1 4 4.3 odd 2
960.3.bg.b.193.2 4 5.3 odd 4 inner
960.3.bg.b.577.2 4 1.1 even 1 trivial
1200.3.bg.o.193.1 4 40.27 even 4
1200.3.bg.o.1057.1 4 40.19 odd 2